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λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by
Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)

• (λx .M )N −−→β M [x :=N ]• M [x :=N ]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M
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Church numerals
• [n] = λ f x . f n x

• f 0x = x
• f n+1x = f ( f n x )
• Thus f n x = f ( f (· · · ( f x ) · · · )), where f is applied repeatedly n times

• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f ( f x )
• [3] = λ f x . f ( f ( f x ))
• …

• [n] g y = (λ f x . f (· · · ( f x ) · · · )) g y ∗−−→β g (· · · ( g y ) · · · ) = g n y
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Encoding arithmetic functions

• Successor function: succ(n) = n + 1

• [succ] = λ p f x . f (p f x )
• For all n, [succ] [n] ∗−−→β [n + 1]

• [succ] [n]
(λ p f x . f (p f x )) [n] −−→β λ f x . f ([n] f x )

∗−−→β λ f x . f ( f n x )
= λ f x . f n+1x
= [n + 1]
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Encoding arithmetic functions

• Addition: plus(m, n) = m + n

• [plus] = λ pq f x .p f (q f x )
• For all m and n, [plus] [m + n] ∗−−→β [m + n]

• [plus] [m] [n]
(λ pq f x .p f (q f x )) [m] [n] −−→β (λq f x . [m] f (q f x )) [n]

−−→β λ f x . [m] f ([n] f x )
∗−−→β λ f x . f m([n] f x )
∗−−→β λ f x . f m( f n x )
= λ f x . f m+n x
= [m + n]
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Encoding arithmetic functions

• Multiplication: mult(m, n) = mn

• [mult] = λ pq f .p(q f )
• For all m ≥ 0, ([n] f )m y ∗−−→β f mn y

• ([n] f )0 y = y = f 0·n y
• ([n] f )m+1 y = ([n] f )(([n] f )m y )

∗−−→β [n] f ( f mn y )
∗−−→β f n( f mn y ) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f )) [m] [n] ∗−−→β λ f . [m] ([n] f )
= λ f .(λ g y. g m y )([n] f )
∗−−→β λ f .(λ y.([n] f )m y )
∗−−→β λ f .λ y. f mn y = [mn]
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Encoding arithmetic functions

• Exponentiation: exp(m, n) = nm

• [exp] = λ pq .pq
• For all m ≥ 1 and n ≥ 0, [exp] [m] [n] ∗−−→β [nm]

• Proof: Exercise!
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Computability

• Church numerals encode n � N

• Can we encode computable functions f :Nk →N?

• Let [ f ] be the encoding of f
• We want [ f ] [n1] · · · [nk ] ∗−−→β [ f (n1, . . . , nk )]

• We need a syntax for computable functions
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Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f :Nk →N is obtained by composition from g :Nl →N and

h1, . . . , hl :Nk →N if
f (n⃗) = g (h1(n⃗), . . . , hl (n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hl )
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and h :Nk+2→N if
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f (i + 1, n⃗) = h(i , f (i , n⃗), n⃗)

• Note If g and h are total functions, so is f
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Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g ( j , n⃗) > 0

undefined otherwise

• Notation: f (n⃗) = µi ( g (i , n⃗) = 0)
• f need not be total even if g is
• If f (n⃗) = i , then g ( j , n⃗) is defined for all j ≤ i
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• Equivalent to a while loop:
i = 0;

while (g(i, n1, ..., nk) > 0) {

i = i + 1;
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Recursive functions
• The class of primitive recursive functions is the smallest class of
functions

1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk ) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization
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Recursive functions: Examples

• f (n) = n + 2 is S ◦ S

• plus(n,m) = n +m is got by primitive recursion from g = Π1
1 and

h = S ◦Π3
2

plus(0,m) = g (m) = Π1
1(m)

= m
plus(n + 1,m) = h(n,plus(n,m),m)

= (S ◦Π3
2)(n,plus(n,m),m) = S (plus(n,m))

= (n +m) + 1
= (n + 1) +m
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Recursive functions: Examples

• mult(n,m) = nm is got by primitive recursion from g = Z and
h = plus ◦ (Π3

2 ,Π
3
3)

mult(0,m) = g (m) = Z (m)
= 0

mult(n + 1,m) = h(n,mult(n,m),m)
= (plus ◦ (Π3

2 ,Π
3
3))(n,mult(n,m),m)

= nm +m
= (n + 1)m
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Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z )(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n

• First n such that m − 2n = 0 is ⌈log2 m⌉• p − q is 0 whenever p ¶ q
• We will see a definiition of subtraction later
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