DAA Problem Set 1

April 30 2021

1. Consider the following three functions. The input integers are always assumed to be non-negative for this problem. In these functions, pair and int are used as data types (as you might know from python). pair p is to be thought of as a 2-tuuple (x,y) where both x,y are of int type. fst and snd denote the first and second components, respectively.

function f1(pair p): p = (0,0) $x = p.fst for i = 1 to n:$ $y = p.snd p = f1(p)$ $return (x+1,x) ans = p.snd$ $return ans$	<pre>function f3(int x, int y): if y == 0: return x else: x1 = f2(x) y1 = f2(y) return f3(x1,y1)</pre>
--	--

- (a) Describe in simple (high-school) math terms what the function f2 does. Your answer should look something like "f2(n) gives the square of n" or "f2(n) gives -n if n is even and n if n is odd".
- (b) Describe in a similar way (as above) what the function f3 does.
- (c) Let T(n) be the number of 'basic steps' executed by the computer when you call f2(n). Is T(n) in $\mathcal{O}(n)$? In $\Omega(n)$? In $\Theta(n)$?
- 2. Consider the following functions. Each of them take two inputs $a \ge 1$ and $n \ge 0$.

```
function f5(int a, int n):
function f4(int a, int n):
x = 1
for i = 1 to n:
x = x * a
return x
function f5(int a, int n):
return 1
return 1
return a
b = f4(a, n/2)
return (b * b)
return (b * b * a)
```

In the above, $n \ \% \ 2$ is the least non-negative remainder obtained upon division of n by 2, and n/2 is the floor value of half of n.

- (a) Show that $a^n = f4(a,n) = f5(a,n)$.
- (b) Let $a \ge 1$ be a fixed integer. Let $T_1(n), T_2(n)$ denote the number of basic steps involved in the execution of f4(a,n) and f5(a,n) respectively.