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A-calculus: syntax

¢ Assume a countably infinite set Var of variables
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A=x|2ax.M|MN
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A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —,; M[x:=N]
® M|x := N]: substitute free occurrences of x in M by N
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A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.

Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® Ax.M)N —, M[x:=N]

® M][x :=N]: substitute free occurrences of x in M by NV
We rename the bound variables in A/ to avoid “capturing” free
variables of V in M
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Church numerals

o [n]=Afx.f"x
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Church numerals

o [n]=Afx.f"x

o flx=x
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Church numerals

o [n]=Afx.f"x
° fox:x

o frix=f(f")
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Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times
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Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance
® [0]=2fx.x
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Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance
® [0]=2fx.x
® [1]=2fx.fx
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Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance

® [0]=2fx.x

® [1]=2fx.fx

* 2]=2fxf(fx)

* Bl=afxf(f(fx)

o [nlgy=@fxf((fx))gy—5g((gy))=2g"y
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Encoding arithmetic functions

® Successor function: succ(n) =n+1
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Encoding arithmetic functions

® Successor function: succ(n) =n+1

® [succ]=2pfx.f(pfx)
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Encoding arithmetic functions

® Successor function: succ(n) =n+1

® [succ]=2pfx.f(pfx)

e For all », [succ][#7] —*>ﬁ [7+1]
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Encoding arithmetic functions

® Successor function: succ(n) =n+1

® [succ]=2pfx.f(pfx)

e For all », [succ][#7] —*>ﬁ [n+1]

® [succ][n]

@pfxfpfx)ln]

—y  Afxf(n]fx)
—y  Afxf(f7x)
= Af x. frHlx
= [7+1]
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Encoding arithmetic functions

o Addition: plus(m,n)=m+n
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Encoding arithmetic functions

o Addition: plus(m,n)=m+n

® [plus]=2pqfx.pf(qfx)
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Encoding arithmetic functions

o Addition: plus(m,n)=m+n

® [plus]=2pqfx.pf(qfx)

o For all m and n, [plus][m + n] —; [m + n]
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Encoding arithmetic functions

o Addition: plus(m,n)=m+n

® [plus]=2pqfx.pf(qfx)

o For all m and n, [plus][m + n] —; [m + n]

® [plus)[m][n]
(Apafx.pflqfx)[m][n] —
B
8
B

(2qfx.[m] f(qfx)[n]
Af x.[m] f([n] fx)
Afx.f"([n] fx)

Afw ()

Afx frx

Un+n]
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

® [mult]=2pqf.p(qf)
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

o [mult]=2pqf.p(qf)
e Forall m > 0, ([n]f)m)/ —*_)ﬁ fmn}/
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

o [mult]=2pqf.p(qf)
e Forall m >0, ([n]f)’”)/—:ﬁf’””y
* ([(n]f)y=y=1""y
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

® [mult]=2pqf.p(af)

e Forall m >0, ([n]f)m)/—*>ﬁf’””}/
* ([n]f)y=y=f""y
o [Ny = (mN(=11)"y)

s (2] f(f""y)

_*_>ﬁ fn(fmny) — fmn+ny — f(rn+1)ny
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

® [mult]=2pqf.p(af)

e Forall m >0, ([=n]f)"y —*>ﬁf’””}/
* ([n]f)y=y=f""y
o [Ny = (mN(=11)"y)

—p [l f(f™y)

_*_>ﬁ fn(fmny) — fmn+ny — f(rn+1)ny

e For all m and n, [mult][m][n] —*—>ﬁ [mn]
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Encoding arithmetic functions

e Muldplication: mult(m,n) = mn

* [mult]=2pqf-p(af)
e Forall m >0, ([=n]f)"y —*>ﬁf’””}/
* (n ) y=y=1""
* ([1f)yly = (A1 f)")
— [21f(f"y)
_*_> f (f nny) _ fmn+ny — f(rn+1)ny

e For all m and n, [mult][m][n ]——> [mn]

o paf-plaf)mln] —,  af[ml(#]f)
= Af(2gy-g" N7 f)

—y AL (2] f)"y)

—*>ﬁ Af 2y fmy = [mn]
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Encoding arithmetic functions

® Exponentiation: exp(m,n) = n"

Suresh PLC 2021: Lecture 16 March 10, 2021 7/17



Encoding arithmetic functions

® Exponentiation: exp(m,n)=n

* [exp]=2pq.pq
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Encoding arithmetic functions

® Exponentiation: exp(m,n) = n"

® [exp]=2pq.pq
o Forall m>1and n >0, [exp][m][n] —>,[n"]
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Encoding arithmetic functions

® Exponentiation: exp(m,n) = n"

® [exp]=2pq.pq
o Forall m>1and n >0, [exp][m][n] —>,[n"]

® Proof: Exercise!
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Computability

® Church numerals encode 7 e N
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Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
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Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
® Let[/]be the encoding of f
o Wewant [£][m] (]~ L (oo
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Computability

® Church numerals encode 7 e N

® Can we encode computable functions f : N* — N?
® Let[/]be the encoding of f
o We want [£][m] (]~ Lf (00 0)]

® We need a syntax for computable functions
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Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]
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Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines
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Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines
e f/:N* - Nis obtained by composition from g : N/ — N and
hyy.osh) : NF - Nif
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Recursive functions

® Recursive functions [Dedelcind, Skolem, Godel, Kleene]

® Equivalent to Turing machines
e f/:N* - Nis obtained by composition from g : N/ — N and
hyy.osh) : NF - Nif
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Recursive functions

e /:N**! N is obtained by primitive recursion from g : N* — N
and /: N2 — N if
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Recursive functions

e /:N**! N is obtained by primitive recursion from g : N* — N
and /: N2 — N if

® Note If ¢ and / are total functions, so is /
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Recursive functions

e f:N*! _ N is obtained by primitive recursion from g : N* — N
and /: NF*2 — N if

J(0,7) = ¢(7)
FG+1,7)= hli, f(i,7),7)
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Recursive functions

e f:N*! _ N is obtained by primitive recursion from g : N* — N
and /: NF*2 — N if

J(0,7) = ¢(7)
FG+1,7) = h(i, f(i.7).7)

¢ Equivalent to a for loop:

result = g(nl, ..., nk); // f(0, n1, ..., nk)
for (1 =0; i <n; i++) {
// computing f(i+l, nl, ..., nk)
result = h(i, result, nl, ..., nk);

b

return result;
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Recursive functions

e /:N' - Nis obtained by u-recursion or minimization from
g : N N

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<i:glj

undefined otherwise
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Recursive functions

e /:N' - Nis obtained by u-recursion or minimization from
g : N N

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<i:glj

undefined otherwise

® Notation: f(7)=ui(g(i,n)=0)
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Recursive functions

e /:N' - Nis obtained by u-recursion or minimization from
g : N N

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<i:glj

undefined otherwise

® Notation: f(7)=ui(g(i,n)=0)

¢ / need not be total even if g is
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Recursive functions

e /:N' - Nis obtained by u-recursion or minimization from
g : N N

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<i:glj

undefined otherwise
® Notation: f(7)=ui(g(i,n)=0)

¢ / need not be total even if ¢ is
o If f(n)=i,then g(j,7)is defined forall j <i
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Recursive functions

® /:N*f - Nis obtained by u-recursion or minimization from
g :NH1 L Nif

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<iig(jn)

undefined otherwise
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Recursive functions

® /:N*f - Nis obtained by u-recursion or minimization from
g :NH1 L Nif

. i if g(i,n)=0and Vj <i: g(j,n)>0
£ = g j<iig(jn)

undefined otherwise

® Equivalent to awhile loop:

i=0;

while (g(i, nl, ..., nk) > 0) {
i=1i+1;

}

return i;
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions

® containing the initial functions
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions

® containing the initial functions
Zero Z(n)=0
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions

® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk) =,
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk) =,

® closed under composition and primitive recursion
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk) =,
® closed under composition and primitive recursion

e The class of (partial) recursive functions is the smallest class of
functions
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
® containing the initial functions
Zero Z(n)=0
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Projection Hf(nl,...,nk) =,
® closed under composition and primitive recursion
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functions
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Recursive functions

e The class of primitive recursive functions is the smallest class of
functions
® containing the initial functions
Zero Z(n)=0
Successor S(n)=n+1
Projection Hf(nl,...,nk) =,
® closed under composition and primitive recursion

e The class of (partial) recursive functions is the smallest class of
functions

® containing the initial functions
® closed under composition, primitive recursion and minimization
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Recursive functions: Examples

® f(n)=n+2isSoS
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Recursive functions: Examples

® f(n)=n+2isSoS
® plus(n, m)=n+ m is got by primitive recursion from ¢ =1II| and
h=S8oI;

plus(0, m) = g(m) = IIj(m)
plus(n+1,m) = h(n,plus(n, m), m)
= (SoIB)(n, plus(n, m), m) = S(plus(n, m))
= (n+m)+1
= (n+1)+m

Suresh PLC 2021: Lecture 16 March 10, 2021

15/17



Recursive functions: Examples

® mult(n, m) = nm is got by primitive recursion from g = Z and
h = plus o (113,113)
mult(0, m) = g(m) = Z(m)
=0
mult(n+ 1, m)

h(n, mult(n, m), m)
= (pluso (113, 1013))(n, mult(n, m), m)
= nm+m

= (n+1)m
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Recursive functions: Examples

® cxp(n,m)=m" is got by primitive recursion from ¢ = S0 Z and
b =multo (113,117

exp(0, 72) = g(m) = (SoZ)(m)
=1
exp(n+1,m) = h(n,exp(n, m), m)
= (mult o (113,115))(n, exp(, m), m)
— mn+1
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Recursive functions: Examples

® cxp(n,m)=m" is got by primitive recursion from ¢ = S0 Z and
b =multo (113,117

exp(0, 72) = g(m) = (SoZ)(m)
=1
exp(n+1,m) = h(n,exp(n, m), m)
= (mult o (113,115))(n, exp(, m), m)
— mn+1

® f(m)=log, m is defined by minimization from g(7, m)=m—2"
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Recursive functions: Examples

® cxp(n,m)=m" is got by primitive recursion from ¢ = S0 Z and
b =multo (113,117

exp(0, 72) = g(m) = (SoZ)(m)
=1
exp(n+1,m) = h(n,exp(n, m), m)
= (mult o (113,115))(n, exp(, m), m)
— mn+1

® f(m)=log, m is defined by minimization from g(7, m)=m—2"
® First » such that m —2" =0 is [log, 7]
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Recursive functions: Examples

® cxp(n,m)=m" is got by primitive recursion from ¢ = S0 Z and
b =multo (113,117

exp(0, 72) = g(m) = (SoZ)(m)
=1
exp(n+1,m) = h(n,exp(n, m), m)
= (mult o (113,115))(n, exp(, m), m)
— mn+1

® f(m)=log, m is defined by minimization from g(7, m)=m—2"
® First » such that m —2" =0 is [log, 7]
® p—gqis0whenever p <gq
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Recursive functions: Examples

® cxp(n,m)=m" is got by primitive recursion from ¢ = S0 Z and
b =multo (113,117

exp(0, 72) = g(m) = (SoZ)(m)
=1
exp(n+1,m) = h(n,exp(n, m), m)
= (mult o (113,115))(n, exp(, m), m)
— mn+l

® f(m)=log, m is defined by minimization from g (7, m)=m—2"
® First » such that m —2" =0 is [log, 7]
® p—gqis0whenever p <gq
® We will see a definiition of subtraction later
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