Communication Complexity 2022 Midterm

Total Marks Obtainable: 100

Time: 9:30 AM - 12:30 PM

Hint Sheet:

- 1. The randomized two-sided error public coin communication complexity of the function disjointness DISJ_n is $\Omega(n)$.
- 2. There exists a randomized public coin protocol for Equality (EQ) with communication complexity O(1) and error at most 1/4.
- 3. For vectors $x, y \in \mathbb{R}^n$, we have $||x||_2 \leq ||x||_1$ and $|\langle x, y \rangle| \leq ||x||_2 \cdot ||y||_2$.
- 1. (a) (5 marks) Alice gets an array x and Bob gets an array y as input, where x, y contain elements from $\{1, \ldots, n\}$. Moreover, both of them are given a positive integer $\tau \in \{1, \ldots, n\}$. The goal for them is to determine whether there is an element that has at least τ occurrences in $x \circ y$, where \circ denotes concatenation. Show an $\Omega(n)$ lower bound on the randomized public coin communication complexity of this problem.
 - (b) (5 marks) Let $\varepsilon \in (0, 1)$. An element *i* in an array of length *n* is called an ε -heavy hitter if *i* occurs at least εn times in the array. In the setting above, Alice and Bob aim to detect all ε -heavy hitters in $x \circ y$. Give a deterministic protocol for this problem that uses $O(\frac{1}{\varepsilon} \log n)$ bits of communication.
- 2. (15 marks) Alice and Bob are given arrays x and y containing elements from $\{0, \ldots, n-1\}$, where n is a power of 2. There is an additional promise that the concatenation of x and y contains either all the elements of $\{0, \ldots, n-1\}$ exactly once or an element j is replaced by i, thereby resulting in an array where every element in $\{0, \ldots, n-1\} \setminus \{i, j\}$ appears exactly once, i appears twice, and j does not appear at all. The goal for Alice and Bob is to determine which of the two cases holds for given x, y. Give a $O(\log n)$ -bit protocol for this problem.
- 3. Consider the greater than function GT: $\{0,1\}^n \times \{0,1\}^n \to \{0,1\}$ defined as GT(x,y) = 1 if and only if x > y.
 - (a) (5 marks) Prove that the nondeterministic communication complexity of GT is $\Omega(n)$.
 - (b) (15 marks) Prove that the randomized public coin communication complexity of GT is $O(\log n \log \log n)$.

4. In the lecture where we proved that $\Omega(k \log(n/k))$ linear measurements are necessary for the sparse recovery problem, we made an assumption that each entry in the measurement matrix $A \in \mathbb{R}^{m \times n}$ can be represented using $O(\log n)$ bits. In this question, we work towards showing that the assumption is without loss of generality.

Consider a matrix $A \in \mathbb{R}^{m \times n}$ with *orthonormal rows*. Let B be obtained after rounding entries of A to b bits each. Let C = A - B.

- (a) (5 marks) Prove that each entry of C has absolute value at most 2^{-b} .
- (b) (5 marks) For $v \in \mathbb{R}^n$, let $s = A^T C v$. Argue that Bv = A(v s). That is, taking a linear measurement on v with the rounded-down matrix B is identical to taking a linear measurement on a perturbed vector v s with A.
- (c) (10 marks) Prove that $||s||_1 \leq \frac{n^3}{2^b} \cdot ||v||_1$.
- 5. Consider the function INTER: $\{0, 1\}^n \times \{0, 1\}^n \to \{0, \dots, n-1\}$ defined as INTER $(x, y) = |\{j : x_j = y_j = 1\}|$.
 - (a) (5 marks) Prove that D(INTER) is $\Omega(n)$.
 - (b) (10 marks) Prove that rank of the matrix M_{INTER} is at most n.
 - (c) (5 marks) Do the above statements violate the log-rank conjecture? Justify.
- 6. A function $f : \mathbb{F}_2^n \to \mathbb{F}_2$ is linear if there exists a set $S \subseteq [n]$ such that $f(x) = \sum_{i \in S} x_i \mod 2$ for all $x \in \mathbb{F}_2^n$, where x_i denotes the *i*-th bit of x. Since there is a bijection between the set $2^{[n]}$ and the set of linear functions, we denote the linear function corresponding to the set $S \subseteq [n]$ as χ_S . The function χ_S is a k-parity function for $k \leq n$ if |S| = k. An ε -tester for k-parity gets inputs $k, n \in \mathbb{N}, \varepsilon \in (0, 1)$ and oracle access to a function $f : \mathbb{F}_2^n \to \mathbb{F}_2$. It has to accept, with probability at least 2/3, if f is k-parity and reject, with probability at least 2/3, if f is ε -far from every k-parity function. Recall that a function f is ε -far from k-parity if f differs from every k-parity function on at least $\varepsilon \cdot 2^n$ values.
 - (a) (5 marks) Prove that for $k' \neq k$ a k-parity function f is $\frac{1}{2}$ -far from a k'-parity function g.
 - (b) (10 marks) Consider sets $S, T \subseteq [n]$ such that |S| = |T| = k. Let h denote the function $(\chi_S + \chi_T) \mod 2$. Show that:
 - if $S \cap T = \emptyset$, then h is a 2k-parity function.
 - if $S \cap T \neq \emptyset$, then h has parity at most 2k 2.
 - (c) (10 marks) In the DISJ_k problem, Alice and Bob are given sets $S, T \subseteq [n]$ where $|S| = |T| = k \leq n/2$ and their goal is to determine if $S \cap T = \emptyset$ or not. It is known that the randomized two-sided error public coin communication complexity of DISJ_k is $\Omega(k)$. Using a reduction from this problem, argue that the query complexity of every ε -tester for testing k-parity is $\Omega(k)$ for all $\varepsilon \in (0, 1/2)$. Does your lower bound hold for adaptive testers as well?