
Programming Language Concepts: Lecture 22

S P Suresh

April 7, 2021

Suresh PLC 2021: Lecture 22 April 7, 2021 1 / 16

Adding types to λ-calculus

• The basic λ-calculus is untyped

• The first functional programming language, LISP, was also untyped
• Modern languages such as Haskell, ML, …are typed
• What is the theoretical foundation for such languages?

Suresh PLC 2021: Lecture 22 April 7, 2021 2 / 16

Adding types to λ-calculus

• The basic λ-calculus is untyped
• The first functional programming language, LISP, was also untyped

• Modern languages such as Haskell, ML, …are typed
• What is the theoretical foundation for such languages?

Suresh PLC 2021: Lecture 22 April 7, 2021 2 / 16

Adding types to λ-calculus

• The basic λ-calculus is untyped
• The first functional programming language, LISP, was also untyped
• Modern languages such as Haskell, ML, …are typed

• What is the theoretical foundation for such languages?

Suresh PLC 2021: Lecture 22 April 7, 2021 2 / 16

Adding types to λ-calculus

• The basic λ-calculus is untyped
• The first functional programming language, LISP, was also untyped
• Modern languages such as Haskell, ML, …are typed
• What is the theoretical foundation for such languages?

Suresh PLC 2021: Lecture 22 April 7, 2021 2 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char

• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types

• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types

• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]

Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)
• Function types

• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types

• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types

• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types
• If a, b are types, so is a -> b

• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types
• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types
• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types

• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types
• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types
• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Types in functional programming

The structure of types in Haskell
• Basic types—Int, Bool, Float, Char
• Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, …, ak are types, so is (a1, a2, ..., ak)

• Function types
• If a, b are types, so is a -> b
• Function with input of type a and output of type b

• User defined types
• data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
• data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3 / 16

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ= x | λx .M |MN

where x � Var, M ,N � Λ

• Add a syntax for types
• When constructing expressions, build up the type from the types of the

parts

Suresh PLC 2021: Lecture 22 April 7, 2021 4 / 16

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ= x | λx .M |MN

where x � Var, M ,N � Λ
• Add a syntax for types

• When constructing expressions, build up the type from the types of the
parts

Suresh PLC 2021: Lecture 22 April 7, 2021 4 / 16

Adding types to λ-calculus

• Set Λ of untyped lambda expressions given by the syntax

Λ= x | λx .M |MN

where x � Var, M ,N � Λ
• Add a syntax for types
• When constructing expressions, build up the type from the types of the

parts

Suresh PLC 2021: Lecture 22 April 7, 2021 4 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .

• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally

• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types

• Function types arise naturally

• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally

• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q

• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q
• p→ (q → p)

• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q
• p→ (q → p)
• (p→ r)→ r

• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types

• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus

• Assume an infinite set of type variables p, q , r , p1, q ′, . . .
• No structured types (lists, tuples, …) or user-defined types
• Function types arise naturally
• p→ q
• p→ (q → p)
• (p→ r)→ r
• (p→ p)→ (p→ q)

• σ, τ, . . . stand for arbitrary types
• → is right associative: σ→ τ→ θ is short for σ→ (τ→ θ)

Suresh PLC 2021: Lecture 22 April 7, 2021 5 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ

• Define Λσ for all σ, by simultaneous induction:

• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:

• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ

• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ

• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]
• λx ·M has type σ→ τ and N has type σ, for some σ and τ

• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]
• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N

• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Adding types to λ-calculus: Church typing

• For every type σ, an infinite set Varσ of (term) variables of type σ
• Define Λσ for all σ, by simultaneous induction:
• x � Varσ =⇒ x � Λσ• M � Λσ→τ ,N � Λσ =⇒ MN � Λτ• x � Varσ ,M � Λτ =⇒ λx ·M � Λσ→τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]
• λx ·M has type σ→ τ and N has type σ, for some σ and τ
• x has type σ, so matches N
• Both sides have type τ

Suresh PLC 2021: Lecture 22 April 7, 2021 6 / 16

Church typing: alternate presentation

• Environment Γ – a finite set of pairs {(x1 : σ1), . . . , (xn : σn)} where each
xi � Varσi

• We write Γ, y : τ for Γ ∪ {(y : τ)}
• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ

Suresh PLC 2021: Lecture 22 April 7, 2021 7 / 16

Church typing: alternate presentation

• Environment Γ – a finite set of pairs {(x1 : σ1), . . . , (xn : σn)} where each
xi � Varσi
• We write Γ, y : τ for Γ ∪ {(y : τ)}

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ

Suresh PLC 2021: Lecture 22 April 7, 2021 7 / 16

Church typing: alternate presentation

• Environment Γ – a finite set of pairs {(x1 : σ1), . . . , (xn : σn)} where each
xi � Varσi
• We write Γ, y : τ for Γ ∪ {(y : τ)}
• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ

Suresh PLC 2021: Lecture 22 April 7, 2021 7 / 16

Church typing: examples

• If x � Varp , λx · x : p→ p

• If x � Varp , y � Varq , λx y · x : p→ q → p
• If x � Varp→q→r , y � Varp→q , z � Varp ,

λx y z · x z (y z) : (p→ q → r) → (p→ q) → p → r

Suresh PLC 2021: Lecture 22 April 7, 2021 8 / 16

Church typing: examples

• If x � Varp , λx · x : p→ p
• If x � Varp , y � Varq , λx y · x : p→ q → p

• If x � Varp→q→r , y � Varp→q , z � Varp ,

λx y z · x z (y z) : (p→ q → r) → (p→ q) → p → r

Suresh PLC 2021: Lecture 22 April 7, 2021 8 / 16

Church typing: examples

• If x � Varp , λx · x : p→ p
• If x � Varp , y � Varq , λx y · x : p→ q → p
• If x � Varp→q→r , y � Varp→q , z � Varp ,

λx y z · x z (y z) : (p→ q → r) → (p→ q) → p → r

Suresh PLC 2021: Lecture 22 April 7, 2021 8 / 16

Church typing: Church-Rosser

• Extend −−→β to one-step reduction −−→, as usual

• Extend to many-step ∗−−→β as usual

• ∗−−→β is Church-Rosser

• Cannot easily adapt the proof for untyped λ-calculus
• Use weak Church-Rosser for Church typing and strong normalization

instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9 / 16

Church typing: Church-Rosser

• Extend −−→β to one-step reduction −−→, as usual

• Extend to many-step ∗−−→β as usual

• ∗−−→β is Church-Rosser

• Cannot easily adapt the proof for untyped λ-calculus
• Use weak Church-Rosser for Church typing and strong normalization

instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9 / 16

Church typing: Church-Rosser

• Extend −−→β to one-step reduction −−→, as usual

• Extend to many-step ∗−−→β as usual

• ∗−−→β is Church-Rosser

• Cannot easily adapt the proof for untyped λ-calculus
• Use weak Church-Rosser for Church typing and strong normalization

instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9 / 16

Church typing: Church-Rosser

• Extend −−→β to one-step reduction −−→, as usual

• Extend to many-step ∗−−→β as usual

• ∗−−→β is Church-Rosser
• Cannot easily adapt the proof for untyped λ-calculus

• Use weak Church-Rosser for Church typing and strong normalization
instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9 / 16

Church typing: Church-Rosser

• Extend −−→β to one-step reduction −−→, as usual

• Extend to many-step ∗−−→β as usual

• ∗−−→β is Church-Rosser
• Cannot easily adapt the proof for untyped λ-calculus
• Use weak Church-Rosser for Church typing and strong normalization

instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9 / 16

Church typing: Normalization

• A λ-expression is

• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω

• Counterexample: Ω
• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating

• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating
• Example: (λx · y)(λx · x)

• Counterexample: (λx · y)Ω
• A λ-calculus is weakly normalizing if every term in the calculus is weakly

normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating
• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating
• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing

• A λ-calculus is strongly normalizing if every term in the calculus is strongly
normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Normalization

• A λ-expression is
• (weakly) normalizing if it has a normal form

• Example: (λx · y)Ω
• Counterexample: Ω

• strongly normalizing if every reduction sequence is terminating
• Example: (λx · y)(λx · x)
• Counterexample: (λx · y)Ω

• A λ-calculus is weakly normalizing if every term in the calculus is weakly
normalizing
• A λ-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.

• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.

• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.

• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M

• Pick an innermost redex t with maximum δ value (among all redexes inside
the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)

• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)
• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)
• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t

• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Proof.
• Terminating reduction strategy

• complexity of a redex: δ((λx ·M)N) = size(σ→ τ), where σ→ τ is the type
of λx ·M
• Pick an innermost redex t with maximum δ value (among all redexes inside

the original expression M)
• If a subterm t ′ of t is also a redex, then δ(t ′) < δ(t)

• Replace t by u, where u is got by contracting t
• This strategy is guaranteed to rerminate!

Suresh PLC 2021: Lecture 22 April 7, 2021 11 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.

• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�
• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.

• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�
• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.

• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�
• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.
• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�

• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.
• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�
• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Proof.
• Define Redσ ⊆ Λσ (Logically complex!)

t � Redp ⇐⇒ t is strongly normalizing

t � Redσ→τ ⇐⇒ ∀u�u � Redσ =⇒ t u � Redτ

�
• For all σ, if t � Redσ then t is strongly normalizing (Induction on types)

• For all terms t , if t � Λσ then t � Redσ (Induction on term size)

Suresh PLC 2021: Lecture 22 April 7, 2021 12 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms

• Each typable term has a judgement asserting its type
• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct
variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type

• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct
variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment

• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct
variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment
• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct

variables, and the σi are types

• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment
• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct

variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment
• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct

variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ

• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment
• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct

variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]

• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Adding types to λ-calculus: Curry typing

• Terms of the untyped lambda calculus – identify typable terms
• Each typable term has a judgement asserting its type
• Types of variables are given by an environment
• A finite set of pairs Γ = {(x1 : σ1), . . . , (xn : σn)} where the xi are distinct

variables, and the σi are types
• no requirement that xi � Varσi – there is no Varσi !

• The typing rules:

Γ, x : τ ⊢ x : τ
Γ, x : σ ⊢M : τ

Γ ⊢ (λx ·M) : σ→ τ
Γ ⊢M : σ→ τ Γ ⊢N : σ

Γ ⊢ (MN) : τ
• β-reduction is as usual: (λx ·M)N −−→β M [x :=N]
• Types match

Suresh PLC 2021: Lecture 22 April 7, 2021 13 / 16

Curry typing: Examples

•
x : p ⊢ x : p
⊢ λx · x : p→ p

•
x : p, y : q ⊢ x : p

x : p ⊢ λ y · x : q → p
⊢ λx y · x : p→ (q → p)

Suresh PLC 2021: Lecture 22 April 7, 2021 14 / 16

Curry typing: Examples

•
x : p ⊢ x : p
⊢ λx · x : p→ p

•
x : p, y : q ⊢ x : p

x : p ⊢ λ y · x : q → p
⊢ λx y · x : p→ (q → p)

Suresh PLC 2021: Lecture 22 April 7, 2021 14 / 16

Curry typing: Examples

• Let Γ = {x : p→ q → r , y : p→ q , z : p}
Γ ⊢ x : p→ q → r Γ ⊢ z : p

Γ ⊢ x z : q → r
Γ ⊢ y : p→ q Γ ⊢ z : p

Γ ⊢ y z : q
Γ ⊢ x z (y z) : r

x : p→ q → r , y : p→ q ⊢ λz · x z (y z) : p→ r
x : p→ q → r ⊢ λ y z · x z (y z) : (p→ q)→ (p→ r)
⊢ λx y z · x z (y z) : (p→ q → r)→ (p→ q)→ (p→ r)

Suresh PLC 2021: Lecture 22 April 7, 2021 15 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?

• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x

• If it were typable, x would have type σ→ τ as well as σ
• A term may admit multiple types

• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types

• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types
• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types
• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming

• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types
• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type

• a type for a term M such that every other type for M is got by uniformly
replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types
• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type
• a type for a term M such that every other type for M is got by uniformly

replacing each variable by a type

• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

Curry typing: typability

• Given a term of the (untyped) λ-calculus, can it be given a type (assuming
some types for the free variables)?
• For instance, we cannot give a valid type to x x
• If it were typable, x would have type σ→ τ as well as σ

• A term may admit multiple types
• λx · x can be given types p→ p, r → r , (p→ q)→ (p→ q), . . .

• p→ p is the simplest (least constrained) type – modulo variable renaming
• Principal type
• a type for a term M such that every other type for M is got by uniformly

replacing each variable by a type
• unique for each typable term – modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16 / 16

