PLC : End-semester examination

April 28, 2020. 2.00 pm – 5.00 pm Marks: 100 Weightage: 30

General instructions:

- Submit your solutions as a PDF scan of your handwritten answers or as a plain text file on Moodle. The file should be named <un>-endsem.txt (or <un>-endsem.pdf, if you are submitting a PDF), where un is your username. For example, I would submit a file named spsuresh-endsem.txt.
- 2. If you are submitting a text file, use the Haskell notation $x \rightarrow M$ for the $\lambda x.M$ when writing expressions in the lambda calculus. (For $\lambda x yz.M$, write $x y z \rightarrow M$.) Use the notation := for syntactic equality, and --> and = for (many-step) beta-reduction and beta-equality, respectively. Use M[x <- N] for substitution. Also use <m> for the Church encoding of *m*, and x^{y} for x^{y} .
- 3. Properly parenthesize your lambda expressions and use spacing to keep it readable.
- 4. Recall that the Church encoding of *n*, denoted [*n*], is the expression $\lambda f x. f^n x$, where $f^0 x$ is defined to be just *x*, and $f^{i+1} x := f(f^i x)$.
- 5. You can assume the following standard encodings introduced in the lecture slides, with the appropriate behaviour:

$$[n] = \lambda f x. f^{n} x$$

succ = $\lambda p f x. f(p f x)$
plus = $\lambda p q f x. p f(q f x)$
mult = $\lambda p q f. p(q f)$
true = $(\lambda x y. x)$
false = $(\lambda x y. x)$
pair = $(\lambda x y w. w x y)$
fst = $(\lambda p. p \text{ true})$
snd = $(\lambda p. p \text{ false})$
ite = $(\lambda b x y. b x y)$
iszero = $(\lambda x. (x(\lambda z. \text{false})) \text{ true})$

- 1. Reduce the following terms to β -normal form. (Note the need to rename bound variables appropriately.)
 - (a) $(\lambda x y.x y)(\lambda v.v u)(\lambda x.x)$
 - (b) $(\lambda x y.x y)((\lambda v.v u)(\lambda x.x))$
 - (c) $(\lambda x.x(x(yz))x)(\lambda u.uv)$
 - (d) $(\lambda x.xxy)(\lambda y.yz)$
 - (e) $(\lambda x y.x y y)(\lambda u.u y x)$

(15 marks)

- 2. Find a lambda-calculus encoding for the function S(n) defined by $S(n) = 0 + 1 + \dots + n$ for $n \ge 0$. Prove that your encoding is correct. Do not use any fixed-point combinator. (20 marks)
- 3. Consider the following encoding of the empty list and cons operator.

$$[] = \lambda x y. y$$
$$H: T = \lambda x y. x H T$$

Find λ -expressions with the following behaviour:

- (a) null: if M = [] then null $M \xrightarrow{*}_{\beta}$ true, and if M is of the form H : T then null $M \xrightarrow{*}_{\beta}$ false.
- (b) head, which extracts the head of a list and is defined only on inputs of the form H: T.
- (c) tail, which extracts the tail of a list and is defined only on inputs of the form H:T. (20 marks)
- 4. Give an example of a *closed* λ *-expression* (an expression without free variables) that belongs to each of the following types:

(a)
$$a \rightarrow (a \rightarrow b) \rightarrow b$$

(b) $(a \rightarrow b \rightarrow c) \rightarrow (a \rightarrow b) \rightarrow (a \rightarrow c)$
(c) $(a \rightarrow b \rightarrow c) \rightarrow (b \rightarrow a \rightarrow c)$
(d) $((b \rightarrow c) \rightarrow a \rightarrow b) \rightarrow (b \rightarrow c) \rightarrow a \rightarrow c$
(e) $a \rightarrow ((b \rightarrow a) \rightarrow c) \rightarrow c$ (25 marks)

5. Consider the following two threads running concurrently, with x and y being shared variables, with initial values 7 and 3 respectively. Assume that each assignment statement is atomic.

Thread A	Thread B
x := y + 1	y := x + 1
x := 2*x*y	y := 2*y*y
x := x - y	y := y - x

Show how to generate the following combinations of (x,y) values at the end of the execution of both threads.

- (a) (-10, 60)
- (b) (30,10)
- (c) (21,947)
- (d) (4480, -2176)

Argue that at the completion of both threads, the value of x+y is always even. (20 marks)