Programming Language Concepts: Lecture 22

S P Suresh

April 7, 2021

• The basic λ -calculus is untyped

- The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped

- The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ... are typed

- The basic λ -calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ... are typed
- What is the theoretical foundation for such languages?

The structure of types in Haskell

• Basic types—Int, Bool, Float, Char

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a] Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

Tuples If a1, a2, ..., ak are types, so is (a1, a2, ..., ak)

• Function types

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Function types
 - If a, b are types, so is a -> b

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Function types
 - If a, b are types, so is a -> b
 - Function with input of type a and output of type b

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Function types
 - If a, b are types, so is a -> b
 - Function with input of type a and output of type b
- User defined types

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Function types
 - If a, b are types, so is a -> b
 - Function with input of type a and output of type b
- User defined types
 - data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

- Function types
 - If a, b are types, so is a -> b
 - Function with input of type a and output of type b
- User defined types
 - data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
 - data BTree a = Nil | Node (BTree a) a (BTree a)

• Set Λ of untyped lambda expressions given by the syntax

 $\Lambda = x \mid \lambda x.M \mid MN$

where $x \in Var, M, N \in \Lambda$

• Set Λ of untyped lambda expressions given by the syntax

 $\Lambda = x \mid \lambda x.M \mid MN$

where $x \in Var, M, N \in \Lambda$

• Add a syntax for types

• Set Λ of untyped lambda expressions given by the syntax

 $\Lambda = x \mid \lambda x.M \mid MN$

where $x \in Var, M, N \in \Lambda$

- Add a syntax for types
- When constructing expressions, build up the type from the types of the parts

• Assume an infinite set of type variables p, q, r, p_1, q', \dots

- Assume an infinite set of type variables $p, q, r, p_1, q', ...$
- No structured types (lists, tuples, ...) or user-defined types

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally

• $p \rightarrow q$

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$
 - $(p \to p) \to (p \to q)$

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$
 - $(p \to p) \to (p \to q)$
- σ, τ, \dots stand for arbitrary types

- Assume an infinite set of type variables p, q, r, p_1, q', \dots
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
 - $p \rightarrow q$
 - $p \rightarrow (q \rightarrow p)$
 - $(p \rightarrow r) \rightarrow r$
 - $(p \to p) \to (p \to q)$
- σ, τ, \dots stand for arbitrary types
- \rightarrow is right associative: $\sigma \rightarrow \tau \rightarrow \theta$ is short for $\sigma \rightarrow (\tau \rightarrow \theta)$

• For every type σ , an infinite set Var_{σ} of (term) variables of type σ

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:

• $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$
 - $x \in Var_{\sigma}, M \in \Lambda_{\tau} \implies \lambda x \cdot M \in \Lambda_{\sigma \to \tau}$

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$
 - $x \in Var_{\sigma}, M \in \Lambda_{\tau} \implies \lambda x \cdot M \in \Lambda_{\sigma \to \tau}$
- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$
 - $x \in Var_{\sigma}, M \in \Lambda_{\tau} \implies \lambda x \cdot M \in \Lambda_{\sigma \to \tau}$
- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$
 - $\lambda x \cdot M$ has type $\sigma \to \tau$ and N has type σ , for some σ and τ

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$
 - $x \in Var_{\sigma}, M \in \Lambda_{\tau} \implies \lambda x \cdot M \in \Lambda_{\sigma \to \tau}$
- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$
 - $\lambda x \cdot M$ has type $\sigma \to \tau$ and N has type σ , for some σ and τ
 - x has type σ , so matches N

- For every type σ , an infinite set Var_{σ} of (term) variables of type σ
- Define Λ_{σ} for all σ , by simultaneous induction:
 - $x \in Var_{\sigma} \implies x \in \Lambda_{\sigma}$
 - $\bullet \ M \in \Lambda_{\sigma \to \tau}, N \in \Lambda_{\sigma} \implies MN \in \Lambda_{\tau}$
 - $x \in Var_{\sigma}, M \in \Lambda_{\tau} \implies \lambda x \cdot M \in \Lambda_{\sigma \to \tau}$
- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$
 - $\lambda x \cdot M$ has type $\sigma \to \tau$ and N has type σ , for some σ and τ
 - x has type σ , so matches N
 - Both sides have type τ

Church typing: alternate presentation

• Environment Γ – a finite set of pairs $\{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where each $x_i \in Var_{\sigma_i}$

Church typing: alternate presentation

- Environment Γ a finite set of pairs $\{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where each $x_i \in Var_{\sigma_i}$
- We write Γ , $y : \tau$ for $\Gamma \cup \{(y : \tau)\}$

Church typing: alternate presentation

- Environment Γ a finite set of pairs $\{(x_1 : \sigma_1), \dots, (x_n : \sigma_n)\}$ where each $x_i \in Var_{\sigma_i}$
- We write Γ , $y : \tau$ for $\Gamma \cup \{(y : \tau)\}$
- The typing rules:

 $\begin{array}{ccc} \Gamma, x: \sigma \vdash M: \tau & \Gamma \vdash M: \sigma \to \tau & \Gamma \vdash N: \sigma \\ \hline \Gamma, x: \tau \vdash x: \tau & \Gamma \vdash (\lambda x \cdot M): \sigma \to \tau & \Gamma \vdash (MN): \tau \end{array}$

Church typing: examples

• If $x \in Var_p$, $\lambda x \cdot x : p \to p$

Church typing: examples

- If $x \in Var_p$, $\lambda x \cdot x : p \to p$
- If $x \in Var_p$, $y \in Var_q$, $\lambda x y \cdot x : p \to q \to p$

Church typing: examples

- If $x \in Var_p$, $\lambda x \cdot x : p \to p$
- If $x \in Var_p$, $y \in Var_q$, $\lambda x y \cdot x : p \to q \to p$
- If $x \in Var_{p \to q \to r}, y \in Var_{p \to q}, z \in Var_p$,

$$\lambda x \, yz \cdot xz(yz) : (p \to q \to r) \to (p \to q) \to p \to r$$

• Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser
 - Cannot easily adapt the proof for untyped λ -calculus

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow , as usual
- Extend to many-step $\xrightarrow{*}_{\beta}$ as usual
- $\xrightarrow{*}_{\beta}$ is Church-Rosser
 - Cannot easily adapt the proof for untyped λ-calculus
 - Use weak Church-Rosser for Church typing and strong normalization instead

• A λ -expression is

- A λ -expression is
 - (weakly) normalizing if it has a normal form

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$
- A *λ*-calculus is weakly normalizing if every term in the calculus is weakly normalizing

- A λ -expression is
 - (weakly) normalizing if it has a normal form
 - **Example:** $(\lambda x \cdot y)\Omega$
 - Counterexample: Ω
 - strongly normalizing if every reduction sequence is terminating
 - **Example:** $(\lambda x \cdot y)(\lambda x \cdot x)$
 - Counterexample: $(\lambda x \cdot y)\Omega$
- A λ-calculus is weakly normalizing if every term in the calculus is weakly normalizing
- A λ-calculus is strongly normalizing if every term in the calculus is strongly normalizing

Theorem

The λ -calculus with Church typing is weakly normalizing

Theorem

The λ -calculus with Church typing is weakly normalizing

Theorem

The λ -calculus with Church typing is weakly normalizing

Theorem

The λ -calculus with Church typing is weakly normalizing

Proof.

• Terminating reduction strategy

Theorem

The λ -calculus with Church typing is weakly normalizing

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M)N) = size(\sigma \to \tau)$, where $\sigma \to \tau$ is the type of $\lambda x \cdot M$

Theorem

The λ -calculus with Church typing is weakly normalizing

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M)N) = size(\sigma \to \tau)$, where $\sigma \to \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)

Theorem

The λ -calculus with Church typing is weakly normalizing

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M)N) = size(\sigma \to \tau)$, where $\sigma \to \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
 - If a subterm t' of t is also a redex, then $\delta(t') < \delta(t)$

Theorem

The λ -calculus with Church typing is weakly normalizing

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M)N) = size(\sigma \to \tau)$, where $\sigma \to \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
 - If a subterm t' of t is also a redex, then $\delta(t') < \delta(t)$
- Replace t by u, where u is got by contracting t

Theorem

The λ -calculus with Church typing is weakly normalizing

Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M)N) = size(\sigma \to \tau)$, where $\sigma \to \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
 - If a subterm t' of t is also a redex, then $\delta(t') < \delta(t)$
- Replace t by u, where u is got by contracting t
- This strategy is guaranteed to rerminate!

Suresh

Theorem

The λ -calculus with Church typing is strongly normalizing

Theorem

The λ -calculus with Church typing is strongly normalizing

Theorem

The λ -calculus with Church typing is strongly normalizing

Theorem

The λ -calculus with Church typing is strongly normalizing

Proof.

• Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

 $t \in \operatorname{Red}_{p} \quad \iff \quad t \text{ is strongly normalizing}$ $t \in \operatorname{Red}_{\sigma \to \tau} \quad \iff \quad \forall u \Big[u \in \operatorname{Red}_{\sigma} \Longrightarrow t \, u \in \operatorname{Red}_{\tau} \Big]$

Theorem

The λ -calculus with Church typing is strongly normalizing

Proof.

• Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

 $t \in \operatorname{Red}_{p} \quad \iff \quad t \text{ is strongly normalizing}$ $t \in \operatorname{Red}_{\sigma \to \tau} \quad \iff \quad \forall u \Big[u \in \operatorname{Red}_{\sigma} \Longrightarrow t \, u \in \operatorname{Red}_{\tau} \Big]$

• For all σ , if $t \in \text{Red}_{\sigma}$ then t is strongly normalizing (Induction on types)

Suresh

PLC 2021: Lecture 22

April 7, 2021 12/16

Theorem

The λ -calculus with Church typing is strongly normalizing

Proof.

• Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

 $t \in \operatorname{Red}_{p} \quad \iff \quad t \text{ is strongly normalizing}$ $t \in \operatorname{Red}_{\sigma \to \tau} \quad \iff \quad \forall u \Big[u \in \operatorname{Red}_{\sigma} \Longrightarrow t \, u \in \operatorname{Red}_{\tau} \Big]$

- For all σ , if $t \in \operatorname{Red}_{\sigma}$ then t is strongly normalizing (Induction on types)
- For all terms t, if $t \in \Lambda_{\sigma}$ then $t \in \operatorname{Red}_{\sigma}$ (Induction on term size)

Suresh

PLC 2021: Lecture 22

Adding types to λ -calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an **environment**

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an **environment**
 - A finite set of pairs Γ = {(x₁ : σ₁),...,(x_n : σ_n)} where the x_i are distinct variables, and the σ_i are types

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an **environment**
 - A finite set of pairs Γ = {(x₁: σ₁),...,(x_n: σ_n)} where the x_i are distinct variables, and the σ_i are types
 - no requirement that $x_i \in Var_{\sigma_i}$ there is no $Var_{\sigma_i}!$

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
 - A finite set of pairs Γ = {(x₁: σ₁),..., (x_n: σ_n)} where the x_i are distinct variables, and the σ_i are types
 - no requirement that $x_i \in Var_{\sigma_i}$ there is no Var_{σ_i} !
- The typing rules:

 $\Gamma, x: \tau \vdash x: \tau \qquad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash (\lambda x \cdot M): \sigma \to \tau} \qquad \frac{\Gamma \vdash M: \sigma \to \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash (MN): \tau}$

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an **environment**
 - A finite set of pairs Γ = {(x₁: σ₁),...,(x_n: σ_n)} where the x_i are distinct variables, and the σ_i are types
 - no requirement that $x_i \in Var_{\sigma_i}$ there is no Var_{σ_i} !
- The typing rules:

 $\Gamma, x: \tau \vdash x: \tau \qquad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash (\lambda x \cdot M): \sigma \to \tau} \qquad \frac{\Gamma \vdash M: \sigma \to \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash (MN): \tau}$

• β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$

- Terms of the untyped lambda calculus identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an **environment**
 - A finite set of pairs Γ = {(x₁: σ₁),...,(x_n: σ_n)} where the x_i are distinct variables, and the σ_i are types
 - no requirement that $x_i \in Var_{\sigma_i}$ there is no Var_{σ_i} !
- The typing rules:

 $\Gamma, x: \tau \vdash x: \tau \qquad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash (\lambda x \cdot M): \sigma \to \tau} \qquad \frac{\Gamma \vdash M: \sigma \to \tau \quad \Gamma \vdash N: \sigma}{\Gamma \vdash (MN): \tau}$

- β -reduction is as usual: $(\lambda x \cdot M)N \longrightarrow_{\beta} M[x := N]$
 - Types match

Curry typing: Examples

$$\frac{x:p\vdash x:p}{\vdash\lambda x\cdot x:p\rightarrow p}$$

Curry typing: Examples

$$\frac{x:p\vdash x:p}{\vdash \lambda x \cdot x:p \to p}$$

$$\frac{x:p,y:q\vdash x:p}{x:p\vdash\lambda y\cdot x:q\rightarrow p}$$
$$\vdash\lambda x\,y\cdot x:p\rightarrow (q\rightarrow p)$$

Curry typing: Examples

$$\Gamma \vdash x: p \to q \to r, y: p \to q, z: p \}$$

$$\frac{\Gamma \vdash x: p \to q \to r \quad \Gamma \vdash z: p}{\Gamma \vdash xz: q \to r} \quad \frac{\Gamma \vdash y: p \to q \quad \Gamma \vdash z: p}{\Gamma \vdash yz: q}$$

$$\frac{\Gamma \vdash xz(yz): r}{x: p \to q \to r, y: p \to q \vdash \lambda z \cdot xz(yz): p \to r}$$

$$\frac{x: p \to q \to r \vdash \lambda yz \cdot xz(yz): (p \to q) \to (p \to r)}{\vdash \lambda x yz \cdot xz(yz): (p \to q \to r) \to (p \to r)}$$

• Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p$, $r \to r$, $(p \to q) \to (p \to q)$, ...

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p$, $r \to r$, $(p \to q) \to (p \to q)$, ...
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p$, $r \to r$, $(p \to q) \to (p \to q)$, ...
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p$, $r \to r$, $(p \to q) \to (p \to q)$, ...
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type
 - a type for a term M such that every other type for M is got by uniformly replacing each variable by a type

- Given a term of the (untyped) *λ*-calculus, can it be given a type (assuming some types for the free variables)?
 - For instance, we cannot give a valid type to *x x*
 - If it were typable, *x* would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
 - $\lambda x \cdot x$ can be given types $p \to p$, $r \to r$, $(p \to q) \to (p \to q)$, ...
- $p \rightarrow p$ is the simplest (least constrained) type modulo variable renaming
- Principal type
 - a type for a term M such that every other type for M is got by uniformly replacing each variable by a type
 - unique for each typable term modulo renaming of variables!