Programming Language Concepts: Lecture 21

S P Suresh

March 31, 2021

• Can have other reduction rules like β

- Can have other reduction rules like β
- Observe that if *x* does not occur free in *M*, then

for all $N, (\lambda x. (Mx))N \longrightarrow_{\beta} MN$

- Can have other reduction rules like β
- Observe that if *x* does not occur free in *M*, then

for all $N, (\lambda x.(Mx))N \longrightarrow_{\beta} MN$

• Thus $\lambda x.(Mx)$ behaves just like M

- Can have other reduction rules like β
- Observe that if *x* does not occur free in *M*, then

for all $N, (\lambda x.(Mx))N \longrightarrow_{\beta} MN$

- Thus $\lambda x.(Mx)$ behaves just like M
- New reduction rule η (when $x \notin FV(M)$)

 $\lambda x.(Mx) \longrightarrow_{\eta} M$

• Define a one step reduction inductively (where $x \in \{\beta, \eta, \ldots\}$)

$$\frac{M \longrightarrow_{X} M'}{M \longrightarrow M'}$$

• $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M=M_0,M_1,\ldots,M_k=N$ such that for each $i< k:M_i \longrightarrow M_{i+1}$

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$
- $M \longleftrightarrow N: M$ is equivalent to N

- $M \xrightarrow{*} N$: repeatedly apply \longrightarrow to get N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each $i < k : M_i \longrightarrow M_{i+1}$
- $M \longleftrightarrow N: M$ is equivalent to N
 - There is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for each i < k: either $M_i \longrightarrow M_{i+1}$ or $M_{i+1} \longrightarrow M_i$

• Computation — a maximal sequence of reduction steps

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - Recall: A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$), in the case of η -reduction)

Natural questions

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - **Recall:** A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

• Does every term reduce to a normal form?

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - **Recall:** A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?

Suresh

- Computation a maximal sequence of reduction steps
- Values expressions that cannot be further reduced
- An expression in normal form or a normal term
- We allow reduction in any context, so multiple redexes may qualify for reduction
 - **Recall:** A redex (or reducible expression) is a subexpression of the form $(\lambda x.M)N$ (or $\lambda x.(Mx)$, in the case of η -reduction)

Natural questions

- Does every term reduce to a normal form?
- Can a term reduce to more than one normal form, depending on the reduction sequence?
- If a term has a normal form, can we always find it?

Suresh

PLC 2021: Lecture 21

Does every term reduce to normal form?

Does every term reduce to normal form?

• Consider the terms $\omega = \lambda x . x x$ and $\Omega = \omega \omega$

Does every term reduce to normal form?

- Consider the terms $\omega = \lambda x . x x$ and $\Omega = \omega \omega$
- $\Omega = (\lambda x.xx)(\lambda x.xx) \longrightarrow_{\beta} (\lambda x.xx)(\lambda x.xx) = \Omega$

Does every term reduce to normal form?

- Consider the terms $\omega = \lambda x . x x$ and $\Omega = \omega \omega$
- $\Omega = (\lambda x.xx)(\lambda x.xx) \longrightarrow_{\beta} (\lambda x.xx)(\lambda x.xx) = \Omega$
 - Reduction never terminates

Can a term reduce to more than one normal form, depending on the reduction sequence?

Can a term reduce to more than one normal form, depending on the reduction sequence?

• Consider the term [false] $\Omega = (\lambda y z.z)((\lambda x.xx)(\lambda x.xx))$

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term [false] $\Omega = (\lambda y z.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

 $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term [false] $\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

• Innermost reduction

 $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$

Can a term reduce to more than one normal form, depending on the reduction sequence?

- Consider the term [false] $\Omega = (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$
- Outermost reduction

$$(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} \lambda z.z$$

• Innermost reduction

 $(\lambda yz.z)((\lambda x.xx)(\lambda x.xx)) \longrightarrow_{\beta} (\lambda yz.z)((\lambda x.xx)(\lambda x.xx))$

• Choice of reduction strategy may determine whether a normal form can be reached, but can more than one normal form be reached?

Suresh

PLC 2021: Lecture 21

If a term has a normal form, can we always find it?

If a term has a normal form, can we always find it?

• Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction

If a term has a normal form, can we always find it?

- Yes! We can do a breadth-first search of the reduction graph, and we are guaranteed to find a normal form eventually
- We could also reduce the term following the strategy of leftmost outermost reduction
- If a term has a normal form, leftmost outermost reduction will find it!

Given a term, can we determine if it has a normal form?

Given a term, can we determine if it has a normal form?

• We have seen how to encode recursive functions in the λ -calculus

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of *f*(*n*) terminates, given *f* and *n*
Normal forms ...

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of *f*(*n*) terminates, given *f* and *n*
- But computing f(n) is equivalent to asking if [f][n] has a normal form

Normal forms ...

Given a term, can we determine if it has a normal form?

- We have seen how to encode recursive functions in the λ -calculus
- We cannot in general determine if the computation of *f*(*n*) terminates, given *f* and *n*
- But computing f(n) is equivalent to asking if [f][n] has a normal form
- So checking whether a given term has a normal form is **undecidable**

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

• Question: Can a term reduce to more than one normal form, depending on the reduction sequence?

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$

Theorem (Church-Rosser)

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$
 - Thus there is a *P* such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Question: Can a term reduce to more than one normal form, depending on the reduction sequence?
- Answer: No!
 - Suppose a term M_0 reduces to two normal forms M and N
 - Then $M \longleftrightarrow N$
 - Thus there is a *P* such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$ (by Church-Rosser)
 - But since M and N are already in normal form, M = P = N (upto renaming of bound variables)

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \stackrel{*}{\longrightarrow} P$ and $N \stackrel{*}{\longrightarrow} P$

Proof.

• Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - **Base case:** Choose $P_0 = M_0$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - **Base case:** Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - **Base case:** Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - If $M_{i+1} \longrightarrow M_i$, take $P_{i+1} = P_i$

Theorem (Church-Rosser)

If $M \longleftrightarrow N$ there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- Recall: $M \longleftrightarrow N$ iff there is a sequence $M = M_0, M_1, \dots, M_k = N$ such that for all i < k: either $M_i \longrightarrow N$ or $N \longrightarrow M$
- Claim: For all $i \leq k$, there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - **Base case:** Choose $P_0 = M_0$
 - Induction case: Suppose there is a P_i such that $M_0 \xrightarrow{*} P_i$ and $M_i \xrightarrow{*} P_i$
 - If $M_{i+1} \longrightarrow M_i$, take $P_{i+1} = P_i$
 - If $M_i \longrightarrow M_{i+1}$, use the **Diamond property** to arrive at the desired P_{i+1}

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

• We can talk of the Diamond property for any relation R

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation R
- R has the Diamond property if

 $(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation R
- R has the Diamond property if

 $(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation *R*
- R has the Diamond property if

 $(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation *R*
- R has the Diamond property if

 $(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

- We can talk of the Diamond property for any relation *R*
- *R* has the Diamond property if

 $(\forall a, b, c)[(aRb \land aRc) \Rightarrow (\exists d)(bRd \land cRd)]$

Proposition

*If R has the Diamond property, so does R** The proof is by induction on length of *R*-chains

Suresh

PLC 2021: Lecture 21

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, \longrightarrow does not have the Diamond property!

• Recall that $\omega = \lambda x . x x$ and $I = \lambda x . x$

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, \longrightarrow does not have the Diamond property!

- Recall that $\omega = \lambda x . x x$ and $I = \lambda x . x$
- $\omega(II) \longrightarrow (II)(II)$ by outermost reduction and $\omega(II) \longrightarrow \omega I$ by innermost reduction

Theorem (Diamond property)

If $M_0 \xrightarrow{*} M$ and $M_0 \xrightarrow{*} N$, there is a term P such that $M \xrightarrow{*} P$ and $N \xrightarrow{*} P$

Proposition

If R has the Diamond property, so does R^*

Unfortunately, \longrightarrow does not have the Diamond property!

- Recall that $\omega = \lambda x.xx$ and $\mathbf{I} = \lambda x.x$
- $\omega(II) \longrightarrow (II)(II)$ by outermost reduction and $\omega(II) \longrightarrow \omega I$ by innermost reduction
- $\omega I \longrightarrow II$ but it takes two steps to go from (II)(II) to II!

_ _ _/

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M$$

$$M \Longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

____/

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M$$

$$M \Longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

• It is easily shown that

____/

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M'$$
$$\lambda x.M \Longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
-- ----

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M$$

$$M \Longrightarrow \lambda x.M' \longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$

- -1

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M$$

$$M \Longrightarrow \lambda x.M' \longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$
 - Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \stackrel{*}{\longrightarrow}_{\beta} N$

- -1

Solution: Define a new "parallel reduction" \implies as follows

$$M \Longrightarrow M$$

$$M \Longrightarrow \lambda x.M' \longrightarrow \lambda x.M'$$

$$\frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{MN \Longrightarrow M'N'} \quad \frac{M \Longrightarrow M' \quad N \Longrightarrow N'}{(\lambda x.M)N \Longrightarrow M'[x := N']}$$

- It is easily shown that
 - if $M \longrightarrow_{\beta} N$ then $M \Longrightarrow N$
 - if $M \Longrightarrow N$ then $M \xrightarrow{*}_{\beta} N$
 - Hence $M \stackrel{*}{\Longrightarrow} N$ iff $M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property

• $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \Longrightarrow has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$ Proof.

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$ Proof.

• For every *M*, define *M*^{*}, the term obtained by one application of "maximal" parallel reduction

- $M \stackrel{*}{\Longrightarrow} N \text{ iff } M \stackrel{*}{\longrightarrow}_{\beta} N$
- It can also be shown that \implies has the Diamond property
- Hence $\stackrel{*}{\Longrightarrow}$ (and therefore $\stackrel{*}{\longrightarrow}_{\beta}$) has the Diamond property
 - Can be extended in the presence of \longrightarrow_{η} as well

Proposition

If $M_0 \Longrightarrow M$ and $M_0 \Longrightarrow N$ then there is a P such that $M \Longrightarrow P$ and $N \Longrightarrow P$ Proof.

- For every *M*, define *M*^{*}, the term obtained by one application of "maximal" parallel reduction
- Whenever $M \Longrightarrow N, N \Longrightarrow M^*$