## PLC : Assignment 4

## Set: March 31, 2021

Due: April 10, 2021, 23.55

## General instructions:

I. Submit your solutions as a PDF or plain text file on Moodle. The file should be named <un>-4.txt (or <un>-4.pdf, if you are submitting a PDF), where un is your username. For example, I would submit a file named spsuresh-4.txt.
2. If you are submitting a text file, use the Haskell notation $\backslash x->M$ for the $\lambda x . M$ when writing expressions in the lambda calculus. (For $\lambda x y z . M$, write $\backslash x$ y $z->M$.) Use the notation := for syntactic equality, and --> and = for (many-step) beta-reduction and beta-equality, respectively. Use $M[x<-N]$ for substitution. Also use $<m>$ for the Church encoding of $m$, and $x \wedge\{y\}$ for $x^{y}$.
3. Properly parenthesize your lambda expressions and use spacing to keep it readable.
4. Recall that the Church encoding of $n$, denoted [ $n$ ], is the expression $\lambda f x \cdot f^{n} x$, where $f^{0} x$ is defined to be just $x$, and $f^{i+1} x:=f\left(f^{i} x\right)$.
I. Let $\exp :=\lambda p q \cdot p q$. Prove that for all $m \geq 0$ and $n \geq 1$,

$$
\exp [n][m] \longrightarrow\left[m^{n}\right] .
$$

Hint: Prove the following claims in order:
(a) For $k, l \geq 0,\left(\lambda z \cdot x^{k} z\right)^{l} y \longrightarrow x^{k l} y$.
(b) For $m \geq 0, n \geq 1,\left(\lambda g y \cdot g^{m} y\right)^{n} x \longrightarrow\left(\lambda y \cdot x^{m^{n}} y\right)$.
(c) From the above, show that for all $m \geq 0$ and $n \geq 1,[n][m] \longrightarrow\left[m^{n}\right]$.
(d) Conclude that $\exp [n][m] \longrightarrow\left[m^{n}\right]$.
2. What is the normal form of [5] $(\exp [2])[2]$ ? What is the size (number of applications) of the normal form?
3. (a) Find a lambda-expression $F$ such that for all $M, F M=F$.
(b) Find a lambda-expression $F$ such that for all $M, F M=M F$.
4. Prove that every expression in normal form $M$ is of the form $\lambda x_{1} \cdots \lambda x_{n} \cdot y M_{1} M_{2} \cdots M_{l}$, where $y$ is a variable and $M_{1}, \ldots, M_{l}$ are themselves in normal form.
5. Find an encoding for the predecessor function in lambda calculus. The predecessor function is given by: $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.
6. Find an encoding for the Pow function in lambda calculus. It is given by:

$$
\operatorname{Pow}(m, n)= \begin{cases}\text { true } & \text { if } \exists k: m^{k}=n \\ \text { false } & \text { otherwise }\end{cases}
$$

7. Combinatory logic is a related system which uses function applications, but no function abstraction. A CL term is either a variable or the constant $\mathbf{S}$ or the constant $\mathbf{K}$ or the application of term $t$ to term $t^{\prime}$, denoted $\left(t t^{\prime}\right)$. The behaviour of $\mathbf{S}$ and $\mathbf{K}$ is given by the following rules:

$$
\begin{aligned}
\mathrm{S} x y z & \longrightarrow x z(y z) \\
\mathbf{K} x y & \longrightarrow x
\end{aligned}
$$

A combinator is a variable-free CL term. Find combinators (expressions involving $\mathbf{S}, \mathrm{K}$, and previously defined combinators, but no variables) with the following behaviour:
(a) I such that $\mathbf{I} x \longrightarrow x$
(b) T such that $\mathrm{T} x y \longrightarrow y x$
(c) $\mathbf{B}$ such that $\mathbf{B} x y z \longrightarrow x(y z)$
(d) $\mathbf{M}$ such that $\mathbf{M} x \longrightarrow x x$
8. For a variable $x$ and any CL term $M$, define $[x] M$ as follows:

$$
\begin{aligned}
{[x] x } & =I \\
{[x] y } & =\mathbf{K} y \quad(y \neq x) \\
{[x](M N) } & =\mathbf{S}([x] M)([x] N)
\end{aligned}
$$

Prove that for any CL term $M, x$ does not occur in $[x] M$ and $([x] M) N \longrightarrow M[x \leftarrow N]$.
From the above $[x] M$ behaves just like $\lambda x$. $M$. So we have the following translation oflambda terms to CL terms.

$$
\begin{aligned}
C L(x) & :=x \\
C L(M N) & :=C L(M) C L(N) \\
C L(\lambda x . M) & :=[x](C L(M))
\end{aligned}
$$

Find combinatory logic terms corresponding to the lambda terms $\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$ and $\lambda f .(\lambda x . f(f x))$.

