
PLC : Assignment 4

Set: March 31, 2021

Due: April 10, 2021, 23.55

General instructions:

1. Submit your solutions as a PDF or plain text file on Moodle. The file should be named <un>-4.txt
(or <un>-4.pdf, if you are submitting a PDF), where un is your username. For example, I would
submit a file named spsuresh-4.txt.

2. If you are submitting a text file, use the Haskell notation \x -> M for the λx .M when writing ex-
pressions in the lambda calculus. (For λx y z .M , write \x y z -> M.) Use the notation := for syn-
tactic equality, and --> and = for (many-step) beta-reduction and beta-equality, respectively. Use
M[x <- N] for substitution. Also use <m> for the Church encoding of m, and x^{y} for x y .

3. Properly parenthesize your lambda expressions and use spacing to keep it readable.

4. Recall that the Church encoding of n, denoted [n], is the expression λ f x . f nx , where f 0x is de-
fined to be just x , and f i+1x := f ( f i x ).

1. Let exp := λpq .pq . Prove that for all m ≥ 0 and n ≥ 1,
exp[n][m] −→ [mn].

Hint: Prove the following claims in order:

(a) For k , l ≥ 0, (λz .x k z )l y −→ x k l y .

(b) For m ≥ 0, n ≥ 1, (λ g y. g m y )nx −→ (λy.x mn y ).

(c) From the above, show that for all m ≥ 0 and n ≥ 1, [n][m] −→ [mn].

(d) Conclude that exp[n][m] −→ [mn].

2. What is the normal formof [5](exp[2])[2]? What is the size (number of applications) of the normal
form?

3. (a) Find a lambda-expression F such that for all M , F M = F .

(b) Find a lambda-expression F such that for all M , F M =MF .

4. Prove that every expression in normal form M is of the form λx1 · · ·λxn .yM1M2 · · ·M l , where y
is a variable and M1, . . . ,M l are themselves in normal form.
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5. Find an encoding for the predecessor function in lambda calculus. Thepredecessor function is given
by: pred(0) = 0 and pred(n + 1) = n.

6. Find an encoding for the Pow function in lambda calculus. It is given by:

Pow(m, n) =

(
true if ∃k : mk = n

false otherwise

7. Combinatory logic is a related system which uses function applications, but no function abstrac-
tion. A CL term is either a variable or the constant S or the constantK or the application of term t
to term t ′, denoted (t t ′). The behaviour of S andK is given by the following rules:

Sx y z −→ x z (y z )

Kx y −→ x

A combinator is a variable-free CL term. Find combinators (expressions involving S,K, and previ-
ously defined combinators, but no variables) with the following behaviour:

(a) I such that Ix −→ x

(b) T such thatTx y −→ y x

(c) B such that Bx y z −→ x (y z )

(d) M such thatMx −→ x x

8. For a variable x and any CL term M , define [x ]M as follows:

[x ]x = I

[x ]y = Ky (y ̸= x )

[x ](MN ) = S([x ]M )([x ]N )

Prove that for any CL term M , x does not occur in [x ]M and ([x ]M )N −→M [x ←N ].

From the above [x ]M behaves just likeλx .M . Sowe have the following translation of lambda terms
to CL terms.

CL(x ) := x

CL(MN ) := CL(M )CL(N )
CL(λx .M ) := [x ](CL(M ))

Find combinatory logic terms corresponding to the lambda terms λ f .(λx . f (x x ))(λx . f (x x )) and
λ f .(λx . f ( f x )).
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