
Programming Language Concepts: Lecture 16

S P Suresh

March 10, 2021

Suresh PLC 2021: Lecture 16 March 10, 2021 1 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables

• The set Λ of lambda expressions is given by
Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)

• (λx .M)N −−→β M [x :=N]• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The set Λ of lambda expressions is given by

Λ= x | λx .M | MN

where x � Var and M ,N � Λ.

• Basic rule for computation (rewriting) is called β-reduction (or
contraction)

• (λx .M)N −−→β M [x :=N]• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The set Λ of lambda expressions is given by

Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)

• (λx .M)N −−→β M [x :=N]• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The set Λ of lambda expressions is given by

Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)
• (λx .M)N −−→β M [x :=N]

• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The set Λ of lambda expressions is given by

Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)
• (λx .M)N −−→β M [x :=N]• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

λ-calculus: syntax

• Assume a countably infinite set Var of variables
• The set Λ of lambda expressions is given by

Λ= x | λx .M | MN

where x � Var and M ,N � Λ.
• Basic rule for computation (rewriting) is called β-reduction (or
contraction)
• (λx .M)N −−→β M [x :=N]• M [x :=N]: substitute free occurrences of x in M by N

• We rename the bound variables in M to avoid “capturing” free
variables of N in M

Suresh PLC 2021: Lecture 16 March 10, 2021 2 / 17

Church numerals
• [n] = λ f x . f n x

• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x

• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)

• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times
• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance

• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x

• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x
• [1] = λ f x . f x

• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)

• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))

• …
• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Church numerals
• [n] = λ f x . f n x
• f 0x = x
• f n+1x = f (f n x)
• Thus f n x = f (f (· · · (f x) · · ·)), where f is applied repeatedly n times

• For instance
• [0] = λ f x .x
• [1] = λ f x . f x
• [2] = λ f x . f (f x)
• [3] = λ f x . f (f (f x))
• …

• [n] g y = (λ f x . f (· · · (f x) · · ·)) g y ∗−−→β g (· · · (g y) · · ·) = g n y

Suresh PLC 2021: Lecture 16 March 10, 2021 3 / 17

Encoding arithmetic functions

• Successor function: succ(n) = n + 1

• [succ] = λ p f x . f (p f x)
• For all n, [succ] [n] ∗−−→β [n + 1]

• [succ] [n]
(λ p f x . f (p f x)) [n] −−→β λ f x . f ([n] f x)

∗−−→β λ f x . f (f n x)
= λ f x . f n+1x
= [n + 1]

Suresh PLC 2021: Lecture 16 March 10, 2021 4 / 17

Encoding arithmetic functions

• Successor function: succ(n) = n + 1
• [succ] = λ p f x . f (p f x)

• For all n, [succ] [n] ∗−−→β [n + 1]

• [succ] [n]
(λ p f x . f (p f x)) [n] −−→β λ f x . f ([n] f x)

∗−−→β λ f x . f (f n x)
= λ f x . f n+1x
= [n + 1]

Suresh PLC 2021: Lecture 16 March 10, 2021 4 / 17

Encoding arithmetic functions

• Successor function: succ(n) = n + 1
• [succ] = λ p f x . f (p f x)
• For all n, [succ] [n] ∗−−→β [n + 1]

• [succ] [n]
(λ p f x . f (p f x)) [n] −−→β λ f x . f ([n] f x)

∗−−→β λ f x . f (f n x)
= λ f x . f n+1x
= [n + 1]

Suresh PLC 2021: Lecture 16 March 10, 2021 4 / 17

Encoding arithmetic functions

• Successor function: succ(n) = n + 1
• [succ] = λ p f x . f (p f x)
• For all n, [succ] [n] ∗−−→β [n + 1]
• [succ] [n]
(λ p f x . f (p f x)) [n] −−→β λ f x . f ([n] f x)

∗−−→β λ f x . f (f n x)
= λ f x . f n+1x
= [n + 1]

Suresh PLC 2021: Lecture 16 March 10, 2021 4 / 17

Encoding arithmetic functions

• Addition: plus(m, n) = m + n

• [plus] = λ pq f x .p f (q f x)
• For all m and n, [plus] [m + n] ∗−−→β [m + n]

• [plus] [m] [n]
(λ pq f x .p f (q f x)) [m] [n] −−→β (λq f x . [m] f (q f x)) [n]

−−→β λ f x . [m] f ([n] f x)
∗−−→β λ f x . f m([n] f x)
∗−−→β λ f x . f m(f n x)
= λ f x . f m+n x
= [m + n]

Suresh PLC 2021: Lecture 16 March 10, 2021 5 / 17

Encoding arithmetic functions

• Addition: plus(m, n) = m + n
• [plus] = λ pq f x .p f (q f x)

• For all m and n, [plus] [m + n] ∗−−→β [m + n]

• [plus] [m] [n]
(λ pq f x .p f (q f x)) [m] [n] −−→β (λq f x . [m] f (q f x)) [n]

−−→β λ f x . [m] f ([n] f x)
∗−−→β λ f x . f m([n] f x)
∗−−→β λ f x . f m(f n x)
= λ f x . f m+n x
= [m + n]

Suresh PLC 2021: Lecture 16 March 10, 2021 5 / 17

Encoding arithmetic functions

• Addition: plus(m, n) = m + n
• [plus] = λ pq f x .p f (q f x)
• For all m and n, [plus] [m + n] ∗−−→β [m + n]

• [plus] [m] [n]
(λ pq f x .p f (q f x)) [m] [n] −−→β (λq f x . [m] f (q f x)) [n]

−−→β λ f x . [m] f ([n] f x)
∗−−→β λ f x . f m([n] f x)
∗−−→β λ f x . f m(f n x)
= λ f x . f m+n x
= [m + n]

Suresh PLC 2021: Lecture 16 March 10, 2021 5 / 17

Encoding arithmetic functions

• Addition: plus(m, n) = m + n
• [plus] = λ pq f x .p f (q f x)
• For all m and n, [plus] [m + n] ∗−−→β [m + n]
• [plus] [m] [n]
(λ pq f x .p f (q f x)) [m] [n] −−→β (λq f x . [m] f (q f x)) [n]

−−→β λ f x . [m] f ([n] f x)
∗−−→β λ f x . f m([n] f x)
∗−−→β λ f x . f m(f n x)
= λ f x . f m+n x
= [m + n]

Suresh PLC 2021: Lecture 16 March 10, 2021 5 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn

• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y

• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)

• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y

• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y

• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y
• ([n] f)0 y = y = f 0·n y

• ([n] f)m+1 y = ([n] f)(([n] f)m y)
∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y
• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y
• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]

• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)
= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Multiplication: mult(m, n) = mn
• [mult] = λ pq f .p(q f)
• For all m ≥ 0, ([n] f)m y ∗−−→β f mn y
• ([n] f)0 y = y = f 0·n y
• ([n] f)m+1 y = ([n] f)(([n] f)m y)

∗−−→β [n] f (f mn y)
∗−−→β f n(f mn y) = f mn+n y = f (m+1)n y

• For all m and n, [mult] [m] [n] ∗−−→β [mn]
• (λ pq f .p(q f)) [m] [n] ∗−−→β λ f . [m] ([n] f)

= λ f .(λ g y. g m y)([n] f)
∗−−→β λ f .(λ y.([n] f)m y)
∗−−→β λ f .λ y. f mn y = [mn]

Suresh PLC 2021: Lecture 16 March 10, 2021 6 / 17

Encoding arithmetic functions

• Exponentiation: exp(m, n) = nm

• [exp] = λ pq .pq
• For all m ≥ 1 and n ≥ 0, [exp] [m] [n] ∗−−→β [nm]

• Proof: Exercise!

Suresh PLC 2021: Lecture 16 March 10, 2021 7 / 17

Encoding arithmetic functions

• Exponentiation: exp(m, n) = nm

• [exp] = λ pq .pq

• For all m ≥ 1 and n ≥ 0, [exp] [m] [n] ∗−−→β [nm]

• Proof: Exercise!

Suresh PLC 2021: Lecture 16 March 10, 2021 7 / 17

Encoding arithmetic functions

• Exponentiation: exp(m, n) = nm

• [exp] = λ pq .pq
• For all m ≥ 1 and n ≥ 0, [exp] [m] [n] ∗−−→β [nm]

• Proof: Exercise!

Suresh PLC 2021: Lecture 16 March 10, 2021 7 / 17

Encoding arithmetic functions

• Exponentiation: exp(m, n) = nm

• [exp] = λ pq .pq
• For all m ≥ 1 and n ≥ 0, [exp] [m] [n] ∗−−→β [nm]
• Proof: Exercise!

Suresh PLC 2021: Lecture 16 March 10, 2021 7 / 17

Computability

• Church numerals encode n � N

• Can we encode computable functions f :Nk →N?

• Let [f] be the encoding of f
• We want [f] [n1] · · · [nk] ∗−−→β [f (n1, . . . , nk)]

• We need a syntax for computable functions

Suresh PLC 2021: Lecture 16 March 10, 2021 8 / 17

Computability

• Church numerals encode n � N
• Can we encode computable functions f :Nk →N?

• Let [f] be the encoding of f
• We want [f] [n1] · · · [nk] ∗−−→β [f (n1, . . . , nk)]

• We need a syntax for computable functions

Suresh PLC 2021: Lecture 16 March 10, 2021 8 / 17

Computability

• Church numerals encode n � N
• Can we encode computable functions f :Nk →N?
• Let [f] be the encoding of f

• We want [f] [n1] · · · [nk] ∗−−→β [f (n1, . . . , nk)]

• We need a syntax for computable functions

Suresh PLC 2021: Lecture 16 March 10, 2021 8 / 17

Computability

• Church numerals encode n � N
• Can we encode computable functions f :Nk →N?
• Let [f] be the encoding of f
• We want [f] [n1] · · · [nk] ∗−−→β [f (n1, . . . , nk)]

• We need a syntax for computable functions

Suresh PLC 2021: Lecture 16 March 10, 2021 8 / 17

Computability

• Church numerals encode n � N
• Can we encode computable functions f :Nk →N?
• Let [f] be the encoding of f
• We want [f] [n1] · · · [nk] ∗−−→β [f (n1, . . . , nk)]

• We need a syntax for computable functions

Suresh PLC 2021: Lecture 16 March 10, 2021 8 / 17

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]

• Equivalent to Turing machines
• f :Nk →N is obtained by composition from g :Nl →N and

h1, . . . , hl :Nk →N if
f (n⃗) = g (h1(n⃗), . . . , hl (n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hl)

Suresh PLC 2021: Lecture 16 March 10, 2021 9 / 17

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]
• Equivalent to Turing machines

• f :Nk →N is obtained by composition from g :Nl →N and
h1, . . . , hl :Nk →N if

f (n⃗) = g (h1(n⃗), . . . , hl (n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hl)

Suresh PLC 2021: Lecture 16 March 10, 2021 9 / 17

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]
• Equivalent to Turing machines

• f :Nk →N is obtained by composition from g :Nl →N and
h1, . . . , hl :Nk →N if

f (n⃗) = g (h1(n⃗), . . . , hl (n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hl)

Suresh PLC 2021: Lecture 16 March 10, 2021 9 / 17

Recursive functions
• Recursive functions [Dedekind, Skolem, Gödel, Kleene]
• Equivalent to Turing machines

• f :Nk →N is obtained by composition from g :Nl →N and
h1, . . . , hl :Nk →N if

f (n⃗) = g (h1(n⃗), . . . , hl (n⃗))

• Notation: f = g ◦ (h1, h2, . . . , hl)

Suresh PLC 2021: Lecture 16 March 10, 2021 9 / 17

Recursive functions

• f :Nk+1→N is obtained by primitive recursion from g :Nk →N
and h :Nk+2→N if

f (0, n⃗) = g (n⃗)

f (i + 1, n⃗) = h(i , f (i , n⃗), n⃗)

• Note If g and h are total functions, so is f

Suresh PLC 2021: Lecture 16 March 10, 2021 10 / 17

Recursive functions

• f :Nk+1→N is obtained by primitive recursion from g :Nk →N
and h :Nk+2→N if

f (0, n⃗) = g (n⃗)

f (i + 1, n⃗) = h(i , f (i , n⃗), n⃗)

• Note If g and h are total functions, so is f

Suresh PLC 2021: Lecture 16 March 10, 2021 10 / 17

Recursive functions
• f :Nk+1→N is obtained by primitive recursion from g :Nk →N
and h :Nk+2→N if

f (0, n⃗) = g (n⃗)

f (i + 1, n⃗) = h(i , f (i , n⃗), n⃗)

• Equivalent to a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) {

// computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;

Suresh PLC 2021: Lecture 16 March 10, 2021 11 / 17

Recursive functions
• f :Nk+1→N is obtained by primitive recursion from g :Nk →N
and h :Nk+2→N if

f (0, n⃗) = g (n⃗)

f (i + 1, n⃗) = h(i , f (i , n⃗), n⃗)

• Equivalent to a for loop:
result = g(n1, ..., nk); // f(0, n1, ..., nk)

for (i = 0; i < n; i++) {

// computing f(i+1, n1, ..., nk)

result = h(i, result, n1, ..., nk);

}

return result;

Suresh PLC 2021: Lecture 16 March 10, 2021 11 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Notation: f (n⃗) = µi (g (i , n⃗) = 0)
• f need not be total even if g is
• If f (n⃗) = i , then g (j , n⃗) is defined for all j ≤ i

Suresh PLC 2021: Lecture 16 March 10, 2021 12 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Notation: f (n⃗) = µi (g (i , n⃗) = 0)

• f need not be total even if g is
• If f (n⃗) = i , then g (j , n⃗) is defined for all j ≤ i

Suresh PLC 2021: Lecture 16 March 10, 2021 12 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Notation: f (n⃗) = µi (g (i , n⃗) = 0)
• f need not be total even if g is

• If f (n⃗) = i , then g (j , n⃗) is defined for all j ≤ i

Suresh PLC 2021: Lecture 16 March 10, 2021 12 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Notation: f (n⃗) = µi (g (i , n⃗) = 0)
• f need not be total even if g is
• If f (n⃗) = i , then g (j , n⃗) is defined for all j ≤ i

Suresh PLC 2021: Lecture 16 March 10, 2021 12 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Equivalent to a while loop:
i = 0;

while (g(i, n1, ..., nk) > 0) {

i = i + 1;

}

return i;

Suresh PLC 2021: Lecture 16 March 10, 2021 13 / 17

Recursive functions

• f :Nk →N is obtained by µ-recursion orminimization from
g :Nk+1→N if

f (n⃗) =

i if g (i , n⃗) = 0 and ∀ j < i : g (j , n⃗) > 0

undefined otherwise

• Equivalent to a while loop:
i = 0;

while (g(i, n1, ..., nk) > 0) {

i = i + 1;

}

return i;

Suresh PLC 2021: Lecture 16 March 10, 2021 13 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions

1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0

Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1

Projection Πk
i (n1, . . . , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni

2 closed under composition and primitive recursion
• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions

1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions
1 containing the initial functions

2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions
• The class of primitive recursive functions is the smallest class of
functions
1 containing the initial functions

Zero Z (n) = 0
Successor S (n) = n + 1
Projection Πk

i (n1, . . . , nk) = ni
2 closed under composition and primitive recursion

• The class of (partial) recursive functions is the smallest class of
functions
1 containing the initial functions
2 closed under composition, primitive recursion and minimization

Suresh PLC 2021: Lecture 16 March 10, 2021 14 / 17

Recursive functions: Examples

• f (n) = n + 2 is S ◦ S

• plus(n,m) = n +m is got by primitive recursion from g = Π1
1 and

h = S ◦Π3
2

plus(0,m) = g (m) = Π1
1(m)

= m
plus(n + 1,m) = h(n,plus(n,m),m)

= (S ◦Π3
2)(n,plus(n,m),m) = S (plus(n,m))

= (n +m) + 1
= (n + 1) +m

Suresh PLC 2021: Lecture 16 March 10, 2021 15 / 17

Recursive functions: Examples

• f (n) = n + 2 is S ◦ S
• plus(n,m) = n +m is got by primitive recursion from g = Π1

1 and
h = S ◦Π3

2

plus(0,m) = g (m) = Π1
1(m)

= m
plus(n + 1,m) = h(n,plus(n,m),m)

= (S ◦Π3
2)(n,plus(n,m),m) = S (plus(n,m))

= (n +m) + 1
= (n + 1) +m

Suresh PLC 2021: Lecture 16 March 10, 2021 15 / 17

Recursive functions: Examples

• mult(n,m) = nm is got by primitive recursion from g = Z and
h = plus ◦ (Π3

2 ,Π
3
3)

mult(0,m) = g (m) = Z (m)
= 0

mult(n + 1,m) = h(n,mult(n,m),m)
= (plus ◦ (Π3

2 ,Π
3
3))(n,mult(n,m),m)

= nm +m
= (n + 1)m

Suresh PLC 2021: Lecture 16 March 10, 2021 16 / 17

Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z)(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n

• First n such that m − 2n = 0 is ⌈log2 m⌉• p − q is 0 whenever p ¶ q
• We will see a definiition of subtraction later

Suresh PLC 2021: Lecture 16 March 10, 2021 17 / 17

Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z)(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n

• First n such that m − 2n = 0 is ⌈log2 m⌉• p − q is 0 whenever p ¶ q
• We will see a definiition of subtraction later

Suresh PLC 2021: Lecture 16 March 10, 2021 17 / 17

Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z)(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n
• First n such that m − 2n = 0 is ⌈log2 m⌉

• p − q is 0 whenever p ¶ q
• We will see a definiition of subtraction later

Suresh PLC 2021: Lecture 16 March 10, 2021 17 / 17

Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z)(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n
• First n such that m − 2n = 0 is ⌈log2 m⌉• p − q is 0 whenever p ¶ q

• We will see a definiition of subtraction later

Suresh PLC 2021: Lecture 16 March 10, 2021 17 / 17

Recursive functions: Examples

• exp(n,m) = mn is got by primitive recursion from g = S ◦ Z and
h =mult ◦ (Π3

2 ,Π
3
3)

exp(0,m) = g (m) = (S ◦ Z)(m)
= 1

exp(n + 1,m) = h(n, exp(n,m),m)
= (mult ◦ (Π3

2 ,Π
3
3))(n, exp(n,m),m)

= mn ·m
= mn+1

• f (m) = log2 m is defined by minimization from g (n,m) = m − 2n
• First n such that m − 2n = 0 is ⌈log2 m⌉• p − q is 0 whenever p ¶ q
• We will see a definiition of subtraction later

Suresh PLC 2021: Lecture 16 March 10, 2021 17 / 17

