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Curry typing: typability

Definition (Typability problem)
Given a term M of the untyped λ-calculus, check whether it can be given a time
(assuming some types for free variables)

Definition (Type inference)
Given a typable term M , compute its principal type

Theorem
Typability and type inference for simply typed λ-calculus is solvable in polynomial time
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Type inference

• For every λ-expression M , build

• EM , a system of equations (over types)
• τM , a type

• EM has a solution iff M is typable
• Solution for EM – a substitution S mapping type variables to types that
makes all equations true (both sides identical under S )
• If S is the least constrained solution for EM , S (τM ) is a principal type for M
• Type variables in EM and τM

• main – px , for x � FV(M ) (if x ̸= y , px ̸= py )• auxiliary – not of the form px
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Type inference …

• M is the variable x

• EM = ∅• Define τM = px
• M is PQ

• Rename auxilliary variables in EQ and τQ , to keep them distinct from
auxilliary variables in EP and τP• Choose a fresh auxilliary type variable p
• Define τM = p
• EM = EP ∪ EQ ∪ {τP = τQ → p}

• M is λx · P

• Choose a fresh auxilliary type variable p
• EM = EP [px := p]
• Define τM = p→ τP [px := p]
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Type inference: example

• M = λx y z ·N where N = x (y z )

• τx = px , τy = py , τz = pz• Ex = Ey = Ez = ∅• τy z = p, Ey z = {py = pz → p}
• τN = q , EN = {py = pz → p, px = p→ q}
• τλz ·N = r → q , Eλz ·N = {py = r → p, px = p→ q}
• τλ y z ·N = s → r → q , Eλ y z ·N = {s = r → p, px = p→ q}
• τM = t → s → r → q , EM = {s = r → p, t = p→ q}

• A minimal solution for EM is S = {s := r → p, t := p→ q}
• The principal type of M : S (τM ) = (p→ q )→ (r → p)→ (r → q )
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Type inference: example

• M = PQ where P =Q = λx · x

• τx = px , Ex = ∅• τP = p→ p, EP = ∅• τQ = q → q , EQ = ∅• τPQ = r , EPQ = {p→ p = (q → q )→ r }
• A minimal solution for EM is S = {p := q → q , r := q → q}
• The principal type of M : S (τM ) = q → q
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Type inference: richer typing

• M = (λx · x )(λx · x ) has principal type q → q

• Let M1 be let y = λx · x in y y
• Let M2 be (λ y · y y )(λx · x )
• M1 is equivalent to M and has the same principal type
• M2 is not typable, because λ y · y y is not typable
• M1 is typable despite the occurrence of y y

• variable defined by local definition – treated differently
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Type inference: non-recursive local
definitions

• M is let {x1 =M1 ; · · · ; xn =Mn} in N

• Find principal types of M1, . . . ,Mn• Set τxi to be τMi
, and Exi

= ∅
• Find the type of N as usual, using the above definition for τxi ’s• Each occurrence of xi in N will get a different instance of τxi as its type• All auxilliary type variables in τxi will be renamed to fresh variables
• Main type variables of the form px will not be renamed

• xi ’s are used in N as polymorphic expressions
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Type inference: non-recursive local
definitions

• Consider let y = λx · x in y y

• τy = p→ p, for some auxilliary type variable p
• y y is of the form PQ
• We rename auxilliary type variables in τQ• Type of the first y is p→ p
• Type of second y is q → q
• Now solve as usual!

• Let M be let { f = λ y · x ; g = λx · x} in g f

• τ f = p→ px• τ g = q → q
• τ g f = r , E g f = {q → q = (p→ px )→ r }
• S = q := p→ px , r := p→ px is a solution• Principal type of M is p→ px
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Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N

• Build each τMi
and EMi

, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi
’s and τMi

’s are all distinct
• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En

• σi := τMi
[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j

• Ensure that the auxilliary variables in the EMi
’s and τMi

’s are all distinct
• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En

• σi := τMi
[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En

• σi := τMi
[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn

• Obtain σ1, . . . ,σn and E1, . . . ,En

• σi := τMi
[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En

• σi := τMi
[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]

• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}

• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E

• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )

• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• M is letrec {x1 =M1 ; · · · ; xn =Mn} in N
• Build each τMi

and EMi
, treating each x j as a free variable with type px j• Ensure that the auxilliary variables in the EMi

’s and τMi
’s are all distinct

• Choose n fresh type variables q1, . . . , qn• Obtain σ1, . . . ,σn and E1, . . . ,En
• σi := τMi

[px1 := q1, . . . , pxn := qn]• Ei := EMi
[px1 := q1, . . . , pxn := qn]

• Solve E := E1 ∪ · · · ∪ En ∪ {q1 = σ1, . . . , qn = σn}• Let S be the most general solution to E
• τxi := S (qi )• Find the type of N as usual, using the above τxi ’s

Suresh PLC 2021: Lecture 23 April 14, 2021 10 / 12



Type inference: recursive local definitions

• Consider letrec x = λ f · f (x f ) in x

• Let M1 be λ f · f (x f )• τM1
= p→ r and EM1

= {px = p→ q , p = q → r }
• Now σ1 = p→ r and E1 = {q1 = p→ q , p = q → r }
• E = {q1 = p→ q , p = q → r , q1 = p→ r }
• Solution for E is {q := r , p := r → r , q1 := (r → r )→ r }
• τx := (r → r )→ r

• The type of letrec x = λ f · f (x f ) in x is thus (r → r )→ r
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Type inference: constant types

• Can introduce constant types – Int, Bool, …

• Type constructors too – [a], (a,b), …
• constant terms and constant functions

• 0 : Int, True : Bool
• cons : a→ [a]→ [a]
• if : Bool→ a→ a→ a

• Polymorphic – each occurrence of if, cons, etc. is given a fresh instance of
the types
• The type inference algorithm is more or less unchanged!
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