CHENNAI MATHEMATICAL INSTITUTE

Discrete Mathematics

Quiz 1:
Date: May 21, 2021.
Each question carries 5 marks.
(1) State Turan's theorem. Let $G=(V, E)$ be a simple undirected graph on n vertices. We define the complement graph of G to be the graph $\bar{G}=(V, \bar{E})$ with vertex set V and whose edge set is the complement of E. So $(x, y) \in \bar{E}$ if and only if $(x, y) \notin E$. If G has a clique of size at least t, what can you say about independent sets in \bar{G}. Using Turan's theorem show that if G has exactly $\frac{n k}{2}$ edges then G has an independent set of size at least $n /(k+1)$.
(2) State Dilworth's theorem. Let $0<a_{1}<a_{2}<\ldots<a_{r s+1}$ be $r s+1$ distinct integers. Using Dilworth's theorem show that we can select $r+1$ of them each dividing the following one, or $s+1$ of them none of which divides the other.
(3) Show that if you select any $n+1$ distinct numbers among $\{1,2, \ldots, 2 n\}$ there will be a pair of numbers which add up to $2 n+1$.
(4) Guess the pattern for the sum of the following expression, and prove it by induction.

$$
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\cdots+\frac{1}{(n) \cdot(n+1) \cdot(n+2)}
$$

