ut $G=(V, E)$ be a graph. For $s \leq v$ define $K(S)=\{e \in E \mid$ one endpt of e is in $S t$ the other in $V S\}$

Prove: $\exists S_{0} \subseteq V$ s.t. $\left|K\left(S_{0}\right)\right| \geqslant \frac{1}{2}|E|$.

Motivation: If $\mu=\left(x_{1}+\cdots+x_{n}\right) / n$ then $\exists i, j$ sit. $x_{i} \geqslant \mu, x_{j} \leq \mu$. I will show that "the average of" $|K(s)|$'s is $\geqslant \frac{|E|}{2}$.

Expectation
So we compute $\mathbb{E}(|K(s)|)$:
let $I_{i j}= \begin{cases}1 & \text { if edge }\{i, j\} \text { is in } K(s) \\ 0 & 0 / w\end{cases}$ $(i, j \in v)$

$$
\begin{aligned}
\mathbb{E}(|K(S)|) & =\mathbb{E}\left(\sum_{\{i, j\} \in E} I_{i j}\right)=\sum_{i j \in E} \mathbb{E}\left(I_{i j}\right) \\
& =\sum_{i j \in E} 1 \cdot \mathbb{P}\left(I_{i j}=1\right) \\
\mathbb{P}\left(I_{i j}=1\right) & =\mathbb{P}((i \in S, j \in V \backslash S) \cup(i \in V \backslash S, j \in S)) \\
& =\mathbb{P}(i \in S, j \in V \backslash S)+\mathbb{P}(i \in V \backslash S, j \in S) \\
& =\mathbb{P}(i \in S) \cdot \mathbb{P}(j \in V \backslash S)+\mathbb{P}(i \in V \backslash S) \mathbb{P}(j \in S) \\
& =\frac{1}{2} \cdot \frac{1}{2}+\frac{1}{2} \cdot \frac{1}{2}=\frac{1}{2} \\
> & =\sum_{i j \in E} \frac{1}{2}=\frac{1}{2}|E|
\end{aligned}
$$

We conclude that \exists So sit. $\left|K\left(S_{0}\right)\right| \geqslant \frac{\mid E)}{2}$.

Defy: A poet L is called a lattia if any two elements $x, y \in L$ have a minimum common upper bd $a \& a$ maximum common lower bd b.

If $S, T \subseteq X$, then the minimum common $u \cdot b$. of $S \& T$ is $S U T$, and maximum common lower bd is $S \cap T$.

In case of a general lattice, m in common $u \cdot b$. of x, y is written as $a=x \vee y$ \& \max common $l \cdot b$ of x, y is written as $b=x \wedge y$.
1 - meet
v - join

The problem I gave yesterday:
Suppose 7 boys and 13 girls line up in a row. Let S be the number of places in the row where a boy and a girl are standing next to each other. For example, in GBBGGGBGBGGGBGBGGBGG we have $\mathrm{S}=12$. All such arrangements are enlisted and the S value written next to them. What is the sum of all these S ?
Fix a naming:
B_{1}, \ldots, B_{7},
G_{1}, \ldots, G_{13}

$$
I_{i j}=\left\{\begin{array}{l}
1 \\
\text { if } B_{i} \& G_{j} \text { are next to each other } \\
0 \\
0 / \omega
\end{array}\right.
$$

$$
\begin{aligned}
& \text { Easy to see } S=\sum_{\substack{1 \leq 1 \leq 7 \\
1 \leq j \leq 13}} I_{i j} \\
& \therefore \mathbb{E}(S)=\mathbb{E}\left(\sum_{i, j} I_{i j}\right)=\sum_{i=1}^{7} \sum_{j=1}^{13} \mathbb{E}\left(I_{i j}\right) \\
& =\sum_{i=1}^{7} \sum_{j=1}^{13} \frac{19!\times 2}{20!}=\frac{19!\times 2}{20!} \underbrace{9!}\left|\begin{array}{l}
\text { What is } \mathbb{E}\left(I_{i j}\right) ? \\
\end{array}\right| \begin{array}{l}
19!\times 2 \times 7\left(I_{i j=1}\right) \\
20!
\end{array}
\end{aligned}
$$

The no. we are looking for $=\mathbb{E}(S) \times$ (total no. of arrangements)

$$
=19!\times 2 \times 91
$$

Expected no. of fixed points (in a permutation of n letters) is 1 .
\therefore If you look at all permutations on n letters \& count the total no. of fixed points, it comes out to be n !.

P3 of Quiz 2
$241365 \leftarrow$ Seq given

Remaining are $1,3,5$.
Place them in increasing order in the gaps.

