Programming Language Concepts: Lecture 23

S P Suresh

April 14, 2021

Curry typing: typability

Definition (Typability problem)

Given a term M of the untyped λ -calculus, check whether it can be given a time (assuming some types for free variables)

Curry typing: typability

Definition (Typability problem)

Given a term M of the untyped λ -calculus, check whether it can be given a time (assuming some types for free variables)

Definition (Type inference)

Given a typable term M, compute its principal type

Curry typing: typability

Definition (Typability problem)

Given a term M of the untyped λ -calculus, check whether it can be given a time (assuming some types for free variables)

Definition (Type inference)

Given a typable term M, compute its principal type

Theorem

Typability and type inference for simply typed λ -calculus is solvable in polynomial time

• For every λ -expression M, build

- For every λ -expression M, build
 - E_M , a system of equations (over types)

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M
 - main p_x , for $x \in FV(M)$ (if $x \neq y$, $p_x \neq p_y$)

- For every λ -expression M, build
 - E_M , a system of equations (over types)
 - τ_M , a type
- E_M has a solution iff M is typable
- Solution for E_M a substitution *S* mapping type variables to types that makes all equations true (both sides identical under *S*)
- If S is the least constrained solution for E_M , $S(\tau_M)$ is a principal type for M
- Type variables in E_M and τ_M
 - main p_x , for $x \in FV(M)$ (if $x \neq y$, $p_x \neq p_y$)
 - auxiliary not of the form p_x

• M is the variable x

- M is the variable x
 - $E_M = \emptyset$

- M is the variable x
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$

- M is the variable x
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ

- M is the variable x
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q , to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- M is $\lambda x \cdot P$

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- M is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable *p*

- *M* is the variable *x*
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- M is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable *p*
 - $E_M = E_P[p_x := p]$

- M is the variable x
 - $E_M = \emptyset$
 - Define $\tau_M = p_x$
- M is PQ
 - Rename auxilliary variables in E_Q and τ_Q, to keep them distinct from auxilliary variables in E_P and τ_P
 - Choose a fresh auxilliary type variable *p*
 - Define $\tau_M = p$
 - $E_M = E_P \cup E_Q \cup \{\tau_P = \tau_Q \rightarrow p\}$
- M is $\lambda x \cdot P$
 - Choose a fresh auxilliary type variable *p*
 - $E_M = E_P[p_x := p]$
 - Define $\tau_M = p \rightarrow \tau_P[p_x := p]$

•
$$\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$$

•
$$\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$$

•
$$E_x = E_y = E_z = \emptyset$$

•
$$\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$$

•
$$E_x = E_y = E_z = \emptyset$$

•
$$\tau_{yz} = p$$
, $E_{yz} = \{p_y = p_z \rightarrow p\}$

• $M = \lambda x y z \cdot N$ where N = x(yz)

•
$$\tau_x = p_x, \tau_y = p_y, \tau_z = p_z$$

• $E_x = E_y = E_z = \emptyset$
• $\tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\}$
• $\tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\}$

Suresh

•
$$M = \lambda x y z \cdot N$$
 where $N = x(yz)$

$$\begin{aligned} \bullet & \tau_x = p_x, \tau_y = p_y, \tau_z = p_z \\ \bullet & E_x = E_y = E_z = \emptyset \\ \bullet & \tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\} \\ \bullet & \tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\} \\ \bullet & \tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\} \end{aligned}$$

•
$$M = \lambda x y z \cdot N$$
 where $N = x(yz)$

$$\begin{array}{l} \bullet \ \tau_x = p_x, \tau_y = p_y, \tau_z = p_z \\ \bullet \ E_x = E_y = E_z = \varnothing \\ \bullet \ \tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\} \\ \bullet \ \tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\} \\ \bullet \ \tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\} \\ \bullet \ \tau_{\lambda y z \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda y z \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\} \end{array}$$

•
$$M = \lambda x y z \cdot N$$
 where $N = x(yz)$

$$\begin{array}{l} \bullet \ \tau_x = p_x, \tau_y = p_y, \tau_z = p_z \\ \bullet \ E_x = E_y = E_z = \varnothing \\ \bullet \ \tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\} \\ \bullet \ \tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\} \\ \bullet \ \tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\} \\ \bullet \ \tau_{\lambda y z \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda y z \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\} \\ \bullet \ \tau_M = t \rightarrow s \rightarrow r \rightarrow q, E_M = \{s = r \rightarrow p, t = p \rightarrow q\} \end{array}$$

•
$$M = \lambda x y z \cdot N$$
 where $N = x(yz)$

$$\begin{array}{l} \mathbf{\tau}_{x} = p_{x}, \mathbf{\tau}_{y} = p_{y}, \mathbf{\tau}_{z} = p_{z} \\ E_{x} = E_{y} = E_{z} = \varnothing \\ \mathbf{\tau}_{yz} = p, E_{yz} = \{p_{y} = p_{z} \rightarrow p\} \\ \mathbf{\tau}_{N} = q, E_{N} = \{p_{y} = p_{z} \rightarrow p, p_{x} = p \rightarrow q\} \\ \mathbf{\tau}_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_{y} = r \rightarrow p, p_{x} = p \rightarrow q\} \\ \mathbf{\tau}_{\lambda y z \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda y z \cdot N} = \{s = r \rightarrow p, p_{x} = p \rightarrow q\} \\ \mathbf{\tau}_{M} = t \rightarrow s \rightarrow r \rightarrow q, E_{M} = \{s = r \rightarrow p, t = p \rightarrow q\} \end{array}$$

• A minimal solution for E_M is $S = \{s := r \rightarrow p, t := p \rightarrow q\}$

•
$$M = \lambda x y z \cdot N$$
 where $N = x(yz)$

$$\begin{array}{l} \tau_x = p_x, \tau_y = p_y, \tau_z = p_z \\ E_x = E_y = E_z = \varnothing \\ \tau_{yz} = p, E_{yz} = \{p_y = p_z \rightarrow p\} \\ \tau_N = q, E_N = \{p_y = p_z \rightarrow p, p_x = p \rightarrow q\} \\ \tau_{\lambda z \cdot N} = r \rightarrow q, E_{\lambda z \cdot N} = \{p_y = r \rightarrow p, p_x = p \rightarrow q\} \\ \tau_{\lambda y z \cdot N} = s \rightarrow r \rightarrow q, E_{\lambda y z \cdot N} = \{s = r \rightarrow p, p_x = p \rightarrow q\} \\ \tau_M = t \rightarrow s \rightarrow r \rightarrow q, E_M = \{s = r \rightarrow p, t = p \rightarrow q\} \end{array}$$

- A minimal solution for E_M is $S = \{s := r \to p, t := p \to q\}$
- The principal type of $M: S(\tau_M) = (p \to q) \to (r \to p) \to (r \to q)$

• M = PQ where $P = Q = \lambda x \cdot x$
- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x$, $E_x = \emptyset$

• M = PQ where $P = Q = \lambda x \cdot x$

•
$$\tau_x = p_x, E_x = \emptyset$$

•
$$\tau_P = p \rightarrow p, E_P = \emptyset$$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$ • $\tau_p = p \rightarrow p, E_p = \emptyset$ • $\tau_O = q \rightarrow q, E_O = \emptyset$

Suresh

• M = PQ where $P = Q = \lambda x \cdot x$

•
$$\tau_x = p_x, E_x = \emptyset$$

• $\tau_p = p \rightarrow p, E_p = \emptyset$
• $\tau_Q = q \rightarrow q, E_Q = \emptyset$
• $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$

• M = PQ where $P = Q = \lambda x \cdot x$

•
$$\tau_x = p_x, E_x = \emptyset$$

• $\tau_p = p \rightarrow p, E_p = \emptyset$
• $\tau_Q = q \rightarrow q, E_Q = \emptyset$
• $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$

• A minimal solution for E_M is $S = \{p := q \rightarrow q, r := q \rightarrow q\}$

- M = PQ where $P = Q = \lambda x \cdot x$
 - $\tau_x = p_x, E_x = \emptyset$ • $\tau_p = p \rightarrow p, E_p = \emptyset$ • $\tau_Q = q \rightarrow q, E_Q = \emptyset$ • $\tau_{PQ} = r, E_{PQ} = \{p \rightarrow p = (q \rightarrow q) \rightarrow r\}$
- A minimal solution for E_M is $S = \{p := q \rightarrow q, r := q \rightarrow q\}$
- The principal type of $M: S(\tau_M) = q \rightarrow q$

• $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot y y)(\lambda x \cdot x)$

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot y y)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot y y)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot y y$ is not typable

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot y y)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot y y$ is not typable
- M_1 is typable despite the occurrence of yy

- $M = (\lambda x \cdot x)(\lambda x \cdot x)$ has principal type $q \rightarrow q$
- Let M_1 be let $y = \lambda x \cdot x$ in yy
- Let M_2 be $(\lambda y \cdot y y)(\lambda x \cdot x)$
- M_1 is equivalent to M and has the same principal type
- M_2 is not typable, because $\lambda y \cdot y y$ is not typable
- M_1 is typable despite the occurrence of yy
 - variable defined by local definition treated differently

• M is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N

- *M* is let $\{x_1 = M_1; \dots; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n

- *M* is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$

- *M* is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_x 's

- M is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_x 's
 - Each occurrence of x_i in N will get a different instance of τ_x as its type

- M is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_{x_i} 's
 - Each occurrence of x_i in N will get a different instance of τ_{x_i} as its type
 - All auxilliary type variables in τ_x , will be renamed to fresh variables

- M is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_{x_i} 's
 - Each occurrence of x_i in N will get a different instance of τ_x as its type
 - All auxilliary type variables in τ_x will be renamed to fresh variables
 - Main type variables of the form p_x will not be renamed

- M is let $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N
 - Find principal types of M_1, \ldots, M_n
 - Set τ_{x_i} to be τ_{M_i} , and $E_{x_i} = \emptyset$
 - Find the type of N as usual, using the above definition for τ_{x_i} 's
 - Each occurrence of x_i in N will get a different instance of τ_x as its type
 - All auxilliary type variables in τ_x will be renamed to fresh variables
 - Main type variables of the form p_x will not be renamed
- x_i 's are used in N as polymorphic expressions

• Consider let $y = \lambda x \cdot x$ in yy

• Consider let $y = \lambda x \cdot x$ in yy

• $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second y is $q \rightarrow q$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f
 - $\tau_f = p \rightarrow p_x$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second y is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f
 - $\tau_f = p \rightarrow p_x$ • $\tau_g = q \rightarrow q$

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second *y* is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f

•
$$\tau_f = p \rightarrow p_x$$

• $\tau_g = q \rightarrow q$
• $\tau_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$

0		1
~	 -00	ь
. 01	LO.	

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_0
 - Type of the first y is $p \to p$
 - Type of second *y* is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f
 - $\tau_f = p \rightarrow p_x$ • $\tau_g = q \rightarrow q$ • $\tau_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$
 - $S = q := p \rightarrow p_x, r := p \rightarrow p_x$ is a solution

N = 1 = 1 = 1	
ST10-040-05	
ourcan	

- Consider let $y = \lambda x \cdot x$ in yy
 - $\tau_{y} = p \rightarrow p$, for some auxilliary type variable p
 - yy is of the form PQ
 - We rename auxilliary type variables in τ_O
 - Type of the first y is $p \to p$
 - Type of second *y* is $q \rightarrow q$
 - Now solve as usual!
- Let *M* be let $\{f = \lambda y \cdot x ; g = \lambda x \cdot x\}$ in g f
 - $\tau_f = p \rightarrow p_x$
 - $\tau_g = q \rightarrow q$
 - $\tau_{gf} = r, E_{gf} = \{q \rightarrow q = (p \rightarrow p_x) \rightarrow r\}$
 - $S = q := p \rightarrow p_x, r := p \rightarrow p_x$ is a solution
 - Principal type of M is $p \to p_x$

Suresh

• M is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N

- M is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in N
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n
 - $\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

• Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let *S* be the most general solution to *E*

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let *S* be the most general solution to *E*
- $\tau_{x_i} := S(q_i)$

- *M* is letrec $\{x_1 = M_1 ; \cdots ; x_n = M_n\}$ in *N*
 - Build each τ_{M_i} and E_{M_i} , treating each x_j as a free variable with type p_{x_i}
 - Ensure that the auxilliary variables in the E_{M_i} 's and τ_{M_i} 's are all distinct
 - Choose *n* fresh type variables q_1, \ldots, q_n
 - Obtain $\sigma_1, \ldots, \sigma_n$ and E_1, \ldots, E_n

•
$$\sigma_i := \tau_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

•
$$E_i := E_{M_i}[p_{x_1} := q_1, \dots, p_{x_n} := q_n]$$

- Solve $E := E_1 \cup \cdots \cup E_n \cup \{q_1 = \sigma_1, \dots, q_n = \sigma_n\}$
- Let *S* be the most general solution to *E*
- $\tau_{x_i} := S(q_i)$
- Find the type of N as usual, using the above τ_x 's

• Consider letrec $x = \lambda f \cdot f(xf)$ in x

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$
 - $\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$
 - $\tau_{M_1} = p \rightarrow r$ and $E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$
 - Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$
 - $\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$
 - Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$
 - $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$
 - $\tau_{M_1} = p \rightarrow r \text{ and } E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$
 - Now $\sigma_1 = p \to r$ and $E_1 = \{q_1 = p \to q, p = q \to r\}$
 - $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$
 - Solution for *E* is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$ • $\tau_{M_1} = p \rightarrow r$ and $E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$ • Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$ • $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$ • Solution for E is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$ • $\tau_x := (r \rightarrow r) \rightarrow r$

- Consider letrec $x = \lambda f \cdot f(xf)$ in x
 - Let M_1 be $\lambda f \cdot f(xf)$ • $\tau_{M_1} = p \rightarrow r$ and $E_{M_1} = \{p_x = p \rightarrow q, p = q \rightarrow r\}$ • Now $\sigma_1 = p \rightarrow r$ and $E_1 = \{q_1 = p \rightarrow q, p = q \rightarrow r\}$ • $E = \{q_1 = p \rightarrow q, p = q \rightarrow r, q_1 = p \rightarrow r\}$ • Solution for E is $\{q := r, p := r \rightarrow r, q_1 := (r \rightarrow r) \rightarrow r\}$ • $\tau_w := (r \rightarrow r) \rightarrow r$
- The type of letrec $x = \lambda f \cdot f(xf)$ in x is thus $(r \to r) \to r$

• Can introduce constant types - Int, Bool, ...

- Can introduce constant types Int, Bool, ...
- Type constructors too $[a], (a, b), \dots$

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions
 - 0 : Int, True : Bool

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions
 - 0 : Int, True : Bool
 - cons: $a \to [a] \to [a]$

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions
 - 0 : Int, True : Bool
 - $cons: a \to [a] \to [a]$
 - *if*: *Bool* \rightarrow *a* \rightarrow *a* \rightarrow *a*

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions
 - 0 : Int, True : Bool
 - $cons: a \to [a] \to [a]$
 - *if*: *Bool* \rightarrow *a* \rightarrow *a* \rightarrow *a*
- **Polymorphic** each occurrence of *if*, *cons*, etc. is given a fresh instance of the types

- Can introduce constant types *Int*, *Bool*, ...
- Type constructors too $[a], (a, b), \dots$
- constant terms and constant functions
 - 0 : Int, True : Bool
 - $cons: a \to [a] \to [a]$
 - *if*: *Bool* \rightarrow *a* \rightarrow *a* \rightarrow *a*
- **Polymorphic** each occurrence of *if*, *cons*, etc. is given a fresh instance of the types
- The type inference algorithm is more or less unchanged!