Programming Language Concepts: Lecture 22

S P Suresh

April 7, 2021

Adding types to λ-calculus

- The basic λ-calculus is untyped

Adding types to λ-calculus

- The basic λ-calculus is untyped
- The first functional programming language, LISP, was also untyped

Adding types to λ-calculus

- The basic λ-calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ...are typed

Adding types to λ-calculus

- The basic λ-calculus is untyped
- The first functional programming language, LISP, was also untyped
- Modern languages such as Haskell, ML, ...are typed
- What is the theoretical foundation for such languages?

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]
Tuples If $a 1, a 2, \ldots, a k$ are types, so is (a1, a2, ..., ak)

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]
Tuples If $a 1, a 2, \ldots, a k$ are types, so is (a1, a2, ..., ak)

- Function types

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]
Tuples If $a 1, a 2, \ldots, a k$ are types, so is (a1, a2, ..., ak)

- Function types
- If a, b are types, so is $a->b$

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

Lists If a is a type, so is [a]
Tuples If $a 1, a 2, \ldots, a k$ are types, so is (a1, a2, ..., ak)

- Function types
- If a, b are types, so is $a->b$
- Function with input of type a and output of type b

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

> Lists If a is a type, so is $[a]$
> Tuples If $a 1, a 2, \ldots$, ak are types, so is ($a 1, a 2, \ldots, a k$)

- Function types
- If a, b are types, so is $a->b$
- Function with input of type a and output of type b
- User defined types

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

> Lists If a is a type, so is $[a]$
> Tuples If $a 1, a 2, \ldots$, ak are types, so is ($a 1, a 2, \ldots, a k$)

- Function types
- If a, b are types, so is $a->b$
- Function with input of type a and output of type b
- User defined types
- data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Types in functional programming

The structure of types in Haskell

- Basic types—Int, Bool, Float, Char
- Structured types

> Lists If a is a type, so is [a]
> Tuples If a1, a2, .., ak are types, so is ($a 1, a 2, \ldots, a k$)

- Function types
- If a, b are types, so is $a->b$
- Function with input of type a and output of type b
- User defined types
- data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
- data BTree $a=$ Nil । Node (BTree a) a (BTree a)

Adding types to λ-calculus

- Set Λ of untyped lambda expressions given by the syntax

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}, M, N \in \Lambda$

Adding types to λ-calculus

- Set Λ of untyped lambda expressions given by the syntax

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}, M, N \in \Lambda$

- Add a syntax for types

Adding types to λ-calculus

- Set Λ of untyped lambda expressions given by the syntax

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}, M, N \in \Lambda$

- Add a syntax for types
- When constructing expressions, build up the type from the types of the parts

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$
- $p \rightarrow(q \rightarrow p)$

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$
- $p \rightarrow(q \rightarrow p)$
- $(p \rightarrow r) \rightarrow r$

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$
- $p \rightarrow(q \rightarrow p)$
- $(p \rightarrow r) \rightarrow r$
- $(p \rightarrow p) \rightarrow(p \rightarrow q)$

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$
- $p \rightarrow(q \rightarrow p)$
- $(p \rightarrow r) \rightarrow r$
- $(p \rightarrow p) \rightarrow(p \rightarrow q)$
- σ, τ, \ldots stand for arbitrary types

Adding types to λ-calculus

- Assume an infinite set of type variables $p, q, r, p_{1}, q^{\prime}, \ldots$
- No structured types (lists, tuples, ...) or user-defined types
- Function types arise naturally
- $p \rightarrow q$
- $p \rightarrow(q \rightarrow p)$
- $(p \rightarrow r) \rightarrow r$
- $(p \rightarrow p) \rightarrow(p \rightarrow q)$
- σ, τ, \ldots stand for arbitrary types
- \rightarrow is right associative: $\sigma \rightarrow \tau \rightarrow \theta$ is short for $\sigma \rightarrow(\tau \rightarrow \theta)$

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in V a r_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$
- $x \in \operatorname{Var}_{\sigma}, M \in \Lambda_{\tau} \Longrightarrow \lambda x \cdot M \in \Lambda_{\sigma \rightarrow \tau}$

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set Var $_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$
- $x \in \operatorname{Var}_{\sigma}, M \in \Lambda_{\tau} \Longrightarrow \lambda x \cdot M \in \Lambda_{\sigma \rightarrow \tau}$
- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$
- $x \in \operatorname{Var}_{\sigma}, M \in \Lambda_{\tau} \Longrightarrow \lambda x \cdot M \in \Lambda_{\sigma \rightarrow \tau}$
- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- $\lambda x \cdot M$ has type $\sigma \rightarrow \tau$ and N has type σ, for some σ and τ

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$
- $x \in \operatorname{Var}_{\sigma}, M \in \Lambda_{\tau} \Longrightarrow \lambda x \cdot M \in \Lambda_{\sigma \rightarrow \tau}$
- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- $\lambda x \cdot M$ has type $\sigma \rightarrow \tau$ and N has type σ, for some σ and τ
- x has type σ, so matches N

Adding types to λ-calculus: Church typing

- For every type σ, an infinite set $\operatorname{Var}_{\sigma}$ of (term) variables of type σ
- Define Λ_{σ} for all σ, by simultaneous induction:
- $x \in \operatorname{Var}_{\sigma} \Longrightarrow x \in \Lambda_{\sigma}$
- $M \in \Lambda_{\sigma \rightarrow \tau}, N \in \Lambda_{\sigma} \Longrightarrow M N \in \Lambda_{\tau}$
- $x \in \operatorname{Var}_{\sigma}, M \in \Lambda_{\tau} \Longrightarrow \lambda x \cdot M \in \Lambda_{\sigma \rightarrow \tau}$
- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- $\lambda x \cdot M$ has type $\sigma \rightarrow \tau$ and N has type σ, for some σ and τ
- x has type σ, so matches N
- Both sides have type τ

Church typing: alternate presentation

- Environment Γ - a finite set of pairs $\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where each $x_{i} \in \operatorname{Var}_{\sigma_{i}}$

Church typing: alternate presentation

- Environment Γ - a finite set of pairs $\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where each $x_{i} \in \operatorname{Var}_{\sigma_{i}}$
- We write $\Gamma, y: \tau$ for $\Gamma \cup\{(y: \tau)\}$

Church typing: alternate presentation

- Environment Γ - a finite set of pairs $\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where each $x_{i} \in \operatorname{Var}_{\sigma_{i}}$
- We write $\Gamma, y: \tau$ for $\Gamma \cup\{(y: \tau)\}$
- The typing rules:

$$
\Gamma, x: \tau \vdash x: \tau \quad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
$$

Church typing: examples

- If $x \in \operatorname{Var}_{p}, \lambda x \cdot x: p \rightarrow p$

Church typing: examples

- If $x \in \operatorname{Var}_{p}, \lambda x \cdot x: p \rightarrow p$
- If $x \in \operatorname{Var}_{p}, y \in \operatorname{Var}_{q}, \lambda x y \cdot x: p \rightarrow q \rightarrow p$

Church typing: examples

- If $x \in \operatorname{Var}_{p}, \lambda x \cdot x: p \rightarrow p$
- If $x \in \operatorname{Var}_{p}, y \in \operatorname{Var}_{q}, \lambda x y \cdot x: p \rightarrow q \rightarrow p$
- If $x \in \operatorname{Var}_{p \rightarrow q \rightarrow r}, y \in \operatorname{Var}_{p \rightarrow q}, z \in \operatorname{Var}_{p}$,

$$
\lambda x y z \cdot x z(y z):(p \rightarrow q \rightarrow r) \rightarrow(p \rightarrow q) \rightarrow p \rightarrow r
$$

Church typing: Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow, as usual

Church typing: Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow, as usual
- Extend to many-step ${ }^{*}{ }_{\beta}$ as usual

Church typing: Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow, as usual
- Extend to many-step ${ }^{*}{ }_{\beta}$ as usual
- $\xrightarrow{*}{ }_{\beta}$ is Church-Rosser

Church typing: Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow, as usual
- Extend to many-step ${ }^{*}{ }_{\beta}$ as usual
- $\xrightarrow{*}{ }_{\beta}$ is Church-Rosser
- Cannot easily adapt the proof for untyped λ-calculus

Church typing: Church-Rosser

- Extend \longrightarrow_{β} to one-step reduction \longrightarrow, as usual
- Extend to many-step ${ }^{*}{ }_{\beta}$ as usual
- $\xrightarrow{*}{ }_{\beta}$ is Church-Rosser
- Cannot easily adapt the proof for untyped λ-calculus
- Use weak Church-Rosser for Church typing and strong normalization instead

Church typing: Normalization

- A λ-expression is

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω
- strongly normalizing if every reduction sequence is terminating

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω
- strongly normalizing if every reduction sequence is terminating
- Example: $(\lambda x \cdot y)(\lambda x \cdot x)$

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω
- strongly normalizing if every reduction sequence is terminating
- Example: $(\lambda x \cdot y)(\lambda x \cdot x)$
- Counterexample: $(\lambda x \cdot y) \Omega$

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω
- strongly normalizing if every reduction sequence is terminating
- Example: $(\lambda x \cdot y)(\lambda x \cdot x)$
- Counterexample: $(\lambda x \cdot y) \Omega$
- A λ-calculus is weakly normalizing if every term in the calculus is weakly normalizing

Church typing: Normalization

- A λ-expression is
- (weakly) normalizing if it has a normal form
- Example: $(\lambda x \cdot y) \Omega$
- Counterexample: Ω
- strongly normalizing if every reduction sequence is terminating
- Example: $(\lambda x \cdot y)(\lambda x \cdot x)$
- Counterexample: $(\lambda x \cdot y) \Omega$
- A λ-calculus is weakly normalizing if every term in the calculus is weakly normalizing
- A λ-calculus is strongly normalizing if every term in the calculus is strongly normalizing

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing Proof.

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M) N)=\operatorname{size}(\sigma \rightarrow \tau)$, where $\sigma \rightarrow \tau$ is the type of $\lambda x \cdot M$

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M) N)=\operatorname{size}(\sigma \rightarrow \tau)$, where $\sigma \rightarrow \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M) N)=\operatorname{size}(\sigma \rightarrow \tau)$, where $\sigma \rightarrow \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
- If a subterm t^{\prime} of t is also a redex, then $\delta\left(t^{\prime}\right)<\delta(t)$

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M) N)=\operatorname{size}(\sigma \rightarrow \tau)$, where $\sigma \rightarrow \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
- If a subterm t^{\prime} of t is also a redex, then $\delta\left(t^{\prime}\right)<\delta(t)$
- Replace t by u, where u is got by contracting t

Church typing: Weak normalization

Theorem
The λ-calculus with Church typing is weakly normalizing
Proof.

- Terminating reduction strategy
- complexity of a redex: $\delta((\lambda x \cdot M) N)=\operatorname{size}(\sigma \rightarrow \tau)$, where $\sigma \rightarrow \tau$ is the type of $\lambda x \cdot M$
- Pick an innermost redex t with maximum δ value (among all redexes inside the original expression M)
- If a subterm t^{\prime} of t is also a redex, then $\delta\left(t^{\prime}\right)<\delta(t)$
- Replace t by u, where u is got by contracting t
- This strategy is guaranteed to rerminate!

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing

Church typing: Strong normalization

Theorem

The λ-calculus with Church typing is strongly normalizing Proof.

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing
Proof.

- Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

$$
\begin{aligned}
t \in \operatorname{Red}_{p} & \Longleftrightarrow t \text { is strongly normalizing } \\
t \in \operatorname{Red}_{\sigma \rightarrow \tau} & \Longleftrightarrow \forall u\left[u \in \operatorname{Red}_{\sigma} \Longrightarrow t u \in \operatorname{Red}_{\tau}\right]
\end{aligned}
$$

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing
Proof.

- Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

$$
\begin{aligned}
t \in \operatorname{Red}_{p} & \Longleftrightarrow t \text { is strongly normalizing } \\
t \in \operatorname{Red}_{\sigma \rightarrow \tau} & \Longleftrightarrow \forall u\left[u \in \operatorname{Red}_{\sigma} \Longrightarrow t u \in \operatorname{Red}_{\tau}\right]
\end{aligned}
$$

- For all σ, if $t \in \operatorname{Red}_{\sigma}$ then t is strongly normalizing (Induction on types)

Church typing: Strong normalization

Theorem
The λ-calculus with Church typing is strongly normalizing
Proof.

- Define $\operatorname{Red}_{\sigma} \subseteq \Lambda_{\sigma}$ (Logically complex!)

$$
\begin{aligned}
t \in \operatorname{Red}_{p} & \Longleftrightarrow t \text { is strongly normalizing } \\
t \in \operatorname{Red}_{\sigma \rightarrow \tau} & \Longleftrightarrow \forall u\left[u \in \operatorname{Red}_{\sigma} \Longrightarrow t u \in \operatorname{Red}_{\tau}\right]
\end{aligned}
$$

- For all σ, if $t \in \operatorname{Red}_{\sigma}$ then t is strongly normalizing (Induction on types)
- For all terms t, if $t \in \Lambda_{\sigma}$ then $t \in \operatorname{Red}_{\sigma}$ (Induction on term size)

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
- A finite set of pairs $\Gamma=\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where the x_{i} are distinct variables, and the σ_{i} are types

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
- A finite set of pairs $\Gamma=\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where the x_{i} are distinct variables, and the σ_{i} are types
- no requirement that $x_{i} \in \operatorname{Var}_{\sigma_{i}}$ - there is no $\operatorname{Var}_{\sigma_{i}}$!

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
- A finite set of pairs $\Gamma=\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where the x_{i} are distinct variables, and the σ_{i} are types
- no requirement that $x_{i} \in \operatorname{Var}_{\sigma_{i}}$ - there is no $\operatorname{Var}_{\sigma_{i}}$!
- The typing rules:

$$
\Gamma, x: \tau \vdash x: \tau \quad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
$$

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
- A finite set of pairs $\Gamma=\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where the x_{i} are distinct variables, and the σ_{i} are types
- no requirement that $x_{i} \in \operatorname{Var}_{\sigma_{i}}$ - there is no $\operatorname{Var}_{\sigma_{i}}$!
- The typing rules:

$$
\Gamma, x: \tau \vdash x: \tau \quad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
$$

- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$

Adding types to λ-calculus: Curry typing

- Terms of the untyped lambda calculus - identify typable terms
- Each typable term has a judgement asserting its type
- Types of variables are given by an environment
- A finite set of pairs $\Gamma=\left\{\left(x_{1}: \sigma_{1}\right), \ldots,\left(x_{n}: \sigma_{n}\right)\right\}$ where the x_{i} are distinct variables, and the σ_{i} are types
- no requirement that $x_{i} \in \operatorname{Var}_{\sigma_{i}}$ - there is no $\operatorname{Var}_{\sigma_{i}}$!
- The typing rules:

$$
\Gamma, x: \tau \vdash x: \tau \quad \frac{\Gamma, x: \sigma \vdash M: \tau}{\Gamma \vdash(\lambda x \cdot M): \sigma \rightarrow \tau} \quad \frac{\Gamma \vdash M: \sigma \rightarrow \tau \Gamma \vdash N: \sigma}{\Gamma \vdash(M N): \tau}
$$

- β-reduction is as usual: $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- Types match

Curry typing: Examples

$$
\frac{x: p \vdash x: p}{\vdash \lambda x \cdot x: p \rightarrow p}
$$

Curry typing: Examples

$$
\begin{gathered}
\frac{x: p \vdash x: p}{\vdash \lambda x \cdot x: p \rightarrow p} \\
\frac{x: p, y: q \vdash x: p}{x: p \vdash \lambda y \cdot x: q \rightarrow p} \\
\vdash \lambda x y \cdot x: p \rightarrow(q \rightarrow p)
\end{gathered}
$$

Curry typing: Examples

- Let $\Gamma=\{x: p \rightarrow q \rightarrow r, y: p \rightarrow q, z: p\}$

$$
\begin{gathered}
\frac{\Gamma \vdash x: p \rightarrow q \rightarrow r \quad \Gamma \vdash z: p}{\Gamma \vdash x z: q \rightarrow r} \frac{\Gamma \vdash y: p \rightarrow q \quad \Gamma \vdash z: p}{\Gamma \vdash y z: q} \\
\frac{\Gamma \vdash x z(y z): r}{x: p \rightarrow q \rightarrow r, y: p \rightarrow q \vdash \lambda z \cdot x z(y z): p \rightarrow r} \\
\frac{x: p \rightarrow q \rightarrow r \vdash \lambda y z \cdot x z(y z):(p \rightarrow q) \rightarrow(p \rightarrow r)}{\vdash \lambda x y z \cdot x z(y z):(p \rightarrow q \rightarrow r) \rightarrow(p \rightarrow q) \rightarrow(p \rightarrow r)}
\end{gathered}
$$

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
- $\lambda x \cdot x$ can be given types $p \rightarrow p, r \rightarrow r,(p \rightarrow q) \rightarrow(p \rightarrow q), \ldots$

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
- $\lambda x \cdot x$ can be given types $p \rightarrow p, r \rightarrow r,(p \rightarrow q) \rightarrow(p \rightarrow q), \ldots$
- $p \rightarrow p$ is the simplest (least constrained) type - modulo variable renaming

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
- $\lambda x \cdot x$ can be given types $p \rightarrow p, r \rightarrow r,(p \rightarrow q) \rightarrow(p \rightarrow q), \ldots$
- $p \rightarrow p$ is the simplest (least constrained) type - modulo variable renaming
- Principal type

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
- $\lambda x \cdot x$ can be given types $p \rightarrow p, r \rightarrow r,(p \rightarrow q) \rightarrow(p \rightarrow q), \ldots$
- $p \rightarrow p$ is the simplest (least constrained) type - modulo variable renaming
- Principal type
- a type for a term M such that every other type for M is got by uniformly replacing each variable by a type

Curry typing: typability

- Given a term of the (untyped) λ-calculus, can it be given a type (assuming some types for the free variables)?
- For instance, we cannot give a valid type to $x x$
- If it were typable, x would have type $\sigma \rightarrow \tau$ as well as σ
- A term may admit multiple types
- $\lambda x \cdot x$ can be given types $p \rightarrow p, r \rightarrow r,(p \rightarrow q) \rightarrow(p \rightarrow q), \ldots$
- $p \rightarrow p$ is the simplest (least constrained) type - modulo variable renaming
- Principal type
- a type for a term M such that every other type for M is got by uniformly replacing each variable by a type
- unique for each typable term - modulo renaming of variables!

