Programming Language Concepts: Lecture 15

S P Suresh

March 8, 2021

λ-calculus

- A notation for computable functions

λ-calculus

- A notation for computable functions
- Alonzo Church

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!
- Need an intensional definition

λ-calculus

- A notation for computable functions
- Alonzo Church
- How do we describe a function?
- By its graph - a binary relation between domain and codomain
- Single-valued
- Extensional - graph completely defines the function
- An extensional definition is not suitable for computation
- All sorting functions are the same!
- Need an intensional definition
- How are outputs computed from inputs?

λ-calculus: syntax

- Assume a countably infinite set Var of variables

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f
- MN: Application

λ-calculus: syntax

- Assume a countably infinite set Var of variables
- The set Λ of lambda expressions is given by

$$
\Lambda=x|\lambda x \cdot M| M N
$$

where $x \in \operatorname{Var}$ and $M, N \in \Lambda$.

- $\lambda x . M$: Abstraction
- A function of x with computation rule M.
- "Abstracts" the computation rule M over arbitrary input values x
- Like writing $f(x)=e$, but not assigning a name f
- MN: Application
- Apply the function M to the argument N

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data

λ-calculus: syntax...

- Can write expressions such as $x x$ - no types!
- What can we do without types?
- Set theory as a basis for mathematics
- Bit strings in memory
- In an untyped world, some data is meaningful
- Functions manipulate meaningful data to yield meaningful data
- Can also apply functions to non-meaningful data, but the result has no significance

λ-calculus: syntax...

- Application associates to the left

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. ($\lambda y . M)$ is abbreviated $\lambda x . \lambda y . M$

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y . M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x . M N$ means ($\lambda x .(M N))$. Everything after the \cdot is the body.

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x . M N$ means $(\lambda x .(M N))$. Everything after the \cdot is the body.
- Use ($\lambda x . M) N$ for applying $\lambda x . M$ to N

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y . M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x . M N$ means ($\lambda x .(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x . M) N$ for applying $\lambda x . M$ to N
- Examples

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y . M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x . M N$ means ($\lambda x .(M N))$. Everything after the \cdot is the body.
- Use ($\lambda x . M) N$ for applying $\lambda x . M$ to N
- Examples
- $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z . z)$ is short for $((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z \cdot z)$

λ-calculus: syntax...

- Application associates to the left
- $(M N) P$ is abbreviated $M N P$
- Abstraction associates to the right
- λx. $(\lambda y \cdot M)$ is abbreviated $\lambda x . \lambda y \cdot M$
- More drastically, $\lambda x_{1} \cdot\left(\lambda x_{2} \cdots\left(\lambda x_{n} \cdot M\right) \cdots\right)$ is abbreviated $\lambda x_{1} x_{2} \cdots x_{n} \cdot M$
- $\lambda x . M N$ means ($\lambda x .(M N))$. Everything after the \cdot is the body.
- Use $(\lambda x . M) N$ for applying $\lambda x . M$ to N
- Examples
- $(\lambda x \cdot x)(\lambda y \cdot y)(\lambda z . z)$ is short for $((\lambda x \cdot x)(\lambda y \cdot y))(\lambda z . z)$
- $\lambda f \cdot(\lambda u \cdot f(u u))(\lambda u \cdot f(u u))$ is short for $(\lambda f \cdot((\lambda u \cdot f(u u))(\lambda u \cdot f(u u))))$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow{ }_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x . M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need
- $M N$ is meaningful only if M is of the form $\lambda x . P$

The computation rule β

- Basic rule for computation (rewriting) is called β-reduction (or contraction)
- $(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]$
- A term of the form $(\lambda x . M) N$ is a redex
- $M[x:=N]$ is the contractum
- $M[x:=N]$: substitute free occurrences of x in M by N
- This is the normal rule we use for functions:
- $f(x)=2 x^{3}+5 x+3$
- $f(7)=\left(2 x^{3}+5 x+3\right)[x:=7]=2 \cdot 7^{3}+5 \cdot 7+3=724$
- β is the only rule we need
- $M N$ is meaningful only if M is of the form $\lambda x . P$
- Cannot do anything with terms like $x x$ or $(y(\lambda x . x))(\lambda y \cdot y)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$
- $B V(\lambda x . M)=B V(M) \cup(\{x\} \cap F V(M))$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$
- $B V(\lambda x . M)=B V(M) \cup(\{x\} \cap F V(M))$
- Example: $M=x y(\lambda x . z)(\lambda y \cdot y)$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$
- $B V(\lambda x . M)=B V(M) \cup(\{x\} \cap F V(M))$
- Example: $M=x y(\lambda x . z)(\lambda y \cdot y)$
- $F V(M)=\{x, y, z\}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$
- $B V(\lambda x . M)=B V(M) \cup(\{x\} \cap F V(M))$
- Example: $M=x y(\lambda x . z)(\lambda y \cdot y)$
- $F V(M)=\{x, y, z\}$
- $B V(M)=\{y\}$

Free and bound variables

- An occurrence of a variable x in M is free if it does not occur in the scope of a λx inside M
- $F V(M)$: set of all variables occurring free in M
- $F V(x)=\{x\}$, for any $x \in \operatorname{Var}$
- $F V(M N)=F V(M) \cup F V(N)$
- $F V(\lambda x . M)=F V(M) \backslash\{x\}$
- $B V(M)$: set of all variables occurring bound in M
- $B V(x)=\varnothing$, for any $x \in \operatorname{Var}$
- $B V(M N)=B V(M) \cup B V(N)$
- $B V(\lambda x . M)=B V(M) \cup(\{x\} \cap F V(M))$
- Example: $M=x y(\lambda x . z)(\lambda y \cdot y)$
- $F V(M)=\{x, y, z\}$
- $B V(M)=\{y\}$
- Warning: Possible for a variable to be both in $F V(M)$ and $B V(M)$

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$

Variable capture

- Consider $N=\lambda x .(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second

Variable capture

- Consider $N=\lambda x$. $(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second - M fixes the first argument of N

Variable capture

- Consider $N=\lambda x$. $(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!

Variable capture

- Consider $N=\lambda x$. $(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for inner x has been "confused" with the y bound by λy

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for inner x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for inner x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for inner x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$
- Renaming bound variables does not change the funciton

Variable capture

- Consider $N=\lambda x \cdot(\lambda y \cdot x y)$ and $M=N y$
- N takes two arguments and applies the first argument to the second
- M fixes the first argument of N
- Meaning of M : Take an argument and apply y to it!
- β-reduction on M yields $\lambda y \cdot y y$
- Meaning: Take an argument and apply it to itself!
- The y substituted for inner x has been "confused" with the y bound by λy
- Rename bound variables to avoid capture
- $(\lambda x \cdot(\lambda y \cdot x y)) y=(\lambda x \cdot(\lambda z \cdot x z)) y \longrightarrow_{\beta} \lambda z \cdot y z$
- Renaming bound variables does not change the funciton
- $f(x)=2 x+7$ vs $f(z)=2 z+7$

$M[x:=N]$

- $x[x:=N]=N$

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x . P$

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x . P)[x:=N]=\lambda x . P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin F V(N)$

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x . P)[x:=N]=\lambda x . P$
- $(\lambda y \cdot P)[x:=N]=\lambda y .(P[x:=N])$, where $y \neq x$ and $y \notin F V(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in F V(N)$, and z does not occur in P or N

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x . P)[x:=N]=\lambda x . P$
- $(\lambda y \cdot P)[x:=N]=\lambda y .(P[x:=N])$, where $y \neq x$ and $y \notin F V(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in F V(N)$, and z does not occur in P or N
- We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N

$$
M[x:=N]
$$

- $x[x:=N]=N$
- $y[x:=N]=y$, where $y \in \operatorname{Var}$ and $y \neq x$
- $(P Q)[x:=N]=(P[x:=N])(Q[x:=N])$
- $(\lambda x \cdot P)[x:=N]=\lambda x . P$
- $(\lambda y \cdot P)[x:=N]=\lambda y \cdot(P[x:=N])$, where $y \neq x$ and $y \notin F V(N)$
- $(\lambda y \cdot P)[x:=N]=\lambda z \cdot((P[y:=z])[x:=N])$, where $y \neq x, y \in F V(N)$, and z does not occur in P or N
- We fix a global ordering on Var and choose z to be the first variable not occurring in either P or N
- Makes the definition deterministic

Applying β in context

- We can contract a redex appearing anywhere inside an expression

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

$$
\frac{M \longrightarrow_{\beta} M^{\prime}}{M N \longrightarrow{ }_{\beta} M^{\prime} N} \quad \frac{N \longrightarrow_{\beta} N^{\prime}}{M N \longrightarrow_{\beta} M N^{\prime}} \quad \frac{M \longrightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M^{\prime}}
$$

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

$$
\frac{M \longrightarrow_{\beta} M^{\prime}}{M N \longrightarrow{ }_{\beta} M^{\prime} N} \quad \frac{N \longrightarrow_{\beta} N^{\prime}}{M N \longrightarrow_{\beta} M N^{\prime}} \quad \frac{M \longrightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M^{\prime}}
$$

- $M \xrightarrow{*}{ }_{\beta} N$: repeatedly apply β-reduction to get N

Applying β in context

- We can contract a redex appearing anywhere inside an expression
- Captured by the following rules

$$
(\lambda x \cdot M) N \longrightarrow_{\beta} M[x:=N]
$$

$$
M \longrightarrow_{\beta} M^{\prime}
$$

$$
\frac{N \longrightarrow_{\beta} N^{\prime}}{M N \longrightarrow{ }_{\beta} M N^{\prime}}
$$

$$
\frac{M \longrightarrow_{\beta} M^{\prime}}{\lambda x \cdot M \longrightarrow_{\beta} \lambda x \cdot M^{\prime}}
$$

- $M \xrightarrow{*}{ }_{\beta} N$: repeatedly apply β-reduction to get N
- There is a sequence $M_{0}, M_{1}, \ldots, M_{k}$ such that

$$
M=M_{0} \longrightarrow_{\beta} M_{1} \longrightarrow_{\beta} \cdots \longrightarrow_{\beta} M_{k}=N
$$

Encoding arithmetic

- In set theory, use nesting to encode numbers

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of n : $[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus
- $[0]=\varnothing$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of n : $[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus
- $[0]=\varnothing$
- $[1]=\{\varnothing\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus
- $[0]=\varnothing$
- [1] $=\{\varnothing\}$
- $[2]=\{\varnothing,\{\varnothing\}\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus
- $[0]=\varnothing$
- $[1]=\{\varnothing\}$
- $[2]=\{\varnothing,\{\varnothing\}\}$
- $[3]=\{\varnothing,\{\varnothing\},\{\varnothing,\{\phi\}\}\}$

Encoding arithmetic

- In set theory, use nesting to encode numbers
- Encoding of $n:[n]$
- $[n]=\{[0],[1], \ldots,[n-1]\}$
- Thus
- $[0]=\varnothing$
- $[1]=\{\varnothing\}$
- $[2]=\{\varnothing,\{\varnothing\}\}$
- $[3]=\{\varnothing,\{\varnothing\},\{\varnothing,\{\varnothing\}\}\}$
- In λ-calculus, we encode n by the number of times we apply a function (successor) to an element (zero)

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$

Church numerals

$\bullet[n]=\lambda f x \cdot f^{n} x$
$\bullet f^{0} x=x$

Church numerals

$$
\begin{aligned}
& \bullet[n]=\lambda f x \cdot f^{n} x \\
& \bullet f^{0} x=x \\
& \bullet \\
& f^{n+1} x=f\left(f^{n} x\right)
\end{aligned}
$$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$

Church numerals

- $[n]=\lambda f x \cdot f^{n} x$
- $f^{0} x=x$
- $f^{n+1} x=f\left(f^{n} x\right)$
- Thus $f^{n} x=f(f(\cdots(f x) \cdots))$, where f is applied repeatedly n times
- For instance
- $[0]=\lambda f x \cdot x$
- [1] $=\lambda f x \cdot f x$
- [2] $=\lambda f x \cdot f(f x)$
- [3] $=\lambda f x \cdot f(f(f x))$
- $[n] g y=(\lambda f x \cdot f(\cdots(f x) \cdots)) g y \xrightarrow{*}_{\beta} g(\cdots(g y) \cdots)=g^{n} y$

