Communication Complexity 2022 Midterm

Total Marks Obtainable: 100

Hint Sheet:

1. The randomized two-sided error public coin communication complexity of the function disjointness DISJ $_{n}$ is $\Omega(n)$.
2. There exists a randomized public coin protocol for Equality (EQ) with communication complexity $O(1)$ and error at most $1 / 4$.
3. For vectors $x, y \in \mathbb{R}^{n}$, we have $\|x\|_{2} \leq\|x\|_{1}$ and $|\langle x, y\rangle| \leq\|x\|_{2} \cdot\|y\|_{2}$.
4. (a) (5 marks) Alice gets an array x and Bob gets an array y as input, where x, y contain elements from $\{1, \ldots, n\}$. Moreover, both of them are given a positive integer $\tau \in\{1, \ldots, n\}$. The goal for them is to determine whether there is an element that has at least τ occurrences in $x \circ y$, where o denotes concatenation. Show an $\Omega(n)$ lower bound on the randomized public coin communication complexity of this problem.
(b) (5 marks) Let $\varepsilon \in(0,1)$. An element i in an array of length n is called an ε-heavy hitter if i occurs at least εn times in the array. In the setting above, Alice and Bob aim to detect all ε-heavy hitters in $x \circ y$. Give a deterministic protocol for this problem that uses $O\left(\frac{1}{\varepsilon} \log n\right)$ bits of communication.
5. ($\mathbf{1 5}$ marks) Alice and Bob are given arrays x and y containing elements from $\{0, \ldots, n-$ $1\}$, where n is a power of 2 . There is an additional promise that the concatenation of x and y contains either all the elements of $\{0, \ldots, n-1\}$ exactly once or an element j is replaced by i, thereby resulting in an array where every element in $\{0, \ldots, n-1\} \backslash\{i, j\}$ appears exactly once, i appears twice, and j does not appear at all. The goal for Alice and Bob is to determine which of the two cases holds for given x, y. Give a $O(\log n)$-bit protocol for this problem.
6. Consider the greater than function GT: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0,1\}$ defined as $\operatorname{GT}(x, y)=$ 1 if and only if $x>y$.
(a) (5 marks) Prove that the nondeterministic communication complexity of GT is $\Omega(n)$.
(b) (15 marks) Prove that the randomized public coin communication complexity of GT is $O(\log n \log \log n)$.
7. In the lecture where we proved that $\Omega(k \log (n / k))$ linear measurements are necessary for the sparse recovery problem, we made an assumption that each entry in the measurement matrix $A \in \mathbb{R}^{m \times n}$ can be represented using $O(\log n)$ bits. In this question, we work towards showing that the assumption is without loss of generality.
Consider a matrix $A \in \mathbb{R}^{m \times n}$ with orthonormal rows. Let B be obtained after rounding entries of A to b bits each. Let $C=A-B$.
(a) (5 marks) Prove that each entry of C has absolute value at most 2^{-b}.
(b) (5 marks) For $v \in \mathbb{R}^{n}$, let $s=A^{T} C v$. Argue that $B v=A(v-s)$. That is, taking a linear measurement on v with the rounded-down matrix B is identical to taking a linear measurement on a perturbed vector $v-s$ with A.
(c) (10 marks) Prove that $\|s\|_{1} \leq \frac{n^{3}}{2^{b}} \cdot\|v\|_{1}$.
8. Consider the function INTER: $\{0,1\}^{n} \times\{0,1\}^{n} \rightarrow\{0, \ldots, n-1\}$ defined as $\operatorname{INTER}(x, y)=$ $\left|\left\{j: x_{j}=y_{j}=1\right\}\right|$.
(a) (5 marks) Prove that D (INTER) is $\Omega(n)$.
(b) (10 marks) Prove that rank of the matrix $M_{\text {INTER }}$ is at most n.
(c) (5 marks) Do the above statements violate the log-rank conjecture? Justify.
9. A function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$ is linear if there exists a set $S \subseteq[n]$ such that $f(x)=\sum_{i \in S} x_{i}$ $\bmod 2$ for all $x \in \mathbb{F}_{2}^{n}$, where x_{i} denotes the i-th bit of x. Since there is a bijection between the set $2^{[n]}$ and the set of linear functions, we denote the linear function corresponding to the set $S \subseteq[n]$ as χ_{S}. The function χ_{S} is a k-parity function for $k \leq n$ if $|S|=k$. An ε-tester for k-parity gets inputs $k, n \in \mathbb{N}, \varepsilon \in(0,1)$ and oracle access to a function $f: \mathbb{F}_{2}^{n} \rightarrow \mathbb{F}_{2}$. It has to accept, with probability at least $2 / 3$, if f is k-parity and reject, with probability at least $2 / 3$, if f is ε-far from every k-parity function. Recall that a function f is ε-far from k-parity if f differs from every k-parity function on at least $\varepsilon \cdot 2^{n}$ values.
(a) (5 marks) Prove that for $k^{\prime} \neq k$ a k-parity function f is $\frac{1}{2}$-far from a k^{\prime}-parity function g.
(b) (10 marks) Consider sets $S, T \subseteq[n]$ such that $|S|=|T|=k$. Let h denote the function $\left(\chi_{S}+\chi_{T}\right) \bmod 2$. Show that:

- if $S \cap T=\emptyset$, then h is a $2 k$-parity function.
- if $S \cap T \neq \emptyset$, then h has parity at most $2 k-2$.
(c) (10 marks) In the DISJ_{k} problem, Alice and Bob are given sets $S, T \subseteq[n]$ where $|S|=|T|=k \leq n / 2$ and their goal is to determine if $S \cap T=\emptyset$ or not. It is known that the randomized two-sided error public coin communication complexity of DISJ_{k} is $\Omega(k)$. Using a reduction from this problem, argue that the query complexity of every ε-tester for testing k-parity is $\Omega(k)$ for all $\varepsilon \in(0,1 / 2)$. Does your lower bound hold for adaptive testers as well?

