Programming Language Concepts: Lecture 16

S P Suresh

March 10, 2021

λ-calculus: syntax

- Assume a countably infinite set Var of variables

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- Basic rule for computation (rewriting) is called β-reduction (or contraction)

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- $M[x:=N]$: substitute free occurrences of x in M by N

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- $M[x:=N]$: substitute free occurrences of x in M by N
- We rename the bound variables in M to avoid "capturing" free variables of N in M

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$

Church numerals

$\bullet[n]=\lambda f x \cdot f^{n} x$
$\bullet f^{0} x=x$

Church numerals

$$
\begin{aligned}
& \bullet[n]=\lambda f x \cdot f^{n} x \\
& \bullet f^{0} x=x \\
& \bullet \\
& f^{n+1} x=f\left(f^{n} x\right)
\end{aligned}
$$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$
- $[n] g y=(\lambda f x \cdot f(\cdots(f x) \cdots)) g y \xrightarrow{*}_{\beta} g(\cdots(g y) \cdots)=g^{n} y$

Encoding arithmetic functions

- Successor function: $\operatorname{succ}(n)=n+1$

Encoding arithmetic functions

- Successor function: $\operatorname{succ}(n)=n+1$
- $[s u c c]=\lambda p f x \cdot f(p f x)$

Encoding arithmetic functions

- Successor function: $\operatorname{succ}(n)=n+1$
- $[s u c c]=\lambda p f x \cdot f(p f x)$
- For all $n,[\operatorname{succ}][n] \xrightarrow{*} \beta[n+1]$

Encoding arithmetic functions

- Successor function: $\operatorname{succ}(n)=n+1$
- $[s u c c]=\lambda p f x \cdot f(p f x)$
- For all $n,[s u c c][n] \xrightarrow{*} \beta[n+1]$
- $[s u c c][n]$

$$
\begin{array}{rll}
(\lambda p f x \cdot f(p f x))[n] & \longrightarrow_{\beta} & \lambda f x \cdot f([n] f x) \\
& {\underset{\sim}{*}}_{\beta} & \lambda f x \cdot f\left(f^{n} x\right) \\
& = & \lambda f x \cdot f^{n+1} x \\
& = & {[n+1]}
\end{array}
$$

Encoding arithmetic functions

- Addition: plus $(m, n)=m+n$

Encoding arithmetic functions

- Addition: plus $(m, n)=m+n$
- [plus] $=\lambda p q f x \cdot p f(q f x)$

Encoding arithmetic functions

- Addition: plus $(m, n)=m+n$
- $[p l u s]=\lambda p q f x \cdot p f(q f x)$
- For all m and n, $[p l u s][m+n] \xrightarrow{*}_{\beta}[m+n]$

Encoding arithmetic functions

- Addition: plus $(m, n)=m+n$
- [plus] $=\lambda p q f x \cdot p f(q f x)$
- For all m and n, $[p l u s][m+n]{ }^{*}{ }_{\beta}[m+n]$
- [plus][m][n]

$$
\begin{aligned}
(\lambda p q f x \cdot p f(q f x))[m][n] & \longrightarrow_{\beta}(\lambda q f x \cdot[m] f(q f x))[n] \\
& \longrightarrow_{\beta} \lambda f x \cdot[m] f([n] f x) \\
& \uplus_{\beta} \lambda f x \cdot f^{m}([n] f x) \\
& \uplus_{\beta} \lambda f x \cdot f^{m}\left(f^{n} x\right) \\
& = \\
& \lambda f x \cdot f^{m+n} x \\
& {[m+n] }
\end{aligned}
$$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[m u l t]=\lambda p q f \cdot p(q f)$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[$ mult $]=\lambda p q f \cdot p(q f)$
- For all $m \geq 0,([n] f)^{m} y \xrightarrow{*}{ }_{\beta} f^{m n} y$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[$ mult $]=\lambda p q f \cdot p(q f)$
- For all $m \geq 0,([n] f)^{m} y \xrightarrow{*}{ }_{\beta} f^{m n} y$
- $([n] f)^{0} y=y=f^{0 \cdot n} y$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[$ mult $]=\lambda p q f \cdot p(q f)$
- For all $m \geq 0,([n] f)^{m} y \xrightarrow{*}{ }_{\beta} f^{m n} y$
- $([n] f)^{0} y=y=f^{0 \cdot n} y$
- $([n] f)^{m+1} y=([n] f)\left(([n] f)^{m} y\right)$

$$
\begin{aligned}
& \stackrel{*}{*}_{\beta}[n] f\left(f^{m n} y\right) \\
& \xrightarrow{*}_{\beta} f^{n}\left(f^{m n} y\right)=f^{m n+n} y=f^{(m+1) n} y
\end{aligned}
$$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[$ mult $]=\lambda p q f \cdot p(q f)$
- For all $m \geq 0,([n] f)^{m} y \xrightarrow{*}_{\beta} f^{m n} y$
- $([n] f)^{0} y=y=f^{0 \cdot n} y$
- $([n] f)^{m+1} y=([n] f)\left(([n] f)^{m} y\right)$

$$
\begin{aligned}
& \stackrel{*}{*}_{\beta}[n] f\left(f^{m n} y\right) \\
& \xrightarrow{*}_{\beta} f^{n}\left(f^{m n} y\right)=f^{m n+n} y=f^{(m+1) n} y
\end{aligned}
$$

- For all m and $n,[m u l t][m][n] \xrightarrow{*}{ }_{\beta}[m n]$

Encoding arithmetic functions

- Multiplication: $\operatorname{mult}(m, n)=m n$
- $[$ mult $]=\lambda p q f \cdot p(q f)$
- For all $m \geq 0,([n] f)^{m} y \xrightarrow{*}_{\beta} f^{m n} y$
- $([n] f)^{0} y=y=f^{0 \cdot n} y$
- $([n] f)^{m+1} y=([n] f)\left(([n] f)^{m} y\right)$

$$
\begin{aligned}
& \stackrel{*}{*}_{\beta}[n] f\left(f^{m n} y\right) \\
& \xrightarrow{*}_{\beta} f^{n}\left(f^{m n} y\right)=f^{m n+n} y=f^{(m+1) n} y
\end{aligned}
$$

- For all m and $n,[m u l t][m][n]{ }^{*}{ }_{\beta}[m n]$
- ($\lambda p q f \cdot p(q f))[m][n] \quad{ }^{*}{ }_{\beta} \quad \lambda f \cdot[m]([n] f)$

$$
\begin{array}{ll}
=_{*}^{*} & \lambda f \cdot\left(\lambda g y \cdot g^{m} y\right)([n] f) \\
\xrightarrow{*}_{\beta} & \lambda f \cdot\left(\lambda y \cdot([n] f)^{m} y\right) \\
\xrightarrow{*}^{*} & \lambda f \cdot \lambda y \cdot f^{m n} y=[m n]
\end{array}
$$

Encoding arithmetic functions

- Exponentiation: $\exp (m, n)=n^{m}$

Encoding arithmetic functions

- Exponentiation: $\exp (m, n)=n^{m}$
- $[$ exp $]=\lambda p q \cdot p q$

Encoding arithmetic functions

- Exponentiation: $\exp (m, n)=n^{m}$
- $[$ exp] $=\lambda p q \cdot p q$
- For all $m \geq 1$ and $n \geq 0,[\exp][m][n] \xrightarrow{*}{ }_{\beta}\left[n^{m}\right]$

Encoding arithmetic functions

- Exponentiation: $\exp (m, n)=n^{m}$
- $[\exp]=\lambda p q \cdot p q$
- For all $m \geq 1$ and $n \geq 0,[\exp][m][n] \xrightarrow{*}{ }_{\beta}\left[n^{m}\right]$
- Proof: Exercise!

Computability

- Church numerals encode $n \in \mathbb{N}$

Computability

- Church numerals encode $n \in \mathbb{N}$
- Can we encode computable functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$?

Computability

- Church numerals encode $n \in \mathbb{N}$
- Can we encode computable functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$?
- Let $[f]$ be the encoding of f

Computability

- Church numerals encode $n \in \mathbb{N}$
- Can we encode computable functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$?
- Let $[f]$ be the encoding of f
- We want $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right]$

Computability

- Church numerals encode $n \in \mathbb{N}$
- Can we encode computable functions $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$?
- Let $[f]$ be the encoding of f
- We want $[f]\left[n_{1}\right] \cdots\left[n_{k}\right] \xrightarrow{*}{ }_{\beta}\left[f\left(n_{1}, \ldots, n_{k}\right)\right]$
- We need a syntax for computable functions

Recursive functions

- Recursive functions [Dedelkind, Skolem, Gödel, Kleene]

Recursive functions

- Recursive functions [Dedelkind, Skolem, Gödel, Kleene]
- Equivalent to Turing machines

Recursive functions

- Recursive functions [Dedelkind, Skolem, Gödel, Kleene]
- Equivalent to Turing machines
- $f: \mathbb{N}^{l} \rightarrow \mathbb{N}$ is obtained by composition from $g: \mathbb{N}^{l} \rightarrow \mathbb{N}$ and $h_{1}, \ldots, h_{l}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})=g\left(h_{1}(\vec{n}), \ldots, h_{l}(\vec{n})\right)
$$

Recursive functions

- Recursive functions [Dedelkind, Skolem, Gödel, Kleene]
- Equivalent to Turing machines
- $f: \mathbb{N}^{l} \rightarrow \mathbb{N}$ is obtained by composition from $g: \mathbb{N}^{l} \rightarrow \mathbb{N}$ and $h_{1}, \ldots, h_{l}: \mathbb{N}^{k} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})=g\left(h_{1}(\vec{n}), \ldots, h_{l}(\vec{n})\right)
$$

- Notation: $f=g \circ\left(h_{1}, h_{2}, \ldots, h_{l}\right)$

Recursive functions

- $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is obtained by primitive recursion from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{aligned}
$$

Recursive functions

- $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is obtained by primitive recursion from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{aligned}
$$

- Note If g and b are total functions, so is f

Recursive functions

- $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is obtained by primitive recursion from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{aligned}
$$

Recursive functions

- $f: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ is obtained by primitive recursion from $g: \mathbb{N}^{k} \rightarrow \mathbb{N}$ and $h: \mathbb{N}^{k+2} \rightarrow \mathbb{N}$ if

$$
\begin{aligned}
f(0, \vec{n}) & =g(\vec{n}) \\
f(i+1, \vec{n}) & =h(i, f(i, \vec{n}), \vec{n})
\end{aligned}
$$

- Equivalent to a for loop:

$$
\left.\begin{array}{l}
\text { result }=g(n l, \ldots, n k) ; \quad / / f(0, n l, \ldots, n k) \\
\text { for }(i=0 ; i<n ; i++)\{ \\
\quad \text { result }=h(i, \text { rempult, } n l, \ldots, n k) ;
\end{array}\right\} \begin{aligned}
& \text { \} } \\
& \text { return result; }
\end{aligned}
$$

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Notation: $f(\vec{n})=\mu i(g(i, \vec{n})=0)$

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Notation: $f(\vec{n})=\mu i(g(i, \vec{n})=0)$
- f need not be total even if g is

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Notation: $f(\vec{n})=\mu i(g(i, \vec{n})=0)$
- f need not be total even if g is
- If $f(\vec{n})=i$, then $g(j, \vec{n})$ is defined for all $j \leq i$

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

Recursive functions

- $f: \mathbb{N}^{k} \rightarrow \mathbb{N}$ is obtained by μ-recursion or minimization from $g: \mathbb{N}^{k+1} \rightarrow \mathbb{N}$ if

$$
f(\vec{n})= \begin{cases}i & \text { if } g(i, \vec{n})=0 \text { and } \forall j<i: g(j, \vec{n})>0 \\ \text { undefined } & \text { otherwise }\end{cases}
$$

- Equivalent to a while loop:

```
i = 0;
while (g(i, nl, ..., nk) > 0) {
    i = i + l;
}
return i;
```


Recursive functions

- The class of primitive recursive functions is the smallest class of functions

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\text { Zero } Z(n)=0
$$

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
\text { Zero } & Z(n)=0 \\
\text { Successor } & S(n)=n+1
\end{aligned}
$$

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
\text { Zero } & Z(n)=0 \\
\text { Successor } & S(n)=n+1 \\
\text { Projection } & \Pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
\end{aligned}
$$

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
\text { Zero } & Z(n)=0 \\
\text { Successor } & S(n)=n+1 \\
\text { Projection } & \Pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
\end{aligned}
$$

(2) closed under composition and primitive recursion

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
\text { Zero } & Z(n)=0 \\
\text { Successor } & S(n)=n+1 \\
\text { Projection } & \Pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
\end{aligned}
$$

(2) closed under composition and primitive recursion

- The class of (partial) recursive functions is the smallest class of functions

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
\text { Zero } & Z(n)=0 \\
\text { Successor } & S(n)=n+1 \\
\text { Projection } & \Pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
\end{aligned}
$$

(2) closed under composition and primitive recursion

- The class of (partial) recursive functions is the smallest class of functions
(1) containing the initial functions

Recursive functions

- The class of primitive recursive functions is the smallest class of functions
(1) containing the initial functions

$$
\begin{aligned}
& \text { Zero } Z(n)=0 \\
& \text { Successor } S(n)=n+1 \\
& \text { Projection } \Pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)=n_{i}
\end{aligned}
$$

(2) closed under composition and primitive recursion

- The class of (partial) recursive functions is the smallest class of functions
(1) containing the initial functions

2 closed under composition, primitive recursion and minimization

Recursive functions: Examples

- $f(n)=n+2$ is $S \circ S$

Recursive functions: Examples

- $f(n)=n+2$ is $S \circ S$
- $\operatorname{plus}(n, m)=n+m$ is got by primitive recursion from $g=\Pi_{1}^{1}$ and $h=S \circ \Pi_{2}^{3}$

$$
\left.\begin{array}{rl}
\operatorname{plus}(0, m) & =g(m) \\
& =\Pi_{1}^{1}(m) \\
\operatorname{plus}(n+1, m) & =h(n, \operatorname{plus}(n, m), m) \\
& =\left(S \circ \Pi_{2}^{3}\right)(n, \operatorname{plus}(n, m), m)
\end{array}\right)=S(p l u s(n, m)),
$$

Recursive functions: Examples

- $\operatorname{mult}(n, m)=n m$ is got by primitive recursion from $g=Z$ and $h=$ plus $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{aligned}
\operatorname{mult}(0, m)=g(m) & =Z(m) \\
& =0
\end{aligned}
$$

$$
\operatorname{mult}(n+1, m)=h(n, \operatorname{mult}(n, m), m)
$$

$$
=\left(\text { plus } \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \operatorname{mult}(n, m), m)
$$

$$
=n m+m
$$

$$
=(n+1) m
$$

Recursive functions: Examples

- $\exp (n, m)=m^{n}$ is got by primitive recursion from $g=S \circ Z$ and $h=$ mult $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{array}{rlrl}
\exp (0, m) & =g(m) & & =(S \circ Z)(m) \\
& =1 \\
\exp (n+1, m) & =b(n, \exp (n, m), m) & \\
& =\left(\text { mult } \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \exp (n, m), m) \\
& =m^{n} \cdot m \\
& =m^{n+1}
\end{array}
$$

Recursive functions: Examples

- $\exp (n, m)=m^{n}$ is got by primitive recursion from $g=S \circ Z$ and $h=$ mult $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{array}{rlrl}
\exp (0, m) & =g(m) & =(S \circ Z)(m) \\
& =1 \\
\exp (n+1, m) & =h(n, \exp (n, m), m) & & \\
& =\left(\text { mult } \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \exp (n, & m), m) \\
& & =m^{n} \cdot m \\
& =m^{n+1}
\end{array}
$$

- $f(m)=\log _{2} m$ is defined by minimization from $g(n, m)=m-2^{n}$

Recursive functions: Examples

- $\exp (n, m)=m^{n}$ is got by primitive recursion from $g=S \circ Z$ and $h=$ mult $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{array}{rlrl}
\exp (0, m) & =g(m) & =(S \circ Z)(m) \\
& =1 \\
\exp (n+1, m) & =h(n, \exp (n, m), m) & & \\
& =\left(\text { mult } \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \exp (n, & m), m) \\
& & =m^{n} \cdot m \\
& =m^{n+1}
\end{array}
$$

- $f(m)=\log _{2} m$ is defined by minimization from $g(n, m)=m-2^{n}$
- First n such that $m-2^{n}=0$ is $\left\lceil\log _{2} m\right\rceil$

Recursive functions: Examples

- $\exp (n, m)=m^{n}$ is got by primitive recursion from $g=S \circ Z$ and $h=$ mult $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{array}{rlrl}
\exp (0, m) & =g(m) & =(S \circ Z)(m) \\
& =1 \\
\exp (n+1, m) & =h(n, \exp (n, m), m) & & \\
& =\left(\text { mult } \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \exp (n, & m), m) \\
& & =m^{n} \cdot m \\
& =m^{n+1}
\end{array}
$$

- $f(m)=\log _{2} m$ is defined by minimization from $g(n, m)=m-2^{n}$
- First n such that $m-2^{n}=0$ is $\left\lceil\log _{2} m\right\rceil$
- $p-q$ is 0 whenever $p \leqslant q$

Recursive functions: Examples

- $\exp (n, m)=m^{n}$ is got by primitive recursion from $g=S \circ Z$ and $h=$ mult $\circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)$

$$
\begin{aligned}
\exp (0, m) \quad=g(m) & =(S \circ Z)(m) \\
& =1
\end{aligned}
$$

$$
\exp (n+1, m)=h(n, \exp (n, m), m)
$$

$$
=\left(m u l t \circ\left(\Pi_{2}^{3}, \Pi_{3}^{3}\right)\right)(n, \exp (n, m), m)
$$

$$
=m^{n} \cdot m
$$

$$
=m^{n+1}
$$

- $f(m)=\log _{2} m$ is defined by minimization from $g(n, m)=m-2^{n}$
- First n such that $m-2^{n}=0$ is $\left\lceil\log _{2} m\right\rceil$
- $p-q$ is 0 whenever $p \leqslant q$
- We will see a definiition of subtraction later

