Programming Language Concepts: Lecture 17

S P Suresh

March 15, 2021

Suresh PLC 2021: Lecture 17 March 15, 2021 1/16

Encoding arithmetic functions

o [n]=Afx.f"x

Suresh PLC 2021: Lecture 17 March 15, 2021 2/16

Encoding arithmetic functions

o [n]=Afx.f"x
® fx=f(f(-+-(fx)--)), where f is applied repeatedly » times

Suresh PLC 2021: Lecture 17 March 15, 2021 2/16

Encoding arithmetic functions

o [n]=Afx.f"x
® fx=f(f(-+-(fx)--)), where f is applied repeatedly » times

® Successor: [succ|=Apfx.f(pfx)

Suresh PLC 2021: Lecture 17 March 15, 2021 2/16

Encoding arithmetic functions
o [n]=Afx.f"x
® fx=f(f(-+-(fx)--)), where f is applied repeatedly » times
® Successor: [succ|=Apfx.f(pfx)
o Addivon: [plus]|=2pq fx.pf(qfx)

Suresh PLC 2021: Lecture 17 March 15, 2021 2/16

Encoding arithmetic functions
[n]=Afx.f"x
® fx=f(f(-+-(fx)--)), where f is applied repeatedly » times
Successor: [succ]=Apfx.f(pfx)
Additon: [plus]=2pqfx.pf(qfx)
Multplication: [mult]=2pq f.p(qf)

Suresh PLC 2021: Lecture 17 March 15, 2021

2/16

Encoding arithmetic functions

[n]=Afx.f"x
® fx=f(f(-+-(fx)--)), where f is applied repeatedly » times

Successor: [succ]=Apfx.f(pfx)
Additon: [plus]=2pqfx.pf(qfx)
Multplication: [mult]=2pq f.p(qf)
Exponentation: [exp] =2pq.pq

Suresh PLC 2021: Lecture 17 March 15, 2021

2/16

Computability

® Church numerals encode 7 e N

Suresh PLC 2021: Lecture 17 March 15, 2021 3/16

Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?

Suresh PLC 2021: Lecture 17 March 15, 2021 3/16

Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
® Let[/]be the encoding of f

Suresh PLC 2021: Lecture 17 March 15, 2021 3/16

Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
® Let[/]be the encoding of f
o Wewant [£][m] (]~ L (oo

Suresh PLC 2021: Lecture 17 March 15, 2021 3/16

Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
® Let[/]be the encoding of f
o We want [£][m] (]~ Lf (00 0)]

® We need a syntax for computable functions

Suresh PLC 2021: Lecture 17 March 15, 2021 3/16

Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

Suresh PLC 2021: Lecture 17 March 15, 2021 4/16

Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines

Suresh PLC 2021: Lecture 17 March 15, 2021 4/16

Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines

Definition
/:N¥ = N is obtained by composition from ¢ : N/ — N and
hysooos by :NF - Nif

Suresh PLC 2021: Lecture 17 March 15, 2021

4/16

Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines

Definition
/:N¥ = N is obtained by composition from ¢ : N/ — N and
hysooos by :NF - Nif

® Notation: f = go(hy,hy,..., h;)

Suresh PLC 2021: Lecture 17 March 15, 2021

4/16

Recursive functions

Definition
f :NF*1 5 N is obtained by primitive recursion from g : N¥ — N and
h:NH2 - Nif

f(0,7) = ¢(7)
FU+1,7) = h(i, f(i.7),7)

Suresh PLC 2021: Lecture 17 March 15, 2021 5/16

Recursive functions

Definition
f :NF*1 5 N is obtained by primitive recursion from g : N¥ — N and
h: N2 N if

f0,7) = ¢g(7)
FU+1,7) = h(i, f(i.7),7)

Definition

/:N¥ = N is obtained by y-recursion or minimization from
g N LN

f()=

Suresh

i it g(i,n)=0and Vj<i:g(j,n)>0
undeﬁned Q’Eh?olz‘w&igre 17 March 15, 2021 5/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

Suresh PLC 2021: Lecture 17 March 15, 2021 6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

©® containing the initial functions

Suresh PLC 2021: Lecture 17 March 15, 2021 6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

©® containing the initial functions
Zero Z(n)=0

Suresh PLC 2021: Lecture 17 March 15, 2021 6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

©® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1

Suresh PLC 2021: Lecture 17 March 15, 2021 6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions
©® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk):nl-

Suresh PLC 2021: Lecture 17 March 15, 2021 6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

©® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection I¥(n,...,n,)=n,

O closed under composition and primitive recursion

Suresh PLC 2021: Lecture 17 March 15, 2021

6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions

©® containing the initial functions

Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk):nl.

O closed under composition and primitive recursion

Definition

The class of (partial) recursive functions is the smallest class of
functions

Suresh PLC 2021: Lecture 17 March 15, 2021

6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions
©® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk):nl.

O closed under composition and primitive recursion

Definition
The class of (partial) recursive functions is the smallest class of
functions

©® containing the initial functions

Suresh PLC 2021: Lecture 17 March 15, 2021

6/16

Recursive functions

Definition
The class of primitive recursive functions is the smallest class of
functions
©® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk):nl.

O closed under composition and primitive recursion

Definition
The class of (partial) recursive functions is the smallest class of
functions

©® containing the initial functions

o 1 Sugesh ¢ . . PLC202LLecmure1ly . 1 . Marchis, 2021 6/16

Encoding recursive functions

o [n]=Afx.f"x

Suresh PLC 2021: Lecture 17 March 15, 2021 7/16

Encoding recursive functions

o [n]=Afx.f"x
® Zero: [Z]=Ax.[0]

Suresh PLC 2021: Lecture 17 March 15, 2021 7/16

Encoding recursive functions

o [n]=Afx.f"x
® Zero: [Z]=Ax.[0]

® Successor: [succ|=Apfx.f(pfx)

Suresh PLC 2021: Lecture 17 March 15, 2021 7/16

Encoding recursive functions
[n]=2fx.f"x
Zero: [Z]=Ax.[0]
Successor: [succ]=Apfx.f(pfx)

: . . kY
Projection: [Hl.] = AN Xy XX

Suresh PLC 2021: Lecture 17 March 15, 2021

7/16

Encoding recursive functions
[n]=2fx.f"x
Zero: [Z]=Ax.[0]
Successor: [succ]=Apfx.f(pfx)

: . . kY
Projection: [Hl.] = AN Xy XX

Composition: If f:Nf — Nis defined by f = go(h,,.... /)

[f1=20p . [g] (o]2y o) = ([By]2y 2y %)

Suresh PLC 2021: Lecture 17 March 15, 2021

7/16

Encoding recursive functions

® Primitive recursion: Suppose / is defined via primitive recursion

from ¢ and /

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

® Primitive recursion: Suppose / is defined via primitive recursion
from ¢ and /

® We need to eliminate recursion

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

® Primitive recursion: Suppose / is defined via primitive recursion
from ¢ and /
® We need to eliminate recursion

® J-calculus functions are anonymous

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

® Primitive recursion: Suppose / is defined via primitive recursion
from g and /
® We need to eliminate recursion

® j-calculus functions are anonymous
® Cannot directly use name of / inside definition of f

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

® Primitive recursion: Suppose / is defined via primitive recursion
from g and /
® We need to eliminate recursion
® j-calculus functions are anonymous

® Cannot directly use name of / inside definition of f

® We convert recursion into iteration

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

Primitive recursion: Suppose / is defined via primitive recursion
from g and /
We need to eliminate recursion

® j-calculus functions are anonymous
® Cannot directly use name of / inside definition of f

We convert recursion into iteration

Given / and 7, generate a sequence of pairs

(0,4y),(1,a,),...,(L,a;)

where

Suresh PLC 2021: Lecture 17 March 15, 2021

8/16

Encoding recursive functions

Primitive recursion: Suppose / is defined via primitive recursion
from g and /
We need to eliminate recursion

® j-calculus functions are anonymous
® Cannot directly use name of / inside definition of f

We convert recursion into iteration

Given / and 7, generate a sequence of pairs

(0,4y),(1,a,),...,(L,a;)

where

® a4y=g(n)

Suresh PLC 2021: Lecture 17 March 15, 2021

8/16

Encoding recursive functions

Primitive recursion: Suppose / is defined via primitive recursion
from g and /
We need to eliminate recursion

® j-calculus functions are anonymous
® Cannot directly use name of / inside definition of f

We convert recursion into iteration

Given / and 7, generate a sequence of pairs

(0,4y),(1,a,),...,(L,a;)

where
® ay=g(n)
a1 = /7(1'”11";;)

Suresh PLC 2021: Lecture 17 March 15, 2021

8/16

Encoding recursive functions

Primitive recursion: Suppose / is defined via primitive recursion
from g and /
We need to eliminate recursion

® j-calculus functions are anonymous
® Cannot directly use name of / inside definition of f

We convert recursion into iteration

Given / and 7, generate a sequence of pairs

(0,4y),(1,a,),...,(L,a;)

where
* ay=g(7)
® 4, =h(ia;,n)
Finally we have 2, = f(/,7)

Suresh PLC 2021: Lecture 17 March 15, 2021 8/16

Encoding recursive functions

® Primitive recursion: Suppose f is defined via primitive recursion

from g and /

Suresh PLC 2021: Lecture 17 March 15, 2021 9/16

Encoding recursive functions

® Primitive recursion: Suppose f is defined via primitive recursion
from g and /

® Given / and 7, generate a sequence of pairs

(0,40),(1,4,),..., (L, ay)

where 4, = g(n)and o, | = h(i,a,,7)

Suresh PLC 2021: Lecture 17 March 15, 2021 9/16

Encoding recursive functions

® Primitive recursion: Suppose f is defined via primitive recursion

from g and /

® Given / and 7, generate a sequence of pairs

(0,40),(1,4,),..., (L, ay)

where 4, = g(n)and o, | = h(i,a,,7)
® Generate the sequence by the following recursion
#(0) = (04) = (0.¢(n))
t(i+1) = (i+1,a,,) (z'+1,h(i,al-,;_fz’))
succ(fst

b(fat(o snd (+(D),7))

Suresh PLC 2021: Lecture 17 March 15, 2021 9/16

Encoding recursive functions

Primitive recursion: Suppose f is defined via primitive recursion

from g and /

Given / and 7, generate a sequence of pairs

(0,40),(1,4,),..., (L, ay)

where 4, = g(n)and o, | = h(i,a,,7)

Generate the sequence by the following recursion
#(0) = (04) = (0.¢(n))

t(i+1) = (i+1,a,,) (i+1,h(i,ai,2))
succ(fst

h(fit(e(snd (+(1).7))

® fst and snd return the first and second components of a pair

Suresh PLC 2021: Lecture 17 March 15, 2021 9/16

Encoding recursive functions

® Primitive recursion: Suppose f is defined via primitive recursion
from g and /

® Given / and 7, generate a sequence of pairs

(0,40),(1,4,),..., (L, ay)

where 4, = g(n)and o, | = h(i,a,,7)
® Generate the sequence by the following recursion
#(0) = (04) = (0.¢(n))
t(i+1) = (i+1,a,,) (i+1,h(i,ai,2))
succ(fst

h(fit(e(snd (+(1).7))

® fst and snd return the first and second components of a pair

® f(/,7)can be retrieved as snd(z(/))

Suresh PLC 2021: Lecture 17 March 15, 2021 9/16

Encoding recursive functions

® Generate the sequence by the following recursion

£(0)
t(i+1)

Suresh

(0,4)
(+1 dz-%—l)

(0, (%))
- (z' + l,h(i,ﬂl’sz))
succ(fst

h(fst(x(Snd (#(4)),7))

PLC 2021: Lecture 17 March 15, 2021

10/16

Encoding recursive functions

® Generate the sequence by the following recursion

#(0) = (0,4) = (0.¢(n)
t(i+1) = (i+l,ay,) = (z'+1,/J(i,¢zl.,Z))
= succ(fst

h(fst(x(Snd (#(4)),7))

® We generate the 7(i)’s by iteration

Suresh PLC 2021: Lecture 17 March 15, 2021 10/16

Encoding recursive functions

® Generate the sequence by the following recursion

#(0) = (0,4) = (0.¢(n)
t(i+1) = (i+l,ay,) = (z'+1,/J(i,¢zl.,Z))
= succ(fst

h(fst(x(Snd (#(4)),7))

® We generate the 7(i)’s by iteration
® Define Init = (0, g(7)) and Step(#(7)) = (i + 1)

Suresh PLC 2021: Lecture 17 March 15, 2021 10/16

Encoding recursive functions

Generate the sequence by the following recursion

#(0) = (0,4) = (0.¢(n)
t(i+1) = (i+l,ay,) = (i+1,/J(i,¢zi,2))
= succ(fst

h(fst(x(Snd (#(4)),7))

We generate the 7(7)’s by iteration
Define Init = (0, g(7)) and Step(#(i)) = #(i + 1)
So ¢(/) = Step! (Init) ...

Suresh PLC 2021: Lecture 17 March 15, 2021 10/16

Encoding recursive functions

Generate the sequence by the following recursion

#(0) = (0,4) = (0.¢(n)
t(i+1) = (i+l,ay,) = (i+1,/J(i,¢zi,2))
= succ(fst

h(fst(x(Snd (#(4)),7))

We generate the 7(7)’s by iteration

Define Init = (0, g(7)) and Step(#(i)) = #(i + 1)
So ¢(/) = Step! (Init) ...

wand f(1,7) = snd(#(1)) = snd(Step’ (Init))

Suresh PLC 2021: Lecture 17 March 15, 2021

10/16

Encoding pairs, fst and snd

® [pair]=2xyz.zxy

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding pairs, fst and snd

® [pair]=2xyz.zxy
o [pair]ab —,Az.zab

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding pairs, fst and snd

® [pair]=2xyz.zxy
o [pair]ab —,Az.zab

* [fst]=2p.p(axy.x)

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding pairs, fst and snd

® [pair|=2xyz.zxy

® [pair|ab —*>ﬂ Az.zab

o [fst]=2p.p(Axy.x)

o [fst]([pair]ab) —*>ﬁ (Ap-p(axy.x))(Az.2ab) — 4 (Az.2ab)(2x y.x) —,
(Axy.x)ab —, (2y.a)b —,a

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding pairs, fst and snd

® [pair|=2xyz.zxy

® [pair]ab —*>ﬂ Az.zab

o [fst]=2p.p(Axy.x)

o [fst]([pair]ab) —*>ﬁ (Ap-p(Axy.x))Az.2ab) — 4 (Az.2ab)(Ax y.x) —
(Axy.x)ab —; (Ay.a)b —ga

® [snd]=2p.(p(Axy.y))

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding pairs, fst and snd

® [pair|=2xyz.zxy

® [pair]ab —*>ﬂ Az.zab

o [fst]=2p.p(Axy.x)

o [fst]([pair]ab) —*>ﬁ (Ap-p(Axy.x))Az.2ab) — 4 (Az.2ab)(Ax y.x) —
(2xy. x)ab — ()Ly.a)b —ga

® [smd]=2p.(p (My 7))

[
® [snd]([pazr]ab) s (Ap.p(axy.y))Az.zab) — 4 (Az.2ab)(Axy.y) —,
(Axy.y)ab —, (Ay.y)b —g b

Suresh PLC 2021: Lecture 17 March 15, 2021 11/16

Encoding primitive recursion

o Init=(0, ¢())

Suresh PLC 2021: Lecture 17 March 15, 2021 12/16

Encoding primitive recursion

-

® Init=(0, g(n))
o Step(¢(i)) = (i +1,4;,,) = (suce(fst(2 (1)), h(fst(2(7)), snd(#(7)), 7))

Suresh PLC 2021: Lecture 17 March 15, 2021 12/16

Encoding primitive recursion

o Init=(0, ¢())

o Step(¢(i)) = (i +1,4;,,) = (suce(fst(2 (1)), h(fst(2(7)), snd(#(7)), 7))
® +(/)=Step!(Init) and f(/,7)=snd(z(/))

Suresh PLC 2021: Lecture 17 March 15, 2021 12/16

Encoding primitive recursion

o Init=(0, g(n))

o Step(¢(i)) = (i +1,4;,,) = (suce(fst(2 (1)), h(fst(2(7)), snd(#(7)), 7))
® +(/)=Step!(Init) and f(/,7)=snd(z(/))

o [Init] = [pair][0]([g]x, ...x;)

Suresh PLC 2021: Lecture 17 March 15, 2021

® nit=

Encoding primitive recursion

(0, g(%))

o Step(t(i))=(i+1,a,,,)=

° ()=
o [Init] =

® [Step]

(suec(f(e (i), A(F(1(7)

Step! (Init) and f(,7) = snd(z(1))

[pair][0]([¢]

Xy ... Xp)

= . pair] ([suce) (ft] »))[51[t]) [sndl])

PLC 2021: Lecture 17

ssnd(#(7)),

e Xy)

7))

arch 15, 2021

Encoding primitive recursion

Init = (0, g(7))

Step(e(1) = (i + La,y1) = (s (), H(FH(1(0))sml((2)),)
t(1) = Step (Init) and f(/,7) = snd(¢(1))

[1nit] = [pair] 0] ([g] % - ¢

o [Step] = ay.[pair] ([suce] (1ft] y))[41 (Ft] y)([snd] y)s, ... x,)

® i appears “free” in both Init and Step, so in the encodings we leave the
variables x,,..., x, free

Suresh PLC 2021: Lecture 17 March 15, 2021 12/16

Encoding primitive recursion

Init = (0, g(7))

Step(+(1) = (1 + 1,a,31) = (succ(ft(s(0)), B (7)), md(1(0)),)

t(1) = Step (Init) and f(/,7) = snd(¢(1))

(tnit] = [pair)[0) (g1 --x¢)

o [Step] = Ay. [pair] (succl (SN At N [snd]), -)

® i appears “free” in both Init and Step, so in the encodings we leave the
variables x,,..., x, free

o [f]=2Axx x,x,.[snd](x[Step] [Init])

Suresh PLC 2021: Lecture 17 March 15, 2021 12/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])

Suresh PLC 2021: Lecture 17 March 15, 2021 13/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])
o AN [ng) =y [snd) (1) Step) Init)~ [snd) [Step) i)

Suresh PLC 2021: Lecture 17 March 15, 2021 13/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])
o (AU Im][] —p [snd] ((][Step [Fnit')) =, [snd] ([Step') [Init'])

® [Init'] =[Init][x, :=[m],. .., x, :=[n,]]

Suresh PLC 2021: Lecture 17 March 15, 2021 13/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])

o [FULAIm]- [m] = [snd) ([11[Step [Init]) — ; [snd] ([Step']’ [Init'])
® [Init'] =[Init][x, :=[m],. .., x, :=[n,]]
o [Step) = [SteplLx, =[], =[]

Suresh PLC 2021: Lecture 17 March 15, 2021 13/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])

o 1] [ng o [ond] (1 [Step/ 1 nit)~ [snd) Sty [T’}
® [Init'] =[Init][x, :=[m],. .., x, :=[n,]]
® [Step'] =[Step][x) :=[m],..o 3, =[]

e Check that [Step’|([pair][i][f (i, 7)]) _*)ﬁ [pair][i +1][f(i + 1,7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 13/16

Encoding primitive recursion

o Check that [Step’] ([pair] [][£(i,7)]) =, [pair][i + 1][£(i +1,7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 14/16

Encoding primitive recursion

® Check that [Step’|([pair][i][f(i,7)]) —*>ﬁ [pair][i +1][f(i + 1,7)]
® [Step]([pair][i][f(7))
—g [pair] ([succ 1([fst])) ([pair][i][f (i, 7)])
(L] (Ust](pair] (][£ (2, 7)]))

([snd] ([pair][1][f (. 72)]))

EARNEN)
[pair] ([succ][7]) ([A11LF (2, 2)l[m] [])
—iﬁa [pair] [i +1] [h(i, (i, 71))]
—g [pair] [i+1] [f(i+1,

e

Encoding primitive recursion

® Check that [Step/]' [Init' | —, [pair] [i] [f(i,7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 15/16

Encoding primitive recursion

® Check that [Step/]' [Init' | —, [pair] [i] [f(i,7)]
o [Step']’ [Init'] =, [Init'| = [pair] [0] [g(#)] =[pair] [0] [£(0,7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 15/16

Encoding primitive recursion

o Check that [Step'] [Init'] — [pair] [i] [f(i.7)]
o [Step']’ [Init'] =, [Init'| = [pair] [0] [g(#)] =[pair] [0] [£(0,7)]

o [Step']""" [Imi'] = [Step]([Step’ I' [Init'])
—p [Step'|([pair] [i] [f(7,7)]) (ind. hyp)
—, [pair] [i +1] [f(i +1,7)]

PLC 2021: Lecture 17

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])

Suresh PLC 2021: Lecture 17 March 15, 2021 16/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])
o AN+ D] = [ond) (1] Step!) [Init)~ [snd) ([Step') [1nit)

Suresh PLC 2021: Lecture 17 March 15, 2021 16/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])
o (A1 m][] = [snd] ([][Step [Fnit') =, [snd] ([Step') [Init'])
o [Step’]l[Init’]—*>ﬁ [pair] [I] [f(/,7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 16/16

Encoding primitive recursion

o [f]=2Axx x,- - x;.[snd](x [Step] [Init])

o (A1 m][] = [snd] ([][Step [Fnit') =, [snd] ([Step') [Init'])
o [Step’]l[Init’]—*>ﬁ [pair] [I] [f(/,7)]

® So [f1[/1[m]-[m] == [snd]([pair] [1] [f(L,7)])— [f(L7)]

Suresh PLC 2021: Lecture 17 March 15, 2021 16/16

Encoding primitive recursion

® [f]=2xxx)x,.[snd](x [Step][Init])

o L1 Im][ng = [snd] (] [Step/) [mit)~ [snd) ey [T’
o [Step') [Tnit") oy [pair] [1] [£(1,)

® So [f11/Im] - [m] == [snd)([pair] [[] [f(L,7)])—=4 [f(L,7)]

e The expression [PR] encodes the schema of primitive recursion

[PR]=2hgxx, - x;.[snd](x(2y. [pair] succ]([fst] y))
bt y)(snd))%, . 5,)
([PW][](gxl))

Suresh PLC 2021: Lecture 17 March 15, 2021 16/16

