PLC : End-semester examination

April 28, 2020. $2.00 \mathrm{pm}-5.00 \mathrm{pm}$
Marks: 100
Weightage: 30

General instructions:

1. Submit your solutions as a PDF scan of your handwritten answers or as a plain text file on Moodle. The file should be named <un>-endsem.txt (or <un>-endsem.pdf, if you are submitting a PDF), where un is your username. For example, I would submit a file named spsuresh-endsem.txt.
2. If you are submitting a text file, use the Haskell notation $\backslash x \rightarrow M$ for the $\lambda x . M$ when writing expressions in the lambda calculus. (For $\lambda x y z . M$, write $\backslash x$ y $z->M$.) Use the notation := for syntactic equality, and --> and = for (many-step) beta-reduction and beta-equality, respectively. Use $M[x<-N]$ for substitution. Also use $<m>$ for the Church encoding of m, and $x^{\wedge}\{y\}$ for x^{y}.
3. Properly parenthesize your lambda expressions and use spacing to keep it readable.
4. Recall that the Church encoding of n, denoted [n], is the expression $\lambda f x \cdot f^{n} x$, where $f^{0} x$ is defined to be just x, and $f^{i+1} x:=f\left(f^{i} x\right)$.
5. You can assume the following standard encodings introduced in the lecture slides, with the appropriate behaviour:

$$
\begin{aligned}
{[n] } & =\lambda f x \cdot f^{n} x \\
\text { succ } & =\lambda p f x \cdot f(p f x) \\
\text { plus } & =\lambda p q f x \cdot p f(q f x) \\
\text { mult } & =\lambda p q f \cdot p(q f) \\
\text { true } & =(\lambda x y \cdot x) \\
\text { false } & =(\lambda x y \cdot y) \\
\text { pair } & =(\lambda x y w \cdot w x y) \\
\text { fst } & =(\lambda p \cdot p \text { true }) \\
\text { snd } & =(\lambda p \cdot p \text { false }) \\
\text { ite } & =(\lambda b x y \cdot b x y) \\
\text { iszero } & =(\lambda x \cdot(x(\lambda z \cdot f a l \mathbf{s e})) \text { true })
\end{aligned}
$$

1. Reduce the following terms to β-normal form. (Note the need to rename bound variables appropriately.)
(a) $(\lambda x y \cdot x y)(\lambda v \cdot v u)(\lambda x \cdot x)$
(b) $(\lambda x y \cdot x y)((\lambda v \cdot v u)(\lambda x \cdot x))$
(c) $(\lambda x \cdot x(x(y z)) x)(\lambda u \cdot u v)$
(d) $(\lambda x \cdot x x y)(\lambda y \cdot y z)$
(e) $(\lambda x y \cdot x y y)(\lambda u \cdot u y x)$
(15 marks)
2. Find a lambda-calculus encoding for the function $S(n)$ defined by $S(n)=0+1+\cdots+n$ for $n \geq 0$. Prove that your encoding is correct. Do not use any fixed-point combinator.
(20 marks)
3. Consider the following encoding of the empty list and cons operator.

$$
\begin{gathered}
{[]=\lambda x y \cdot y} \\
H: T=\lambda x y \cdot x H T
\end{gathered}
$$

Find λ-expressions with the following behaviour:
(a) null: if $M=[]$ then null $M \xrightarrow{*}_{\beta}$ true, and if M is of the form $H: T$ then null $M \xrightarrow{*}{ }_{\beta}$ false.
(b) head, which extracts the head of a list and is defined only on inputs of the form $H: T$.
(c) tail, which extracts the tail of a list and is defined only on inputs of the form $H: T$.
(20 marks)
4. Give an example of a closed λ-expression (an expression without free variables) that belongs to each of the following types:
(a) $a \rightarrow(a \rightarrow b) \rightarrow b$
(b) $(a \rightarrow b \rightarrow c) \rightarrow(a \rightarrow b) \rightarrow(a \rightarrow c)$
(c) $(a \rightarrow b \rightarrow c) \rightarrow(b \rightarrow a \rightarrow c)$
(d) $((b \rightarrow c) \rightarrow a \rightarrow b) \rightarrow(b \rightarrow c) \rightarrow a \rightarrow c$
(e) $a \rightarrow((b \rightarrow a) \rightarrow c) \rightarrow c$
5. Consider the following two threads running concurrently, with x and y being shared variables, with initial values 7 and 3 respectively. Assume that each assignment statement is atomic.

Thread A

$x:=y+1$
$x:=2 * x * y$
$x:=x-y$

Thread B

$y:=x+1$
$y:=2 * y * y$
$y:=y-x$

Show how to generate the following combinations of (x, y) values at the end of the execution of both threads.
(a) $(-10,60)$
(b) $(30,10)$
(c) $(21,947)$
(d) $(4480,-2176)$

Argue that at the completion of both threads, the value of $x+y$ is always even. ($\mathbf{2 0} \mathbf{~ m a r k s)}$

