Programming Language Concepts: Lecture 22

S P Suresh

April 7, 2021

Suresh PLC 2021: Lecture 22 April 7, 2021 1/16

Adding types to A-calculus

¢ The basic A-calculus is untyped

Suresh PLC 2021: Lecture 22 April 7, 2021 2/16

Adding types to A-calculus

¢ The basic A-calculus is untyped

¢ The first functional programming language, LISP, was also untyped

Suresh PLC 2021: Lecture 22 April 7, 2021 2/16

Adding types to A-calculus

¢ The basic A-calculus is untyped
¢ The first functional programming language, LISP, was also untyped

® Modern languages such as Haskell, ML, ...are typed

Suresh PLC 2021: Lecture 22 April 7, 2021 2/16

Adding types to A-calculus

The basic 2-calculus is untyped
The first functional programming language, LISP, was also untyped
Modern languages such as Haskell, ML, ...are typed

What is the theoretical foundation for such languages?

Suresh PLC 2021: Lecture 22 April 7, 2021

2/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char

® Structured types

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types

Lists If a is a type, so is [a]

Suresh PLC 2021: Lecture 22

April 7, 2021

3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types

Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is (al, a2, ..., ak)

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)

® Function types

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Ifa,baretypes,soisa -> b

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Jfa,bare types,soisa -> b
® Function with input of type a and output of type b

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Jfa,bare types,soisa -> b
® Function with input of type a and output of type b

User defined types

Suresh PLC 2021: Lecture 22 April 7, 2021

3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If ais a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)
® Function types

® Ifa,baretypes,soisa -> b
® Function with input of type a and output of type b

User defined types
® data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat

Suresh PLC 2021: Lecture 22 April 7, 2021

3/16

Types in functional programming

The structure of types in Haskell
® Basic types—Int, Bool, Float, Char
® Structured types
Lists If a is a type, so is [a]
Tuples If a1, a2, ..., ak are types, so is Cal, a2, ..., ak)

® Function types

® Ifa,baretypes,soisa -> b

® Function with input of type a and output of type b
® User defined types

® data Day = Sun | Mon | Tue | Wed | Thu | Fri | Sat
® data BTree a = Nil | Node (BTree a) a (BTree a)

Suresh PLC 2021: Lecture 22 April 7, 2021 3/16

Adding types to A-calculus
® Set A of untyped lambda expressions given by the syntax
A=x|Ax.M|MN

where x € Var, M, N € A

Suresh PLC 2021: Lecture 22 April 7, 2021 4116

Adding types to A-calculus
® Set A of untyped lambda expressions given by the syntax
A=x|Ax.M|MN

where x € Var, M, N € A
® Add a syntax for types

Suresh PLC 2021: Lecture 22 April 7, 2021 4116

Adding types to A-calculus
® Set A of untyped lambda expressions given by the syntax
A=x|Ax.M|MN

where x € Var, M, N € A
® Add a syntax for types

® When constructing expressions, build up the type from the types of the

parts

Suresh PLC 2021: Lecture 22 April 7, 2021 4116

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...

Suresh PLC 2021: Lecture 22 April 7, 2021 5116

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...

® No structured types (lists, tuples, ...) or user-defined types

Suresh PLC 2021: Lecture 22 April 7, 2021 5/16

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...

® No structured types (lists, tuples, ...) or user-defined types

® Function types arise naturally

Suresh PLC 2021: Lecture 22 April 7, 2021 5/16

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...

® No structured types (lists, tuples, ...) or user-defined types

® Function types arise naturally

*r—a

Suresh PLC 2021: Lecture 22 April 7, 2021 5/16

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...
® No structured types (lists, tuples, ...) or user-defined types
® Function types arise naturally

*r—q

*r—(—72)

Suresh PLC 2021: Lecture 22 April 7, 2021 5/16

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...
® No structured types (lists, tuples, ...) or user-defined types
® Function types arise naturally

*r—q

*r—(—7)

¢« (por)or

Suresh PLC 2021: Lecture 22 April 7, 2021 5/16

Adding types to A-calculus

¢ Assume an infinite set of type variables p, 4,7, p,, 4, ...
® No structured types (lists, tuples, ...) or user-defined types
® Function types arise naturally

*r—q

i AudUindd

*(por)or

* (p—p)—(p—4q)

Suresh PLC 2021: Lecture 22 April 7, 2021

5/16

Adding types to A-calculus

Assume an infinite set of type variables p, 4,7, p,, 4, ...
No structured types (lists, tuples, ...) or user-defined types
Function types arise naturally

*r—q

*r—(—7)

*(por)—>r
* (p—p)—(p—4q)

0,7,... stand for arbitrary types

Suresh PLC 2021: Lecture 22

April 7, 2021

5/16

Adding types to A-calculus

Assume an infinite set of type variables p, 4,7, p,, 4, ...
No structured types (lists, tuples, ...) or user-defined types
Function types arise naturally

*r—q

*r—(—7)

“(pr)r
*(p—p)—(p—9q)
0,7,... stand for arbitrary types

— is right associative: ¢ — v — 0 is short for o — (t — 6)

Suresh PLC 2021: Lecture 22 April 7, 2021

5/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o

® Define A for all o, by simultaneous induction:

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = xeA,

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = xeA,

® MeA, ,,NeA = MNeA,

SN

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = x €A,
¢ MeA,, ,NeA, = MNeA,
® xeVar,MeA = Ax-MeA___

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = x €A,
¢ MeA,, ,NeA, = MNeA,
® xeVar,MeA = Ax-MeA___

® g-reduction is as usual: (Ax - M)N —, M[x =N
B

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = x €A,
¢ MeA,, ,NeA, = MNeA,
® xeVar,MeA = Ax-MeA___

® [-reduction is as usual: (Ax - M)N —; M[x := N |
® Jx - M has type o — 7 and IV has type o, for some o and ©

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = xeA,

¢ MeA, , ,NeA, = MNeA,

® xeVar,MeA = Ax-MeA___
® [-reduction is as usual: (Ax - M)N —; M[x := N |

® Jx - M has type o — 7 and IV has type o, for some o and ©

® x has type o, so matches NV

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Adding types to A-calculus: Church typing

® For every type o, an infinite set Va7 of (term) variables of type o
® Define A for all o, by simultaneous induction:

® xelVar, = xeA,

® MeA, ,,NeA = MNeA,

¢ xeVar, Me AN, = Ax-MeA___
® [-reduction is as usual: (Ax - M)N —; M[x := N |

® Jx - M has type o — 7 and IV has type o, for some o and ©

® x has type 0, so matches V

® Both sides have type «

Suresh PLC 2021: Lecture 22 April 7, 2021 6/16

Church typing: alternate presentation

® Environment I' — a finite set of pairs {(x; : 0,),...,(x, : o,)} where each

x; € Wl”a,.

Suresh PLC 2021: Lecture 22 April 7, 2021 7116

Church typing: alternate presentation

® Environment I' — a finite set of pairs {(x; : 0,),...,(x, : o,)} where each

x; € Wl”a,

® Wewrite I', y : for TU{(y:7)}

Suresh PLC 2021: Lecture 22 April 7, 2021 7116

Church typing: alternate presentation

® Environment I' — a finite set of pairs {(x; : 0,),...,(x, : o,)} where each

x; € Var,
® Wewrite I', y : for TU{(y:7)}

¢ The typing rules:
Iix:obEM:t

rM:6—-7 THEN:o

Mx:ithx:t T'FQx-M):io—>=

Suresh PLC 2021: Lecture 22

TH(MN):+

April 7, 2021

7116

Church typing: examples

° Iferarp,Ax-x:pﬁp

Suresh PLC 2021: Lecture 22 April 7, 2021 8/16

Church typing: examples

° Iferarp,Ax-x:p—)p
° IfxeVarp,erarq,Axy-x:pﬁq%p

Suresh PLC 2021: Lecture 22 April 7, 2021 8/16

Church typing: examples

° Iferarp,Ax-x:p—)p
° IfxeVarp,erarq,Axy-x:p%q%p

.
If x € Var .yeVar, . z¢€Var,,

p—q—r

Axyz-xz(yz):(p—q—=r) = (p—=9q) = p =7

Suresh PLC 2021: Lecture 22 April 7, 2021 8/16

Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual

Suresh PLC 2021: Lecture 22 April 7, 2021 9/16

Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual

*
® Extend to many-step — ; as usual

Suresh PLC 2021: Lecture 22 April 7, 2021 9/16

Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
*
® Extend to many-step — ; as usual

° —*>ﬁ is Church-Rosser

Suresh PLC 2021: Lecture 22 April 7, 2021 9/16

Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
*
® Extend to many-step — ; as usual

° —*>ﬁ is Church-Rosser

® Cannot easily adapt the proof for untyped 2-calculus

Suresh PLC 2021: Lecture 22 April 7, 2021 9/16

Church typing: Church-Rosser

® Extend — to one-step reduction —, as usual
*
® Extend to many-step — ; as usual

° —*>ﬁ is Church-Rosser

® Cannot easily adapt the proof for untyped 2-calculus
® Use weak Church-Rosser for Church typing and strong normalization
instead

Suresh PLC 2021: Lecture 22 April 7, 2021 9/16

Church typing: Normalization

® A J-expression is

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is

® (weakly) normalizing if it has a normal form

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization
® A J-expression is

® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q

® strongly normalizing if every reduction sequence is terminating

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q
® strongly normalizing if every reduction sequence is terminating

® Example: (Ax - y)(Ax - x)

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q
® strongly normalizing if every reduction sequence is terminating
® Example: (Ax - y)(Ax - x)
® Counterexample: (Ax - y)Q

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q
® strongly normalizing if every reduction sequence is terminating
® Example: (Ax - y)(Ax - x)
® Counterexample: (Ax - y)Q
® A J-calculus is weakly normalizing if every term in the calculus is weakly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Normalization

® A J-expression is
® (weakly) normalizing if it has a normal form
® Example: (Ax - y)Q
® Counterexample: Q
® strongly normalizing if every reduction sequence is terminating
® Example: (Ax - y)(Ax - x)
® Counterexample: (Ax - y)Q
® A J-calculus is weakly normalizing if every term in the calculus is weakly

normalizing

® A J-calculus is strongly normalizing if every term in the calculus is strongly

normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 10/16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization
Theorem

The A-caleulus with Church typing is weakly normalizing
Proof.

® Terminating reduction strategy

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing
Proof.

® Terminating reduction strategy

® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

O

Suresh PLC 2021: Lecture 22 April 7, 2021 1/16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

® Terminating reduction strategy

® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

® DPick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem
The A-caleulus with Church typing is weakly normalizing

Proof.

® Terminating reduction strategy
® complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

® DPick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem

The A-caleulus with Church typing is weakly normalizing

Proof.

Terminating reduction strategy

complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

Pick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)

Replace 7 by #, where # is got by contracting #

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Weak normalization

Theorem

The A-caleulus with Church typing is weakly normalizing

Proof.

Terminating reduction strategy

complexity of a redex: 5((2x - M)N) = size(c — 7), where o — 7 is the type
of Ax - M

Pick an innermost redex # with maximum & value (among all redexes inside
the original expression //)

® Ifasubterm 7 of # is also a redex, then 5(#/) < §(¢)
Replace 7 by #, where # is got by contracting #
This strategy is guaranteed to rerminate!

O

Suresh PLC 2021: Lecture 22 April 7, 2021 /16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.

O

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.
® Define Red, € A (Logically complex!)

teRed, <= ¢ isstrongly normalizing

teRed, , < Vu[u €Red = tue RedT]

O

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.
® Define Red, € A (Logically complex!)

teRed, <= ¢ isstrongly normalizing

teRed, , < Vu[u €Red = tue RedT]

® Forall o, if 7 € Red then 7 is strongly normalizing (Induction on types)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Church typing: Strong normalization

Theorem
The A-caleulus with Church typing is strongly normalizing

Proof.
® Define Red, € A (Logically complex!)

teRed, <= ¢ isstrongly normalizing

teRed, , < Vu[u €Red = tue RedT]

® Forall o, if 7 € Red then 7 is strongly normalizing (Induction on types)

® Forall terms 7, if 7 € A then 7 € Red (Induction on term size)

O

Suresh PLC 2021: Lecture 22 April 7, 2021 12/16

Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms

Suresh PLC 2021: Lecture 22 April 7, 2021 13/16

Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms

® Each typable term has a judgement asserting its type

Suresh PLC 2021: Lecture 22 April 7, 2021 13/16

Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms

® Each typable term has a judgement asserting its type

® Types of variables are given by an environment

Suresh PLC 2021: Lecture 22 April 7, 2021 13/16

Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms

® Each typable term has a judgement asserting its type
® Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct

n
variables, and the o, are types

Suresh PLC 2021: Lecture 22 April 7, 2021 13/16

Adding types to A-calculus: Curry typing

® Terms of the untyped lambda calculus — identify typable terms

® Each typable term has a judgement asserting its type
® Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct

n
variables, and the o, are types

® no requirement that x; € Var, — there is no Var, !

Suresh PLC 2021: Lecture 22 April 7, 2021 13/16

Adding types to A-calculus: Curry typing

Terms of the untyped lambda calculus — identify typable terms

Each typable term has a judgement asserting its type
Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct
variables, and the o, are types
® no requirement that x; € Var, — there is no Var, !

The typing rules:
Ix:cFM:t r'M:06—-7t IT'EN:o

Fx:thx:t T'FQx-M):io—>~ 'F(MN):<

Suresh PLC 2021: Lecture 22 April 7, 2021

13/16

Adding types to A-calculus: Curry typing

Terms of the untyped lambda calculus — identify typable terms

Each typable term has a judgement asserting its type
Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct
variables, and the o, are types
® no requirement that x; € Var, — there is no Var, !

The typing rules:
Ix:cFM:t r'M:06—-7t IT'EN:o

Fx:thx:t T'FQx-M):io—>~ 'F(MN):<
[-reduction is as usual: (2x - M)N —, M[x = N|

Suresh PLC 2021: Lecture 22 April 7, 2021

13/16

Adding types to A-calculus: Curry typing

Terms of the untyped lambda calculus — identify typable terms

Each typable term has a judgement asserting its type
Types of variables are given by an environment

® A finite set of pairs I' = {(x; : 5,),...,(x, : 0,)} where the x; are distinct
variables, and the o, are types
® no requirement that x; € Var, — there is no Var, !

The typing rules:
Ix:cFM:t r'M:06—-7t IT'EN:o

Fx:thx:t T'FQx-M):io—>~ 'F(MN):<
[-reduction is as usual: (2x - M)N —, M[x = N|
® Types match

Suresh PLC 2021: Lecture 22 April 7, 2021

13/16

Curry typing: Examples

x:pkx:p

Fax-x:p—p

Suresh PLC 2021: Lecture 22 April 7, 2021 14/16

Curry typing: Examples

x:pkx:p

Fax-x:p—p

x:p,yiqbx:p
x:pFAy-x:iqg—p
Faxy-x:p—(q—p)

Suresh PLC 2021: Lecture 22 April 7, 2021

14/16

Curry typing: Examples

® letI'={x:p—>qg—>ry:p—>q,z:p}

'bx:p—qg—r I'kz:p Thy:p—sg Thz:p

'bxziqg—r I'tyz:q

I'Exz(yz):r

xip—oqgony:p—oq-iz-xz(yz):ip—or
x:poqg—orbayz-xz(yz):(poq)—>(p— 1)
Faxyz-xz(yz):(p—>qg—-r)—>(p—>q9)>(p—7)

Suresh PLC 2021: Lecture 22 April 7, 2021 15/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o

® A term may admit multiple types

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
® A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

® Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
® A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...

® p — p is the simplest (least constrained) type — modulo variable renaming

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability
Given a term of the (untyped) A-calculus, can it be given a type (assuming

some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
A term may admit multiple types
® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...
p — p is the simplest (least constrained) type — modulo variable renaming

Principal type

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...
p — p is the simplest (least constrained) type — modulo variable renaming
Principal type

® atype for a term M such that every other type for M is got by uniformly
replacing each variable by a type

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

Curry typing: typability

Given a term of the (untyped) A-calculus, can it be given a type (assuming
some types for the free variables)?

® For instance, we cannot give a valid type to x x

® Jfit were typable, x would have type 0 — 7 as well as o
A term may admit multiple types

® Jx-x canbe given types p — p, r = 7, (p = q) = (p — q), ...
p — p is the simplest (least constrained) type — modulo variable renaming
Principal type

® atype for a term M such that every other type for M is got by uniformly

replacing each variable by a type
® unique for each typable term — modulo renaming of variables!

Suresh PLC 2021: Lecture 22 April 7, 2021 16/16

