Programming Language Concepts: Lecture 19

S P Suresh

March 24, 2021

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

- Further if $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \stackrel{*}{\longrightarrow}_{\beta}[m]$ for any m, then $m=f\left(n_{1}, \ldots, n_{k}\right)$

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

- Further if $[f]\left[n_{1}\right] \cdots\left[n_{k}\right]{ }^{*}{ }_{\beta}[m]$ for any m, then $m=f\left(n_{1}, \ldots, n_{k}\right)$
- A consequence of the Church-Rosser theorem

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

- Further if $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}[m]$ for any m, then $m=f\left(n_{1}, \ldots, n_{k}\right)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ-calculus

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

- Further if $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}[m]$ for any m, then $m=f\left(n_{1}, \ldots, n_{k}\right)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ-calculus
- What functions are recursive? ...

The extent of recursive functions

- For every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ there is a λ-calculus expression $[f]$ such that

$$
[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right] \text { for all } n_{1}, \ldots, n_{k} \in \mathbb{N}
$$

- Further if $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}[m]$ for any m, then $m=f\left(n_{1}, \ldots, n_{k}\right)$
- A consequence of the Church-Rosser theorem
- Thus all recursive functions can be expressed in the λ-calculus
- What functions are recursive? ...
- Exactly the Turing computable functions!

Recursive functions are computable

- We write programs for every recursive function

Recursive functions are computable

- We write programs for every recursive function
- Initial functions: Trivial programs

Recursive functions are computable

- We write programs for every recursive function
- Initial functions: Trivial programs
- Composition: If $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined by $f=g \circ\left(h_{1}, \ldots, h_{l}\right)$

$$
\begin{aligned}
& \text { function } f(x 1, x 2, \ldots, x k)\{ \\
& \quad y 1=h 1(x 1, x 2, \ldots, x k) ; \\
& y 2=h 2(x 1, x 2, \ldots, x k) ; \\
& \ldots \\
& \quad y l=h l(x l, x 2, \ldots, x k) ; \\
& \text { return } g(y l, y 2, \ldots, y l) ;
\end{aligned}
$$

Recursive functions are computable

- Primitive recursion Suppose $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is defined from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ by

$$
\begin{array}{ll}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{array}
$$

Recursive functions are computable

- Primitive recursion Suppose $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is defined from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ by

$$
\begin{array}{ll}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{array}
$$

- Equivalent to computing a for loop:

```
result = g(nl, ..., nk); // f(0, nl, ..., nk)
for (i = 0; i < n; i++) { // computing f(i+l, nl, ..., nk)
    result = h(i, result, nl, ..., nk);
}
return result;
```


Recursive functions are computable

- μ-recursion Suppose $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ by

$$
f(\vec{n})= \begin{cases}j & \text { if } g(j, \vec{n})=0 \text { and } \forall i<j: g(i, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Recursive functions are computable

- μ-recursion Suppose $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is defined from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ by

$$
f(\vec{n})= \begin{cases}j & \text { if } g(j, \vec{n})=0 \text { and } \forall i<j: g(i, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Equivalent to computing a while loop:

$$
\begin{aligned}
& i=0 ; \\
& \text { while }(g(i, n l, \ldots, n k)>0)\{i=i+l ;\} \\
& \text { return } i ;
\end{aligned}
$$

Some primitive recursive functions

- Predecessor

$$
\begin{gathered}
\operatorname{pred}(0)=Z(0)=0 \\
\operatorname{pred}(n+1)=\Pi_{1}^{2}(n, \operatorname{pred}(n))=n
\end{gathered}
$$

Some primitive recursive functions

- Predecessor

$$
\begin{gathered}
\operatorname{pred}(0)=Z(0)=0 \\
\operatorname{pred}(n+1)=\Pi_{1}^{2}(n, \operatorname{pred}(n))=n
\end{gathered}
$$

- Integer difference

$$
\begin{aligned}
x-0 & =x \\
x-(y+1) & =\operatorname{pred}(x-y)
\end{aligned}
$$

Some primitive recursive functions

- Predecessor

$$
\begin{gathered}
\operatorname{pred}(0)=Z(0)=0 \\
\operatorname{pred}(n+1)=\Pi_{1}^{2}(n, \operatorname{pred}(n))=n
\end{gathered}
$$

- Integer difference

$$
\begin{aligned}
x-0 & =x \\
x-(y+1) & =\operatorname{pred}(x-y)
\end{aligned}
$$

- Factorial

$$
0!=1
$$

Some primitive recursive functions

- Bounded sums $g(z, \vec{x})=\sum_{y \leq z} f(y, \vec{x})$

$$
\begin{aligned}
g(0, \vec{x}) & =f(0, \vec{x}) \\
g(y+1, \vec{x}) & =g(y, \vec{x})+f(y+1, \vec{x})
\end{aligned}
$$

Some primitive recursive functions

- Bounded sums $g(z, \vec{x})=\sum_{y \leq z} f(y, \vec{x})$

$$
\begin{aligned}
g(0, \vec{x}) & =f(0, \vec{x}) \\
g(y+1, \vec{x}) & =g(y, \vec{x})+f(y+1, \vec{x})
\end{aligned}
$$

- Bounded products $g(z, \vec{x})=\prod_{y \leq z} f(y, \vec{x})$

$$
\begin{aligned}
g(0, \vec{x}) & =f(0, \vec{x}) \\
g(y+1, \vec{x}) & =g(y, \vec{x}) \cdot f(y+1, \vec{x})
\end{aligned}
$$

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive
- iszero

$$
\begin{aligned}
\text { iszero }(0) & =\text { true } & c_{\text {iszero }}(0) & =\operatorname{succ}\left(\Pi_{1}^{1}(0)\right) \\
\text { iszero }(n+1) & =\text { false } & c_{\text {issero }}(n+1) & =Z(n)
\end{aligned}
$$

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive
- iszero

$$
\begin{aligned}
\text { iszero }(0) & =\text { true } & c_{\text {iszero }}(0) & =\operatorname{succ}\left(\Pi_{1}^{1}(0)\right) \\
\text { iszero }(n+1) & =\text { false } & c_{\text {iszero }}(n+1) & =Z(n)
\end{aligned}
$$

- $x \leq y \operatorname{iff} \operatorname{iszero}(x-y)$, so $c_{\leq}(x, y)=c_{\text {iszero }}(x-y)$

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive
- iszero

$$
\begin{aligned}
\text { iszero }(0) & =\text { true } & c_{\text {iszero }}(0) & =\operatorname{succ}\left(\Pi_{1}^{1}(0)\right) \\
\text { iszero }(n+1) & =\text { false } & c_{\text {iszero }}(n+1) & =Z(n)
\end{aligned}
$$

- $x \leq y \operatorname{iff} \operatorname{iszero}(x-y)$, so $c_{\leq}(x, y)=c_{\text {iszero }}(x-y)$
- $c_{\neg P}=1-c_{P}, c_{P \wedge Q}=c_{P} \cdot c_{Q}$

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive
- iszero

$$
\begin{aligned}
\text { iszero }(0) & =\text { true } & c_{\text {iszero }}(0) & =\operatorname{succ}\left(\Pi_{1}^{1}(0)\right) \\
\text { iszero }(n+1) & =\text { false } & c_{\text {iszero }}(n+1) & =Z(n)
\end{aligned}
$$

- $x \leq y \operatorname{iff} \operatorname{iszero}(x-y)$, so $c_{\leq}(x, y)=c_{\text {issero }}(x-y)$
- $c_{\neg P}=1-c_{P}, c_{P \wedge Q}=c_{P} \cdot c_{Q}$
- For $Q(z, \vec{x})=(\forall y \leq z) R(y, \vec{x}), c_{Q}(z, \vec{x})=\prod_{y \leq z} c_{R}(y, \vec{x})$

Primitive recursive relations

- A relation $R \subseteq \mathbb{N}^{k}$ is primitive recursive if its characteristic function c_{R} is primitive recursive
- iszero

$$
\begin{aligned}
\text { iszero }(0) & =\text { true } & c_{\text {iszero }}(0) & =\operatorname{succ}\left(\Pi_{1}^{1}(0)\right) \\
\text { iszero }(n+1) & =\text { false } & c_{\text {iszero }}(n+1) & =Z(n)
\end{aligned}
$$

- $x \leq y \operatorname{iff} \operatorname{iszero}(x-y)$, so $c_{\leq}(x, y)=c_{\text {iszero }}(x-y)$
- $c_{\neg P}=1-c_{P}, c_{P \wedge Q}=c_{P} \cdot c_{Q}$
- For $Q(z, \vec{x})=(\forall y \leq z) R(y, \vec{x}), c_{Q}(z, \vec{x})=\prod_{y \leq z} c_{R}(y, \vec{x})$
- $x=y, x<y, P \vee Q, P \rightarrow Q,(\exists y \leq z) R(y, \vec{x})$ etc. obtained easily

More primitive recursion ...

- If $R(y, \vec{x})$ is a relation, $\mu y \cdot R(y, \vec{x})=\mu y \cdot\left(1-c_{R}(y, \vec{x})=0\right)$

More primitive recursion ...

- If $R(y, \vec{x})$ is a relation, $\mu y \cdot R(y, \vec{x})=\mu y \cdot\left(1-c_{R}(y, \vec{x})=0\right)$
- Bounded μ-recursion

$$
\mu y_{\leq z} R(y, \vec{x})= \begin{cases}\mu y \cdot R(y, \vec{x}) & \text { if }(\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text { otherwise }\end{cases}
$$

More primitive recursion ...

- If $R(y, \vec{x})$ is a relation, $\mu y \cdot R(y, \vec{x})=\mu y \cdot\left(1-c_{R}(y, \vec{x})=0\right)$
- Bounded μ-recursion

$$
\mu y_{\leq z} R(y, \vec{x})= \begin{cases}\mu y \cdot R(y, \vec{x}) & \text { if }(\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text { otherwise }\end{cases}
$$

- Let $Q^{\prime}(y, \vec{x})$ be $(\forall w \leq y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \wedge Q^{\prime}(y, \vec{x})$

More primitive recursion ...

- If $R(y, \vec{x})$ is a relation, $\mu y \cdot R(y, \vec{x})=\mu y \cdot\left(1-c_{R}(y, \vec{x})=0\right)$
- Bounded μ-recursion

$$
\mu y_{\leq z} R(y, \vec{x})= \begin{cases}\mu y \cdot R(y, \vec{x}) & \text { if }(\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text { otherwise }\end{cases}
$$

- Let $Q^{\prime}(y, \vec{x})$ be $(\forall w \leq y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \wedge Q^{\prime}(y, \vec{x})$
- If R is primitive recursive, so are Q^{\prime} and Q

More primitive recursion ...

- If $R(y, \vec{x})$ is a relation, $\mu y \cdot R(y, \vec{x})=\mu y \cdot\left(1-c_{R}(y, \vec{x})=0\right)$
- Bounded μ-recursion

$$
\mu y_{\leq z} R(y, \vec{x})= \begin{cases}\mu y \cdot R(y, \vec{x}) & \text { if }(\exists y \leq z) R(y, \vec{x}) \\ z+1 & \text { otherwise }\end{cases}
$$

- Let $Q^{\prime}(y, \vec{x})$ be $(\forall w \leq y) \neg R(w, \vec{x})$ and $Q(y, \vec{x})$ be $R(y, \vec{x}) \wedge Q^{\prime}(y, \vec{x})$
- If R is primitive recursive, so are Q^{\prime} and Q
- $\mu y_{\leq z} R(y, \vec{x})=\sum_{y \leq z} y \cdot c_{Q}(y, \vec{x})+(z+1) \cdot c_{Q^{\prime}}(y, \vec{x})$

More primitive recursion ...

- x divides y

$$
x \mid y \text { iff }(\exists z \leq y)(x \cdot z=y)
$$

More primitive recursion ...

- x divides y

$$
x \mid y \text { iff }(\exists z \leq y)(x \cdot z=y)
$$

- x is even

$$
\operatorname{even}(x) \text { iff } 2 \mid x
$$

More primitive recursion ...

- x divides y

$$
x \mid y \text { iff }(\exists z \leq y)(x \cdot z=y)
$$

- x is even

$$
\operatorname{even}(x) \text { iff } 2 \mid x
$$

- x is odd

$$
\operatorname{odd}(x) \text { iff } \neg \text { even }(x)
$$

More primitive recursion ...

- x divides y

$$
x \mid y \text { iff }(\exists z \leq y)(x \cdot z=y)
$$

- x is even

$$
\operatorname{even}(x) \text { iff } 2 \mid x
$$

- x is odd

$$
\operatorname{odd}(x) \text { iff } \neg \operatorname{even}(x)
$$

- x is a prime

$$
\operatorname{prime}(x) \text { iff } x \geq 2 \wedge(\forall y \leq x)(y \mid x \rightarrow y=1 \vee y=x)
$$

More primitive recursion ...

- the n-th prime

$$
\begin{aligned}
\operatorname{Pr}(0) & =2 \\
\operatorname{Pr}(n+1) & =\text { the smallest prime greater than } \operatorname{Pr}(n) \\
& =\mu y_{\leq \operatorname{Pr}(n)!+1}(\operatorname{prime}(y) \wedge y>\operatorname{Pr}(n))
\end{aligned}
$$

More primitive recursion ...

- the n-th prime

$$
\begin{aligned}
\operatorname{Pr}(0) & =2 \\
\operatorname{Pr}(n+1) & =\text { the smallest prime greater than } \operatorname{Pr}(n) \\
& =\mu y_{\leq \operatorname{Pr}(n)!+1}(\operatorname{prime}(y) \wedge y>\operatorname{Pr}(n))
\end{aligned}
$$

- The (very loose) bound is guaranteed by Euclid's proof

More primitive recursion ...

- the n-th prime

$$
\begin{aligned}
\operatorname{Pr}(0) & =2 \\
\operatorname{Pr}(n+1) & =\text { the smallest prime greater than } \operatorname{Pr}(n) \\
& =\mu y_{\leq \operatorname{Pr}(n)!+1}(\operatorname{prime}(y) \wedge y>\operatorname{Pr}(n))
\end{aligned}
$$

- The (very loose) bound is guaranteed by Euclid's proof
- the exponent of (the prime) k in the decomposition of y

$$
\exp (y, k)=\mu x_{\leq y}\left[k^{x} \mid y \wedge \neg\left(k^{x+1} \mid y\right)\right]
$$

Primitive recursive coding of the plane

- $\frac{x}{2}=\mu y_{\leq x}(2 y \geq x)$

Primitive recursive coding of the plane

- $\frac{x}{2}=\mu y_{\leq x}(2 y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$
\operatorname{pair}(x, y)=\frac{(x+y)^{2}+3 x+y}{2}
$$

Primitive recursive coding of the plane

- $\frac{x}{2}=\mu y_{\leq x}(2 y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$
\operatorname{pair}(x, y)=\frac{(x+y)^{2}+3 x+y}{2}
$$

- The inverses are also primitive recursive

Primitive recursive coding of the plane

- $\frac{x}{2}=\mu y_{\leq x}(2 y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$
\operatorname{pair}(x, y)=\frac{(x+y)^{2}+3 x+y}{2}
$$

- The inverses are also primitive recursive
- $f_{s t}(z)=\mu x_{\leq z}[(\exists y \leq z)(z=\operatorname{pair}(x, y))]$

Primitive recursive coding of the plane

- $\frac{x}{2}=\mu y_{\leq x}(2 y \geq x)$
- Primitive recursive bijection between $\mathbb{N} \times \mathbb{N}$ and \mathbb{N} is given by

$$
\operatorname{pair}(x, y)=\frac{(x+y)^{2}+3 x+y}{2}
$$

- The inverses are also primitive recursive
- $f_{s t}(z)=\mu x_{\leq z}[(\exists y \leq z)(z=\operatorname{pair}(x, y))]$
- $\operatorname{snd}(z)=\mu y_{\leq z}[(\exists x \leq z)(z=\operatorname{pair}(x, y))]$

Primitive recursive coding of sequences

- The sequence x_{1}, \ldots, x_{n} (of length n) is coded by

$$
\operatorname{Pr}(0)^{n} \cdot \operatorname{Pr}(1)^{x_{1}} \cdot \operatorname{Pr}(2)^{x_{2}} \cdots \operatorname{Pr}(n)^{x_{n}}
$$

Primitive recursive coding of sequences

- The sequence x_{1}, \ldots, x_{n} (of length n) is coded by

$$
\operatorname{Pr}(0)^{n} \cdot \operatorname{Pr}(1)^{x_{1}} \cdot \operatorname{Pr}(2)^{x_{2}} \cdots \operatorname{Pr}(n)^{x_{n}}
$$

- n-th element of the sequence coded by x

$$
(x)_{n}=\exp (x, \operatorname{Pr}(n))
$$

Primitive recursive coding of sequences

- The sequence x_{1}, \ldots, x_{n} (of length n) is coded by

$$
\operatorname{Pr}(0)^{n} \cdot \operatorname{Pr}(1)^{x_{1}} \cdot \operatorname{Pr}(2)^{x_{2}} \cdots \operatorname{Pr}(n)^{x_{n}}
$$

- n-th element of the sequence coded by x

$$
(x)_{n}=\exp (x, \operatorname{Pr}(n))
$$

- length of sequence coded by x

$$
\ln (x)=(x)_{0}
$$

Primitive recursive coding of sequences

- The sequence x_{1}, \ldots, x_{n} (of length n) is coded by

$$
\operatorname{Pr}(0)^{n} \cdot \operatorname{Pr}(1)^{x_{1}} \cdot \operatorname{Pr}(2)^{x_{2}} \cdots \operatorname{Pr}(n)^{x_{n}}
$$

- n-th element of the sequence coded by x

$$
(x)_{n}=\exp (x, \operatorname{Pr}(n))
$$

- length of sequence coded by x

$$
\ln (x)=(x)_{0}
$$

- x is a sequence number, i.e. codes a sequence

$$
\operatorname{Seq}(x) \text { iff }\left(\forall n \leq x_{1}\right)\left[\left\{\left[\text { dan: Pecotare, }(x)_{n} \neq 0\right) \rightarrow n \leq \ln \left(x_{1}\right)\right]\right. \text {]ch 24, 2021 }
$$

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q=\left\{q_{0}, q_{1}, \ldots, q_{l}\right\}$

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q=\left\{q_{0}, q_{1}, \ldots, q_{l}\right\}$
- q_{0} is the initial state and q_{1} is the final state

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q=\left\{q_{0}, q_{1}, \ldots, q_{l}\right\}$
- q_{0} is the initial state and q_{1} is the final state
- The tape alphabet is $\{0,1\}$

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q=\left\{q_{0}, q_{1}, \ldots, q_{l}\right\}$
- q_{0} is the initial state and q_{1} is the final state
- The tape alphabet is $\{0,1\}$
- a finite set of transitions of the form

$$
\left(q_{i}, a\right) \longrightarrow\left(q_{j}, b, d\right)
$$

where $i, j \leq l, a, b \in\{0,1\}, d \in\{L, R\}$

Turing machines

A (two-way infinite, non-deterministic) turing machine M is given by

- a finite set of states $Q=\left\{q_{0}, q_{1}, \ldots, q_{l}\right\}$
- q_{0} is the initial state and q_{1} is the final state
- The tape alphabet is $\{0,1\}$
- a finite set of transitions of the form

$$
\left(q_{i}, a\right) \longrightarrow\left(q_{j}, b, d\right)
$$

where $i, j \leq l, a, b \in\{0,1\}, d \in\{L, R\}$

- Meaning: The machine, in state q_{i} and reading symbol a on the tape, switches to state q_{j}, overwriting the tape cell with the symbol b, and moves in direction specified by d (either left or right)

Turing machine: configurations

- Initial configuration

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head
- The tape contents from the leftmost 1 upto the head is the output in binary

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head
- The tape contents from the leftmost 1 upto the head is the output in binary
- Any configuration

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head
- The tape contents from the leftmost 1 upto the head is the output in binary
- Any configuration
- Machine is in state q_{i}, with $0 \leq i \leq l$

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many 1 's to the left of the head
- The tape contents from the leftmost 1 upto the head is the output in binary
- Any configuration
- Machine is in state q_{i}, with $0 \leq i \leq l$
- There are only finitely many 1 's on the tape

Turing machine: configurations

- Initial configuration
- Machine is in state q_{0}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the input in binary
- Final configuration
- Machine is in state q_{1}
- The tape only has 0's to the right of the head
- There are finitely many l's to the left of the head
- The tape contents from the leftmost 1 upto the head is the output in binary
- Any configuration
- Machine is in state q_{i}, with $0 \leq i \leq l$
- There are only finitely many 1 's on the tape
- Inputs and outputs are odd numbers: $\frac{f(2 m+1)-1}{2}$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$

Coding configurations

- A configuration is given by pair ($i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$
- tape contents to the left: left $(n)=f s t(\operatorname{snd}(n))$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$
- tape contents to the left: left $(n)=f s t(\operatorname{snd}(n))$
- tape contents to the right: $\operatorname{right}(n)=\operatorname{snd}(\operatorname{snd}(n))$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$
- tape contents to the left: left $(n)=f_{s t}(\operatorname{snd}(n))$
- tape contents to the right: $\operatorname{right}(n)=\operatorname{snd}(\operatorname{snd}(n))$
- n codes up a configuration: $\operatorname{config}(n) \Leftrightarrow 0 \leq \operatorname{state}(n) \leq l$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$
- tape contents to the left: left $(n)=f s t(\operatorname{snd}(n))$
- tape contents to the right: $\operatorname{right}(n)=\operatorname{snd}(\operatorname{snd}(n))$
- n codes up a configuration: $\operatorname{config}(n) \Leftrightarrow 0 \leq \operatorname{state}(n) \leq l$
- n is an initial configuration: $\operatorname{initial}(n) \Leftrightarrow \operatorname{state}(n)=0 \wedge \operatorname{right}(n)=0$

Coding configurations

- A configuration is given by pair $(i, \operatorname{pair}(x, y))$
- q_{i} is the state
- the tape contents to the left of (and upto) the head is the binary representation of x
- the reverse of the tape contents strictly to the right of the head is the binary representation of y
- state of a configuration: $\operatorname{state}(n)=f_{s t}(n)$
- tape contents to the left: left $(n)=f s t(\operatorname{snd}(n))$
- tape contents to the right: $\operatorname{right}(n)=\operatorname{snd}(\operatorname{snd}(n))$
- n codes up a configuration: $\operatorname{config}(n) \Leftrightarrow 0 \leq \operatorname{state}(n) \leq l$
- n is an initial configuration: $\operatorname{initial}(n) \Leftrightarrow \operatorname{state}(n)=0 \wedge \operatorname{right}(n)=0$
- n is a final configuration: $\operatorname{final}(n) \Leftrightarrow \operatorname{state}(n)=1 \wedge \operatorname{right}(n)=0$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=4$ and $i^{\prime}=8$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=4$ and $i^{\prime}=8$
- rightmost bit of l is 0 , i.e. even (l) holds

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=4$ and $i^{\prime}=8$
- rightmost bit of l is 0 , i.e. even (l) holds
- l^{\prime} is got by dropping the last bit of l, i.e. $l^{\prime}=\frac{l}{2}$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=4$ and $i^{\prime}=8$
- rightmost bit of l is 0 , i.e. even (l) holds
- l^{\prime} is got by dropping the last bit of l, i.e. $l^{\prime}=\frac{l}{2}$
- r^{\prime} acquires a new rightmost bit, which is 1 , i.e. $r^{\prime}=2 r+1$

Coding transitions

- Suppose t is the transition $\left(q_{4}, 0\right) \longrightarrow\left(q_{8}, 1, L\right)$
- We define the primitive recursive predicate step $_{t}\left(c, c^{\prime}\right)$
- Meaning: t can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=4$ and $i^{\prime}=8$
- rightmost bit of l is 0 , i.e. even (l) holds
- l^{\prime} is got by dropping the last bit of l, i.e. $l^{\prime}=\frac{l}{2}$
- r^{\prime} acquires a new rightmost bit, which is 1 , i.e. $r^{\prime}=2 r+1$
- $\operatorname{step}_{t}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{config}(c) \wedge \operatorname{config}\left(c^{\prime}\right) \wedge \operatorname{state}(c)=4 \wedge \operatorname{state}\left(c^{\prime}\right)=8 \wedge$ $\operatorname{even}(\operatorname{left}(c)) \wedge 2 \cdot \operatorname{left}\left(c^{\prime}\right)=\operatorname{left}(c) \wedge$ $\operatorname{right}\left(c^{\prime}\right)=2 \cdot \operatorname{right}(c)+1$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate $\operatorname{step}_{t^{\prime}}\left(c, c^{\prime}\right)$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $t_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $t_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $t^{\prime}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $t_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$
- rightmost bit of l is 1 , i.e. $\operatorname{odd}(l)$ holds

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$
- rightmost bit of l is 1 , i.e. $\operatorname{odd}(l)$ holds
- Let b be the rightmost bit of r, i.e. $b=c_{\text {odd }}(r)$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$
- rightmost bit of l is 1 , i.e. $\operatorname{odd}(l)$ holds
- Let b be the rightmost bit of r, i.e. $b=c_{\text {odd }}(r)$
- l^{\prime} acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0 , i.e. $l^{\prime}=2(l-1)+b$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate step $_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$
- rightmost bit of l is 1 , i.e. $\operatorname{odd}(l)$ holds
- Let b be the rightmost bit of r, i.e. $b=c_{\text {odd }}(r)$
- l^{\prime} acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0 , i.e. $l^{\prime}=2(l-1)+b$
- r^{\prime} is got by dropping the rightmost bit of r i.e. $r^{\prime}=\frac{r}{2}$

Coding transitions

- Suppose t^{\prime} is the transition $\left(q_{7}, 1\right) \longrightarrow\left(q_{2}, 0, R\right)$
- We define the primitive recursive predicate $\operatorname{step}_{t^{\prime}}\left(c, c^{\prime}\right)$
- Meaning: t^{\prime} can be fired in configuration c, yielding c^{\prime}
- If we let $c=(i,(l, r))$ and $c^{\prime}=\left(i^{\prime},\left(l^{\prime}, r^{\prime}\right)\right)$
- $i=7$ and $i^{\prime}=2$
- rightmost bit of l is 1 , i.e. $\operatorname{odd}(l)$ holds
- Let b be the rightmost bit of r, i.e. $b=c_{\text {odd }}(r)$
- l^{\prime} acquires b as its rightmost bit, and second bit from the right is changed from 1 to 0 , i.e. $l^{\prime}=2(l-1)+b$
- r^{\prime} is got by dropping the rightmost bit of r i.e. $r^{\prime}=\frac{r}{2}$
- $\operatorname{step}_{t^{\prime}}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{config}(c) \wedge \operatorname{config}\left(c^{\prime}\right) \wedge \operatorname{state}(c)=7 \wedge \operatorname{state}\left(c^{\prime}\right)=2 \wedge$

$$
\begin{aligned}
& \operatorname{odd}(\operatorname{left}(c)) \wedge \operatorname{left}\left(c^{\prime}\right)=2(\operatorname{left}(c)-1)+c_{o d d}(\operatorname{right}(c)) \wedge \\
& 2 \cdot \operatorname{right}\left(c^{\prime}\right)=\operatorname{right}(c)
\end{aligned}
$$

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \bigvee_{t \in T} \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow V_{t \in T} \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \bigvee_{t \in T} \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow V \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M $t \in T$
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$
- c_{k} is a final configuration, with the output recoverable as $\operatorname{left}\left(c_{k}\right)$

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M $t \in T$
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$
- c_{k} is a final configuration, with the output recoverable as $\operatorname{left}\left(c_{k}\right)$
- for all $i<k, \operatorname{step}_{M}\left(c_{i}, c_{i+1}\right)$ holds

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M $t \in T$
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$
- c_{k} is a final configuration, with the output recoverable as $\operatorname{left}\left(c_{k}\right)$
- for all $i<k, \operatorname{step}_{M}\left(c_{i}, c_{i+1}\right)$ holds
- r codes up a terminating run of M of length k on input m

$$
\begin{aligned}
\operatorname{run}_{M}(m, r, k) \Leftrightarrow \quad & \operatorname{Seq}(r) \wedge \ln (r)=k \wedge \\
& \operatorname{initial}\left((r)_{1}\right) \wedge \operatorname{left}\left((r)_{1}\right)=m \wedge \operatorname{final}\left((r)_{k}\right) \wedge \\
& (\forall i<k)\left[\operatorname{step}_{M}\left((r)_{i},(r)_{i+1}\right)\right]
\end{aligned}
$$

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M $t \in T$
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$
- c_{k} is a final configuration, with the output recoverable as $\operatorname{left}\left(c_{k}\right)$
- for all $i<k, \operatorname{step}_{M}\left(c_{i}, c_{i+1}\right)$ holds
- r codes up a terminating run of M of length k on input m

$$
\begin{aligned}
\operatorname{run}_{M}(m, r, k) \Leftrightarrow \quad & \operatorname{Seq}(r) \wedge \ln (r)=k \wedge \\
& \operatorname{initial}\left((r)_{1}\right) \wedge \operatorname{left}\left((r)_{1}\right)=m \wedge \operatorname{final}\left((r)_{k}\right) \wedge \\
& (\forall i<k)\left[\operatorname{step}_{M}\left((r)_{i},(r)_{i+1}\right)\right]
\end{aligned}
$$

- If r is a run and k is the length of r, output $=\operatorname{left}\left((r)_{k}\right)$

Coding transitions and runs

- $\operatorname{step}_{M}\left(c, c^{\prime}\right) \Leftrightarrow \operatorname{step}_{t}\left(c, c^{\prime}\right)$, where T is the set of all transitions of M $t \in T$
- A (terminating) run of M on input m is a sequence of configurations c_{1}, \ldots, c_{k}
- c_{1} is an initial configuration with $\operatorname{left}\left(c_{1}\right)=m$
- c_{k} is a final configuration, with the output recoverable as $\operatorname{left}\left(c_{k}\right)$
- for all $i<k, \operatorname{step}_{M}\left(c_{i}, c_{i+1}\right)$ holds
- r codes up a terminating run of M of length k on input m

$$
\begin{aligned}
\operatorname{run}_{M}(m, r, k) \Leftrightarrow \quad & \operatorname{Seq}(r) \wedge \ln (r)=k \wedge \\
& \operatorname{initial}\left((r)_{1}\right) \wedge \operatorname{left}\left((r)_{1}\right)=m \wedge \operatorname{final}\left((r)_{k}\right) \wedge \\
& (\forall i<k)\left[\operatorname{step}{ }_{M}\left((r)_{i},(r)_{i+1}\right)\right]
\end{aligned}
$$

- If r is a run and k is the length of r, output $=\operatorname{left}\left((r)_{k}\right)$
- If $n=\operatorname{pair}(r, k), \operatorname{result}(n)=\operatorname{output}(f s t(n), \operatorname{snd}(n))$

Turing computable functions are recursive

- Suppose a function f is computed by a Turing machine M

Turing computable functions are recursive

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}, f(m)$ can be recovered as follows

$$
f(m)=\operatorname{result}\left[\mu n \cdot r u n_{M}(m, f s t(n), \operatorname{snd}(n))\right]
$$

Turing computable functions are recursive

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}, f(m)$ can be recovered as follows

$$
f(m)=\operatorname{result}\left[\mu n \cdot r u n_{M}(m, f s t(n), \operatorname{snd}(n))\right]
$$

Theorem (Kleene's normal form theorem)
Every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ can be expressed as

$$
f(\vec{n})=h(\mu n \cdot g(n, \vec{n}))
$$

where g and h are primitive recursive

Turing computable functions are recursive

- Suppose a function f is computed by a Turing machine M
- For any $m \in \mathbb{N}, f(m)$ can be recovered as follows

$$
f(m)=\operatorname{result}\left[\mu n \cdot r u n_{M}(m, f s t(n), \operatorname{snd}(n))\right]
$$

Theorem (Kleene's normal form theorem)
Every recursive function $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ can be expressed as

$$
f(\vec{n})=h(\mu n \cdot g(n, \vec{n}))
$$

where g and h are primitive recursive
Proof.
Translate f to a Turing machine (via programs involving for and while loops), and then translate back using the above coding of runs

