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Adding types to A-calculus

¢ The basic A-calculus is untyped
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Adding types to A-calculus

The basic 2-calculus is untyped
The first functional programming language, LISP, was also untyped
Modern languages such as Haskell, ML, ...are typed

What is the theoretical foundation for such languages?
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Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
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Suresh PLC 2021: Lecture 22 April 7, 2021 3/16



Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)

® Function types

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16



Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Ifa,baretypes,soisa -> b

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16



Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Jfa,bare types,soisa -> b
® Function with input of type a and output of type b

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16



Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Jfa,bare types,soisa -> b
® Function with input of type a and output of type b

User defined types

Suresh PLC 2021: Lecture 22 April 7, 2021

3/16



Types in functional programming

The structure of types in Haskell
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Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types
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Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)

® Function types

® Ifa,baretypes,soisa -> b

® Function with input of type a and output of type b
® User defined types

® data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
® data BTree a = Nil | Node (BTree a) a (BTree a)
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Adding types to A-calculus
® Set A of untyped lambda expressions given by the syntax
A=x|Ax.M|MN

where x € Var, M, N € A
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Adding types to A-calculus
® Set A of untyped lambda expressions given by the syntax
A=x|Ax.M|MN

where x € Var, M, N € A
® Add a syntax for types

® When constructing expressions, build up the type from the types of the

parts
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Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...
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Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...
® No structured types (lists, tuples, ...) or user-defined types
® Function types arise naturally

*r—q

i AudUindd

*(por)or

* (p—p)—(p—4q)
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Adding types to A-calculus

Assume an infinite set of type variables p, 4,7, p,, 4, ...
No structured types (lists, tuples, ...) or user-defined types
Function types arise naturally

*r—q

*r—(—7)

*(por)—>r
* (p—p)—(p—4q)

0,7,... stand for arbitrary types
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Adding types to A-calculus

Assume an infinite set of type variables p, 4,7, p,, 4, ...
No structured types (lists, tuples, ...) or user-defined types
Function types arise naturally

*r—q

*r—(—7)

“(pr)r
*(p—p)—(p—9q)
0,7,... stand for arbitrary types

— is right associative: ¢ — v — 0 is short for o — (t — 6)
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Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
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Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = xeA,

® MeA, ,,NeA = MNeA,

¢ xeVar, Me AN, = Ax-MeA___
® [-reduction is as usual: (Ax - M)N —; M[x := N |

® Jx - M has type o — 7 and IV has type o, for some o and ©

® x has type 0, so matches V

® Both sides have type «
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Church typing: alternate presentation

® Environment I' — a finite set of pairs {(x; : 0,),...,(x, : o,)} where each

x; € Wl”a,.
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Church typing: alternate presentation

® Environment I' — a finite set of pairs {(x; : 0,),...,(x, : o,)} where each

x; € Var,
® Wewrite I', y :  for TU{(y:7)}

¢ The typing rules:
Iix:obEM:t

rM:6—-7 THEN:o

Mx:ithx:t T'FQx-M):io—>=
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Church typing: examples

° Iferarp,Ax-x:pﬁp
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° Iferarp,Ax-x:p—)p
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Church typing: examples

° Iferarp,Ax-x:p—)p
° IfxeVarp,erarq,Axy-x:p%q%p

.
If x € Var .yeVar, . z¢€Var,,

p—q—r

Axyz-xz(yz):(p—q—=r) = (p—=9q) = p =7
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Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
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Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
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® Extend to many-step — ; as usual

° —*>ﬁ is Church-Rosser

® Cannot easily adapt the proof for untyped 2-calculus
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Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
*
® Extend to many-step — ; as usual

° —*>ﬁ is Church-Rosser

® Cannot easily adapt the proof for untyped 2-calculus
® Use weak Church-Rosser for Church typing and strong normalization
instead
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Church typing: Normalization

® A J-expression is
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Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization
Theorem

The A-caleulus with Church typing is weakly normalizing
Proof.

® Terminating reduction strategy

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing
Proof.

® Terminating reduction strategy

® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

O

Suresh PLC 2021: Lecture 22 April 7, 2021 1/16



Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

® Terminating reduction strategy

® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

® DPick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

® Terminating reduction strategy
® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

® DPick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16



Church typing: Weak normalization

Theorem

The A-caleulus with Church typing is weakly normalizing

Proof.

Terminating reduction strategy

complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

Pick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)

Replace 7 by #, where # is got by contracting #
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Church typing: Weak normalization

Theorem

The A-caleulus with Church typing is weakly normalizing

Proof.

Terminating reduction strategy

complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

Pick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)
Replace 7 by #, where # is got by contracting #
This strategy is guaranteed to rerminate!

O
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Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16



Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16



Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.

O

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16



Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.
® Define Red, € A (Logically complex!)

teRed, <= ¢ isstrongly normalizing

teRed, , < Vu[u €Red = tue RedT]
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Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.
® Define Red, € A (Logically complex!)

teRed, <= ¢ isstrongly normalizing

teRed, , < Vu[u €Red = tue RedT]

® Forall o, if 7 € Red then 7 is strongly normalizing (Induction on types)

® Forall terms 7, if 7 € A then 7 € Red  (Induction on term size)

O
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Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms
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Terms of the untyped lambda calculus — identify typable terms

Each typable term has a judgement asserting its type
Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct
variables, and the o, are types
® no requirement that x; € Var, — there is no Var, !
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Adding types to A-calculus: Curry typing

Terms of the untyped lambda calculus — identify typable terms

Each typable term has a judgement asserting its type
Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct
variables, and the o, are types
® no requirement that x; € Var, — there is no Var, !

The typing rules:
Ix:cFM:t r'M:06—-7t IT'EN:o

Fx:thx:t T'FQx-M):io—>~ 'F(MN):<
[-reduction is as usual: (2x - M)N —, M[x = N|
® Types match
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Curry typing: Examples

x:pkx:p

Fax-x:p—p
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Curry typing: Examples

x:pkx:p

Fax-x:p—p

x:p,yiqbx:p
x:pFAy-x:iqg—p
Faxy-x:p—(q—p)
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Curry typing: Examples

® letI'={x:p—>qg—>ry:p—>q,z:p}

'bx:p—qg—r I'kz:p Thy:p—sg Thz:p

'bxziqg—r I'tyz:q

I'Exz(yz):r

xip—oqgony:p—oq-iz-xz(yz):ip—or
x:poqg—orbayz-xz(yz):(poq)—>(p— 1)
Faxyz-xz(yz):(p—>qg—-r)—>(p—>q9)>(p—7)
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Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?
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® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
® A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...

® p — p is the simplest (least constrained) type — modulo variable renaming
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Curry typing: typability
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Curry typing: typability

Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...
p — p is the simplest (least constrained) type — modulo variable renaming
Principal type

® atype for a term M such that every other type for M is got by uniformly

replacing each variable by a type
® unique for each typable term — modulo renaming of variables!
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