Programming Language Concepts: Lecture 19

S P Suresh

March 24, 2021

• For every recursive function $f: \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

 $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \text{ for all } n_1,\ldots,n_k \in \mathbb{N}$

• For every recursive function $f: \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

$$[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \quad \text{for all } n_1,\ldots,n_k \in \mathbb{N}$$

• Further if $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [m]$ for any *m*, then $m = f(n_1, \dots, n_k)$

• For every recursive function $f : \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

$$[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \quad \text{for all } n_1,\ldots,n_k \in \mathbb{N}$$

- Further if $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [m]$ for any *m*, then $m = f(n_1, \dots, n_k)$
- A consequence of the Church-Rosser theorem

• For every recursive function $f : \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

$$[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \quad \text{for all } n_1,\ldots,n_k \in \mathbb{N}$$

- Further if $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [m]$ for any *m*, then $m = f(n_1, \dots, n_k)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ -calculus

• For every recursive function $f : \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

$$[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \quad \text{for all } n_1,\ldots,n_k \in \mathbb{N}$$

- Further if $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [m]$ for any *m*, then $m = f(n_1, \dots, n_k)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ -calculus
- What functions are recursive? ...

• For every recursive function $f : \mathbb{N}^k \to \mathbb{N}$ there is a λ -calculus expression [f] such that

$$[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [f(n_1,\ldots,n_k)] \quad \text{for all } n_1,\ldots,n_k \in \mathbb{N}$$

- Further if $[f][n_1]\cdots[n_k] \xrightarrow{*}_{\beta} [m]$ for any *m*, then $m = f(n_1, \dots, n_k)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ -calculus
- What functions are recursive? ...
- Exactly the Turing computable functions!

Suresh

• We write programs for every recursive function

- We write programs for every recursive function
- Initial functions: Trivial programs

- We write programs for every recursive function
- Initial functions: Trivial programs
- Composition: If $f : \mathbb{N}^k \to \mathbb{N}$ is defined by $f = g \circ (h_1, \dots, h_l)$

function f(x1, x2, ..., xk) {
 yl = hl(x1, x2, ..., xk);
 y2 = h2(x1, x2, ..., xk);
 ...
 yl = hl(x1, x2, ..., xk);
 return g(y1, y2, ..., yl);
}

• **Primitive recursion** Suppose $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is defined from $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^{k+2} \to \mathbb{N}$ by

• **Primitive recursion** Suppose $f : \mathbb{N}^{k+1} \to \mathbb{N}$ is defined from $g : \mathbb{N}^k \to \mathbb{N}$ and $h : \mathbb{N}^{k+2} \to \mathbb{N}$ by

• Equivalent to computing a for loop:

```
result = g(n1, ..., nk); // f(0, n1, ..., nk)
for (i = 0; i < n; i++) { // computing f(i+1, n1, ..., nk)
    result = h(i, result, n1, ..., nk);
}
return result;</pre>
```

• μ -recursion Suppose $f : \mathbb{N}^k \to \mathbb{N}$ is defined from $g : \mathbb{N}^{k+1} \to \mathbb{N}$ by

$$f(\vec{n}) = \begin{cases} j & \text{if } g(j, \vec{n}) = 0 \text{ and } \forall i < j : g(i, \vec{n}) > 0 \\ \text{undefined} & \text{otherwise} \end{cases}$$

• μ -recursion Suppose $f : \mathbb{N}^k \to \mathbb{N}$ is defined from $g : \mathbb{N}^{k+1} \to \mathbb{N}$ by

$$f(\vec{n}) = \begin{cases} j & \text{if } g(j, \vec{n}) = 0 \text{ and } \forall i < j : g(i, \vec{n}) > 0 \\ \text{undefined} & \text{otherwise} \end{cases}$$

• Equivalent to computing a while loop:

i = 0; while (g(i, nl, ..., nk) > 0) {i = i + 1;} return i;

• Predecessor

pred(0) = Z(0) = 0 $pred(n+1) = \Pi_1^2(n, pred(n)) = n$

• Predecessor

$$pred(0) = Z(0) = 0$$
$$pred(n+1) = \Pi_1^2(n, pred(n)) = n$$

• Integer difference

$$x - 0 = x$$
$$x - (y + 1) = pred(x - y)$$

• Predecessor

$$pred(0) = Z(0) = 0$$
$$pred(n+1) = \Pi_1^2(n, pred(n)) = n$$

• Integer difference

$$x - 0 = x$$
$$x - (y + 1) = pred(x - y)$$

• Factorial

0! = 1

 $(n_{\text{PLC}}, 1)! = (n_{\text{PLC}}, 1) \cdot n!$

Suresh

• Bounded sums $g(z, \vec{x}) = \sum_{y \le z} f(y, \vec{x})$

$$g(0, \vec{x}) = f(0, \vec{x})$$
$$g(y+1, \vec{x}) = g(y, \vec{x}) + f(y+1, \vec{x})$$

- Bounded sums $g(z, \vec{x}) = \sum_{y \le z} f(y, \vec{x})$
 - $g(0, \vec{x}) = f(0, \vec{x})$ $g(y+1, \vec{x}) = g(y, \vec{x}) + f(y+1, \vec{x})$

• Bounded products $g(z, \vec{x}) = \prod_{y \le z} f(y, \vec{x})$

 $g(0, \vec{x}) = f(0, \vec{x})$ $g(y+1, \vec{x}) = g(y, \vec{x}) \cdot f(y+1, \vec{x})$

A relation R ⊆ N^k is primitive recursive if its characteristic function c_R is primitive recursive

• A relation $R \subseteq \mathbb{N}^k$ is primitive recursive if its characteristic function c_R is primitive recursive

• iszero

iszero(0) = trueiszero(n + 1) = false $c_{iszero}(0) = succ(\Pi_1^1(0))$ $c_{iszero}(n+1) = Z(n)$

A relation R ⊆ N^k is primitive recursive if its characteristic function c_R is primitive recursive

• iszero

$$iszero(0) = true \qquad c_{iszero}(0) = succ(\Pi_1^1(0))$$

$$iszero(n+1) = false \qquad c_{iszero}(n+1) = Z(n)$$

•
$$x \le y$$
 iff $iszero(x - y)$, so $c_{\le}(x, y) = c_{iszero}(x - y)$

• A relation $R \subseteq \mathbb{N}^k$ is primitive recursive if its characteristic function c_R is primitive recursive

• iszero

$$iszero(0) = true \qquad c_{iszero}(0) = succ(\Pi_1^1(0))$$

$$iszero(n+1) = false \qquad c_{iszero}(n+1) = Z(n)$$

•
$$x \le y$$
 iff *iszero* $(x - y)$, so $c_{\le}(x, y) = c_{iszero}(x - y)$

•
$$c_{\neg P} = 1 - c_P$$
, $c_{P \land Q} = c_P \cdot c_Q$

• A relation $R \subseteq \mathbb{N}^k$ is primitive recursive if its characteristic function c_R is primitive recursive

• iszero

$$iszero(0) = true \qquad c_{iszero}(0) = succ(\Pi_1^1(0))$$
$$iszero(n+1) = false \qquad c_{iszero}(n+1) = Z(n)$$

•
$$x \le y$$
 iff $iszero(x - y)$, so $c_{\le}(x, y) = c_{iszero}(x - y)$

•
$$c_{\neg P} = 1 - c_P$$
, $c_{P \land Q} = c_P \cdot c_Q$

• For
$$Q(z, \vec{x}) = (\forall y \le z) R(y, \vec{x}), c_Q(z, \vec{x}) = \prod_{y \le z} c_R(y, \vec{x})$$

• A relation $R \subseteq \mathbb{N}^k$ is primitive recursive if its characteristic function c_R is primitive recursive

• iszero

$$iszero(0) = true \qquad c_{iszero}(0) = succ(\Pi_1^1(0))$$
$$iszero(n+1) = false \qquad c_{iszero}(n+1) = Z(n)$$

•
$$x \le y$$
 iff $iszero(x - y)$, so $c_{\le}(x, y) = c_{iszero}(x - y)$

•
$$c_{\neg P} = 1 - c_P$$
, $c_{P \land Q} = c_P \cdot c_Q$

- For $Q(z, \vec{x}) = (\forall y \le z) R(y, \vec{x}), c_Q(z, \vec{x}) = \prod_{y \le z} c_R(y, \vec{x})$
- $x = y, x < y, P \lor Q, P \to Q, (\exists y \le z) R(y, \vec{x})$ etc. obtained easily

Suresh

PLC 2021: Lecture 19

• If $R(y, \vec{x})$ is a relation, $\mu y. R(y, \vec{x}) = \mu y. (1 - c_R(y, \vec{x}) = 0)$

- If $R(y, \vec{x})$ is a relation, $\mu y.R(y, \vec{x}) = \mu y.(1 c_R(y, \vec{x}) = 0)$
- Bounded *µ*-recursion

$$\mu y_{\leq z} R(y, \vec{x}) = \begin{cases} \mu y. R(y, \vec{x}) & \text{if } (\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text{otherwise} \end{cases}$$

- If $R(y, \vec{x})$ is a relation, $\mu y.R(y, \vec{x}) = \mu y.(1 c_R(y, \vec{x}) = 0)$
- Bounded *µ*-recursion

$$\mu y_{\leq z} R(y, \vec{x}) = \begin{cases} \mu y. R(y, \vec{x}) & \text{if } (\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text{otherwise} \end{cases}$$

• Let $Q'(y, \vec{x})$ be $(\forall w \le y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \land Q'(y, \vec{x})$

- If $R(y, \vec{x})$ is a relation, $\mu y.R(y, \vec{x}) = \mu y.(1 c_R(y, \vec{x}) = 0)$
- Bounded *µ*-recursion

$$\mu y_{\leq z} R(y, \vec{x}) = \begin{cases} \mu y. R(y, \vec{x}) & \text{if } (\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text{otherwise} \end{cases}$$

- Let $Q'(y, \vec{x})$ be $(\forall w \le y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \land Q'(y, \vec{x})$
 - If *R* is primitive recursive, so are Q' and Q

- If $R(y, \vec{x})$ is a relation, $\mu y.R(y, \vec{x}) = \mu y.(1 c_R(y, \vec{x}) = 0)$
- Bounded *µ*-recursion

$$\mu y_{\leq z} R(y, \vec{x}) = \begin{cases} \mu y. R(y, \vec{x}) & \text{if } (\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text{otherwise} \end{cases}$$

- Let $Q'(y, \vec{x})$ be $(\forall w \le y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \land Q'(y, \vec{x})$
 - If R is primitive recursive, so are Q' and Q

•
$$\mu y_{\leq z} R(y, \vec{x}) = \sum_{y \leq z} y \cdot c_Q(y, \vec{x}) + (z+1) \cdot c_{Q'}(y, \vec{x})$$

• x divides y

x|y iff $(\exists z \le y) (x \cdot z = y)$

• x divides y

 $x|y \text{ iff } (\exists z \le y) (x \cdot z = y)$

• x is even

even(x) iff 2|x

• x divides y

 $x|y \text{ iff } (\exists z \le y) (x \cdot z = y)$

• x is even

even(x) iff 2|x

• x is odd

odd(x) iff $\neg even(x)$

• x divides y

 $x|y \text{ iff } (\exists z \le y) (x \cdot z = y)$

• x is even

even(x) iff 2|x

• x is odd

odd(x) iff $\neg even(x)$

• x is a prime

prime(x) iff $x \ge 2 \land (\forall y \le x)(y | x \to y = 1 \lor y = x)$

Suresh

PLC 2021: Lecture 19

• the *n*-th prime

Pr(0) = 2 Pr(n+1) = the smallest prime greater than Pr(n) $= \mu y_{\leq Pr(n)!+1} (prime(y) \land y > Pr(n))$

• the *n*-th prime

Pr(0) = 2 Pr(n+1) = the smallest prime greater than Pr(n) $= \mu y_{\leq Pr(n)!+1} (prime(y) \land y > Pr(n))$

• The (very loose) bound is guaranteed by Euclid's proof

More primitive recursion ...

• the *n*-th prime

Pr(0) = 2 Pr(n+1) = the smallest prime greater than Pr(n) $= \mu y_{\leq Pr(n)!+1} (prime(y) \land y > Pr(n))$

- The (very loose) bound is guaranteed by Euclid's proof
- the exponent of (the prime) k in the decomposition of y

$$exp(y,k) = \mu x_{\leq y} \left[k^{x} | y \land \neg (k^{x+1} | y) \right]$$

•
$$\frac{x}{2} = \mu y_{\leq x} (2y \geq x)$$

- $\frac{x}{2} = \mu y_{\leq x} (2y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$pair(x, y) = \frac{(x+y)^2 + 3x + y}{2}$$

- $\frac{x}{2} = \mu y_{\leq x} (2y \geq x)$
- Primitive recursive bijection between $\mathbb{N}\times\mathbb{N}$ and \mathbb{N} is given by

$$pair(x, y) = \frac{(x+y)^2 + 3x + y}{2}$$

• The inverses are also primitive recursive

- $\frac{x}{2} = \mu y_{\leq x} (2y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$pair(x, y) = \frac{(x+y)^2 + 3x + y}{2}$$

- The inverses are also primitive recursive
- $fst(z) = \mu x_{\leq z} \left[(\exists y \leq z)(z = pair(x, y)) \right]$

- $\frac{x}{2} = \mu y_{\leq x} (2y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$pair(x, y) = \frac{(x+y)^2 + 3x + y}{2}$$

- The inverses are also primitive recursive
- $fst(z) = \mu x_{\leq z} [(\exists y \leq z)(z = pair(x, y))]$
- $snd(z) = \mu y_{\leq z} \left[(\exists x \leq z)(z = pair(x, y)) \right]$

• The sequence x_1, \ldots, x_n (of length *n*) is coded by

 $Pr(0)^n \cdot Pr(1)^{x_1} \cdot Pr(2)^{x_2} \cdots Pr(n)^{x_n}$

• The sequence x_1, \ldots, x_n (of length *n*) is coded by

 $Pr(0)^n \cdot Pr(1)^{x_1} \cdot Pr(2)^{x_2} \cdots Pr(n)^{x_n}$

• *n*-th element of the sequence coded by *x*

 $(x)_n = exp(x, Pr(n))$

• The sequence x_1, \ldots, x_n (of length *n*) is coded by

 $Pr(0)^n \cdot Pr(1)^{x_1} \cdot Pr(2)^{x_2} \cdots Pr(n)^{x_n}$

• *n*-th element of the sequence coded by *x*

 $(x)_n = exp(x, Pr(n))$

• length of sequence coded by x

 $ln(x) = (x)_0$

• The sequence x_1, \ldots, x_n (of length *n*) is coded by

 $Pr(0)^n \cdot Pr(1)^{x_1} \cdot Pr(2)^{x_2} \cdots Pr(n)^{x_n}$

• *n*-th element of the sequence coded by *x*

 $(x)_n = exp(x, Pr(n))$

• length of sequence coded by x

 $ln(x) = (x)_0$

• *x* is a sequence number, i.e. codes a sequence

Suresh Seq(x) iff $(\forall n \leq x_1) \in [a_n, a_n \in a_n, b_n] \to n \leq ln(x_1) = ln(x$

A (two-way infinite, non-deterministic) turing machine M is given by

• a finite set of states $Q = \{q_0, q_1, \dots, q_l\}$

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q = \{q_0, q_1, \dots, q_l\}$
- q_0 is the initial state and q_1 is the final state

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q = \{q_0, q_1, \dots, q_l\}$
- q_0 is the initial state and q_1 is the final state
- The tape alphabet is $\{0, 1\}$

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q = \{q_0, q_1, \dots, q_l\}$
- q_0 is the initial state and q_1 is the final state
- The tape alphabet is $\{0, 1\}$
- a finite set of transitions of the form

$$(q_i, a) \longrightarrow (q_j, b, d)$$

where $i, j \le l, a, b \in \{0, 1\}, d \in \{L, R\}$

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q = \{q_0, q_1, \dots, q_l\}$
- q_0 is the initial state and q_1 is the final state
- The tape alphabet is $\{0, 1\}$
- a finite set of transitions of the form

$$(q_i, a) \longrightarrow (q_j, b, d)$$

where $i, j \le l, a, b \in \{0, 1\}, d \in \{L, R\}$

• Meaning: The machine, in state q_i and reading symbol a on the tape, switches to state q_j , overwriting the tape cell with the symbol b, and moves in direction specified by d (either left or right)

Suresh

PLC 2021: Lecture 19

- Initial configuration
 - Machine is in state q_0

- Machine is in state q_0
- The tape only has 0's to the right of the head

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

• Machine is in state q_1

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

- Machine is in state q_1
- The tape only has 0's to the right of the head

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 up to the head is the output in binary

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 up to the head is the output in binary
- Any configuration

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 up to the head is the output in binary

• Any configuration

• Machine is in state q_i , with $0 \le i \le l$

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 up to the head is the output in binary

• Any configuration

- Machine is in state q_i , with $0 \le i \le l$
- There are only finitely many 1's on the tape

• Initial configuration

- Machine is in state q_0
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

• Final configuration

- Machine is in state q_1
- The tape only has 0's to the right of the head
- There are finitely many 1's to the left of the head
- The tape contents from the leftmost 1 up to the head is the output in binary
- Any configuration
 - Machine is in state q_i , with $0 \le i \le l$
 - There are only finitely many 1's on the tape

• Inputs and outputs are odd numbers: $\frac{f(2m+1)-1}{2}$

Suresh

PLC 2021: Lecture 19

• A configuration is given by *pair*(*i*, *pair*(*x*, *y*))

- A configuration is given by *pair*(*i*, *pair*(*x*, *y*))
 - q_i is the state

- A configuration is given by *pair*(*i*, *pair*(*x*, *y*))
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*

- A configuration is given by *pair*(*i*, *pair*(*x*, *y*))
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*

- A configuration is given by *pair*(*i*, *pair*(*x*, *y*))
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)

- A configuration is given by *pair(i, pair(x, y))*
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)
- tape contents to the left: left(n) = fst(snd(n))

- A configuration is given by *pair(i, pair(x, y))*
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)
- tape contents to the left: left(n) = fst(snd(n))
- tape contents to the right: right(n) = snd(snd(n))

Coding configurations

- A configuration is given by *pair(i, pair(x, y))*
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)
- tape contents to the left: left(n) = fst(snd(n))
- tape contents to the right: right(n) = snd(snd(n))
- *n* codes up a configuration: $config(n) \Leftrightarrow 0 \leq state(n) \leq l$

Coding configurations

- A configuration is given by *pair(i, pair(x, y))*
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)
- tape contents to the left: left(n) = fst(snd(n))
- tape contents to the right: right(n) = snd(snd(n))
- *n* codes up a configuration: $config(n) \Leftrightarrow 0 \leq state(n) \leq l$
- *n* is an initial configuration: *initial*(*n*) \Leftrightarrow *state*(*n*) = 0 \land *right*(*n*) = 0

Coding configurations

- A configuration is given by *pair(i, pair(x, y))*
 - q_i is the state
 - the tape contents to the left of (and upto) the head is the binary representation of *x*
 - the **reverse** of the tape contents strictly to the right of the head is the binary representation of *y*
- state of a configuration: state(n) = fst(n)
- tape contents to the left: left(n) = fst(snd(n))
- tape contents to the right: right(n) = snd(snd(n))
- *n* codes up a configuration: $config(n) \Leftrightarrow 0 \leq state(n) \leq l$
- *n* is an initial configuration: $initial(n) \Leftrightarrow state(n) = 0 \land right(n) = 0$
- *n* is a final configuration: $final(n) \Leftrightarrow state(n) = 1 \land right(n) = 0$ Suresh PLC 2021: Lecture 19 Marc

• Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 4 and i' = 8

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 4 and i' = 8
 - rightmost bit of *l* is 0, i.e. *even*(*l*) holds

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 4 and i' = 8
 - rightmost bit of *l* is 0, i.e. *even*(*l*) holds
 - l' is got by dropping the last bit of l, .i.e. $l' = \frac{l}{2}$

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 4 and i' = 8
 - rightmost bit of *l* is 0, i.e. *even*(*l*) holds
 - *l'* is got by dropping the last bit of *l*, .i.e. $l' = \frac{l}{2}$
 - r' acquires a new rightmost bit, which is 1, i.e. r' = 2r + 1

- Suppose t is the transition $(q_4, 0) \longrightarrow (q_8, 1, L)$
- We define the primitive recursive predicate $step_t(c, c')$
 - Meaning: *t* can be fired in configuration *c*, yielding *c*'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 4 and i' = 8
 - rightmost bit of *l* is 0, i.e. *even*(*l*) holds
 - *l'* is got by dropping the last bit of *l*, .i.e. $l' = \frac{l}{2}$
 - r' acquires a new rightmost bit, which is 1, i.e. r' = 2r + 1
- $step_t(c, c') \iff config(c) \land config(c') \land state(c) = 4 \land state(c') = 8 \land$ $even(left(c)) \land 2 \cdot left(c') = left(c) \land$ $right(c') = 2 \cdot right(c) + 1$

• Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: *t* ′ can be fired in configuration *c*, yielding *c* ′
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2
 - rightmost bit of *l* is 1, i.e. *odd*(*l*) holds

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2
 - rightmost bit of *l* is 1, i.e. *odd*(*l*) holds
 - Let *b* be the rightmost bit of *r*, i.e. $b = c_{odd}(r)$

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2
 - rightmost bit of *l* is 1, i.e. *odd*(*l*) holds
 - Let *b* be the rightmost bit of *r*, i.e. $b = c_{odd}(r)$
 - l' acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0, i.e. l' = 2(l-1) + b

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2
 - rightmost bit of *l* is 1, i.e. *odd*(*l*) holds
 - Let *b* be the rightmost bit of *r*, i.e. $b = c_{odd}(r)$
 - l' acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0, i.e. l' = 2(l-1) + b
 - r' is got by dropping the rightmost bit of r i.e. $r' = \frac{r}{2}$

- Suppose t' is the transition $(q_7, 1) \longrightarrow (q_2, 0, R)$
- We define the primitive recursive predicate $step_{t'}(c, c')$
 - Meaning: t' can be fired in configuration c, yielding c'
- If we let c = (i, (l, r)) and c' = (i', (l', r'))
 - i = 7 and i' = 2
 - rightmost bit of *l* is 1, i.e. odd(*l*) holds
 - Let *b* be the rightmost bit of *r*, i.e. $b = c_{odd}(r)$
 - l' acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0, i.e. l' = 2(l-1) + b
 - r' is got by dropping the rightmost bit of r i.e. $r' = \frac{r}{2}$

• $step_{t'}(c, c') \iff config(c) \land config(c') \land state(c) = 7 \land state(c') = 2 \land odd(left(c)) \land left(c') = 2(left(c) - 1) + c_{odd}(right(c)) \land 2 \cdot right(c') = right(c)$

Suresh

PLC 2021: Lecture 19

• $step_M(c,c') \Leftrightarrow \bigvee_{t \in T} step_t(c,c')$, where T is the set of all transitions of M

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$
 - c_k is a final configuration, with the output recoverable as $left(c_k)$

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$
 - c_k is a final configuration, with the output recoverable as $left(c_k)$
 - for all i < k, $step_M(c_i, c_{i+1})$ holds

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$
 - c_k is a final configuration, with the output recoverable as $left(c_k)$
 - for all i < k, $step_M(c_i, c_{i+1})$ holds
- r codes up a terminating run of M of length k on input m

 $\begin{aligned} run_{M}(m,r,k) &\iff Seq(r) \wedge ln(r) = k \wedge \\ initial((r)_{1}) \wedge left((r)_{1}) = m \wedge final((r)_{k}) \wedge \\ (\forall i < k)[step_{M}((r)_{i},(r)_{i+1})] \end{aligned}$

- $step_M(c, c') \Leftrightarrow \bigvee_{t \in T} step_t(c, c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$
 - c_k is a final configuration, with the output recoverable as $left(c_k)$
 - for all i < k, $step_M(c_i, c_{i+1})$ holds
- r codes up a terminating run of M of length k on input m

 $\begin{aligned} run_{M}(m,r,k) &\iff Seq(r) \wedge ln(r) = k \wedge \\ initial((r)_{1}) \wedge left((r)_{1}) = m \wedge final((r)_{k}) \wedge \\ (\forall i < k)[step_{M}((r)_{i},(r)_{i+1})] \end{aligned}$

• If *r* is a run and *k* is the length of *r*, $output = left((r)_k)$

- $step_M(c,c') \Leftrightarrow \bigvee_{t \in T} step_t(c,c')$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_1, \ldots, c_k
 - c_1 is an initial configuration with $left(c_1) = m$
 - c_k is a final configuration, with the output recoverable as $left(c_k)$
 - for all i < k, $step_M(c_i, c_{i+1})$ holds
- *r* codes up a terminating run of *M* of length *k* on input *m*

 $\begin{aligned} run_{M}(m,r,k) &\iff Seq(r) \wedge ln(r) = k \wedge \\ initial((r)_{1}) \wedge left((r)_{1}) = m \wedge final((r)_{k}) \wedge \\ (\forall i < k)[step_{M}((r)_{i},(r)_{i+1})] \end{aligned}$

- If *r* is a run and *k* is the length of *r*, $output = left((r)_k)$
- If n = pair(r, k), result(n) = output(fst(n), snd(n))

Suresh

PLC 2021: Lecture 19

• Suppose a function f is computed by a Turing machine M

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}$, f(m) can be recovered as follows

 $f(m) = result[\mu n.run_M(m, fst(n), snd(n))]$

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}$, f(m) can be recovered as follows

 $f(m) = result [\mu n.run_M(m, fst(n), snd(n))]$

Theorem (Kleene's normal form theorem)

Every recursive function $f: \mathbb{N}^k \to \mathbb{N}$ can be expressed as

 $f(\vec{n}) = h(\mu n.g(n,\vec{n}))$

where g and h are primitive recursive

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}$, f(m) can be recovered as follows

 $f(m) = result[\mu n.run_M(m, fst(n), snd(n))]$

Theorem (Kleene's normal form theorem)

Every recursive function $f: \mathbb{N}^k \to \mathbb{N}$ can be expressed as

 $f(\vec{n}) = h(\mu n.g(n,\vec{n}))$

where g and h are primitive recursive

Proof.

Translate f to a Turing machine (via programs involving for and while loops), and then translate back using the above coding of runs

Suresh

PLC 2021: Lecture 19