DAA Problem Set 1

April 302021

1. Consider the following three functions. The input integers are always assumed to be non-negative for this problem. In these functions, pair and int are used as data types (as you might know from python). pair p is to be thought of as a 2-tuuple (x, y) where both x, y are of int type. fst and snd denote the first and second components, respectively.
function f1(pair p):
x = p.fst
y = p.snd
return (x+1,x)
```
```

```
function f2(int n):
```

```
function f2(int n):
```

 p = (0,0)
    ```
    p = (0,0)
    for i = 1 to n:
    for i = 1 to n:
        p = f1(p)
        p = f1(p)
    ans = p.snd
    ans = p.snd
    return ans
```

 return ans
    ```
```

function f3(int x, int y):

```
function f3(int x, int y):
    if y == 0:
    if y == 0:
        return x
        return x
    else:
    else:
        x1 = f2(x)
        x1 = f2(x)
        y1 = f2(y)
        y1 = f2(y)
        return f3(x1,y1)
```

 return f3(x1,y1)
    ```
(a) Describe in simple (high-school) math terms what the function \(f 2\) does. Your answer should look something like " \(\mathrm{f} 2(\mathrm{n})\) gives the square of n " or " \(\mathrm{f} 2(\mathrm{n})\) gives -n if n is even and n if n is odd".
(b) Describe in a similar way (as above) what the function \(f 3\) does.
(c) Let \(T(n)\) be the number of 'basic steps' executed by the computer when you call \(\mathrm{f} 2(\mathrm{n})\). Is \(T(n)\) in \(\mathcal{O}(n)\) ? In \(\Omega(n)\) ? In \(\Theta(n)\) ?
2. Consider the following functions. Each of them take two inputs \(\mathrm{a} \geq 1\) and \(\mathrm{n} \geq 0\).
    \(\mathrm{x}=1\)
    for \(i=1\) to \(n\) :
        \(\mathrm{x}=\mathrm{x} * \mathrm{a}\)
    return \(x\)
```

function f5(int a, int n):

```
function f5(int a, int n):
    if n == 0:
    if n == 0:
        return 1
        return 1
    if n == 1:
    if n == 1:
        return a
        return a
    b}=\textrm{f}4(\textrm{a},\textrm{n}/2
    b}=\textrm{f}4(\textrm{a},\textrm{n}/2
    if (n % 2) == 0:
    if (n % 2) == 0:
        return (b * b)
        return (b * b)
    return (b * b * a)
```

 return (b * b * a)
    ```

In the above, \(n \% 2\) is the least non-negative remainder obtained upon division of \(n\) by 2 , and \(n / 2\) is the floor value of half of \(n\).
(a) Show that \(\mathrm{a}^{\mathrm{n}}=\mathrm{f} 4(\mathrm{a}, \mathrm{n})=\mathrm{f} 5(\mathrm{a}, \mathrm{n})\).
(b) Let \(\mathrm{a} \geq 1\) be a fixed integer. Let \(T_{1}(n), T_{2}(n)\) denote the number of basic steps involved in the execution of \(\mathrm{f} 4(\mathrm{a}, \mathrm{n})\) and \(\mathrm{f} 5(\mathrm{a}, \mathrm{n})\) respectively.```

