Programming Language Concepts: Lecture 14

S P Suresh

March 3, 2021

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

A-calculus

® A notation for computable functions

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church

® How do we describe a function?

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph - a binary relation between domain and codomain

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued
® Extensional - graph completely defines the function

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued
® Extensional - graph completely defines the function

¢ An extensional definition is not suitable for computation

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

® A notation for computable functions
® Alonzo Church
® How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued
® Extensional - graph completely defines the function

¢ An extensional definition is not suitable for computation

® All sorting functions are the same!

Suresh PLC 2021: Lecture 14 March 3, 2021 2/12

A-calculus

A notation for computable functions
® Alonzo Church
How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued
® Extensional - graph completely defines the function

An extensional definition is not suitable for computation
® All sorting functions are the same!

Need an intensional definition

Suresh PLC 2021: Lecture 14 March 3, 2021

2/12

A-calculus

A notation for computable functions
® Alonzo Church
How do we describe a function?

® By its graph - a binary relation between domain and codomain
® Single-valued
® Extensional - graph completely defines the function

An extensional definition is not suitable for computation
® All sorting functions are the same!
Need an intensional definition

® How are outputs computed from inputs?

Suresh PLC 2021: Lecture 14 March 3, 2021

2/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.
® JAx.M: Abstraction

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.
® JAx.M: Abstraction

® A function of x with computation rule /7.

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.
® JAx.M: Abstraction

® A function of x with computation rule /7.
® “Abstracts” the computation rule M over arbitrary input values x

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

¢ Assume a countably infinite set Var of variables

¢ The set A of lambda expressions is given by
A=x|Ax.M | MN

where x € Var and M, N € A.
® JAx.M: Abstraction

® A function of x with computation rule /7.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name /

Suresh PLC 2021: Lecture 14 March 3, 2021 3/12

A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.
Ax.M: Abstraction

® A function of x with computation rule /7.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name /

MN: Application

Suresh PLC 2021: Lecture 14 March 3, 2021

3/12

A-calculus: syntax

Assume a countably infinite set Var of variables

The set A of lambda expressions is given by
A=x|2ax.M|MN

where x € Var and M, N € A.
Ax.M: Abstraction
® A function of x with computation rule /7.
® “Abstracts” the computation rule M over arbitrary input values x
® Like writing f(x) = e, but not assigning a name /
MN: Application
® Apply the function M to the argument V

Suresh PLC 2021: Lecture 14 March 3, 2021

3/12

A-calculus: syntax...

e Can write expressions such as xx — no types!

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

e Can write expressions such as xx — no types!

e What can we do without types?

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

e Can write expressions such as xx — no types!
e What can we do without types?

® Set theory as a basis for mathematics

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

e Can write expressions such as xx — no types!
e What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

e Can write expressions such as xx — no types!
e What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

¢ Inan untyped world, some data is meaningful

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

Can write expressions such as xx — no types!
What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

In an untyped world, some data is meaningful

Functions manipulate meaningful data to yield meaningful data

Suresh PLC 2021: Lecture 14 March 3, 2021

4/12

A-calculus: syntax...

Can write expressions such as xx — no types!
What can we do without types?

® Set theory as a basis for mathematics
® Bit strings in memory

In an untyped world, some data is meaningful
Functions manipulate meaningful data to yield meaningful data

Can also apply functions to non-meaningful data, but the result has

no significance

Suresh PLC 2021: Lecture 14 March 3, 2021 4/12

A-calculus: syntax...

e Application associates to the left

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right

Suresh PLC 2021: Lecture 14

March 3, 2021

5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP

® Abstraction associates to the right
® jx.(2y.M) is abbreviated Ax.1y.M

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right

® jx.(2y.M) is abbreviated Ax.1y.M
® More drastically, 2x;.(Ax, -+ (1x,.M)--) is abbreviated Ax, x, -+ - x .M

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right

® jx.(2y.M) is abbreviated Ax.1y.M
® More drastically, 2x;.(Ax, -+ (1x,.M)--) is abbreviated Ax, x, -+ - x .M
® Jx.MN means (Ax.(MN)). Everything after the - is the body.

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
® jx.(2y.M) is abbreviated Ax.1y.M
® More drastically, 2x;.(Ax, -+ (1x,.M)--) is abbreviated Ax, x, -+ - x .M

® Jx.MN means (Ax.(MN)). Everything after the - is the body.
® Use (Ax.M)N for applying Ax.M to N

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
® jx.(2y.M) is abbreviated Ax.1y.M
® More drastically, 2x;.(Ax, -+ (1x,.M)--) is abbreviated Ax, x, -+ - x .M

® Jx.MN means (Ax.(MN)). Everything after the - is the body. ’
® Use (Ax.M)N for applying Ax.M to N

e Examples

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
® Jx.(Ay.M) is abbreviated 2x.4y.M
® More drastically, x,.(Ax, -+ (2x,.M)---) is abbreviated Ax,x, -+~ x, .M

® jx.MN means (Ax.(MN)). Everything after the - is the body.
® Use (Ax.M)N for applying Ax.M to N

e Examples

® (Jx.x)(Ay.y)(2z.z) is short for (Ax.x)(2y.7))(Az.2)

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

A-calculus: syntax...

e Application associates to the left
® (MN)P is abbreviated MNP
® Abstraction associates to the right
® Jx.(Ay.M) is abbreviated 2x.4y.M
More drastically, Ax,.(Ax, - (Ax,.M)--) is abbreviated Ax; x, -+ x, .M

Ax.MN means (Ax.(MN)). Everything after the - is the body.
Use (Ax.M)N for applying Ax.M to N

e Examples
® (Jx.x)(Ay.y)(2z.z) is short for (Ax.x)(2y.7))(Az.2)
® Nf.(Au.f(un))Au.f(uun))is short for (Af((Au.f(uu))(du. f(uu))))

Suresh PLC 2021: Lecture 14 March 3, 2021 5/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® (Ax.M)N —, M[x:=N]

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum

® M|[x := N]: substitute free occurrences of x in M by N

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum

® M|[x := N]: substitute free occurrences of x in M by N

® This is the normal rule we use for functions:

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum
® M|[x := N]: substitute free occurrences of x in M by N

® This is the normal rule we use for functions:
® f(x)=2x>+5x+3

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

® Basic rule for computation (rewriting) is called g-reduction (or
contraction)
® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum

® M|[x := N]: substitute free occurrences of x in M by N
¢ This is the normal rule we use for functions:

® f(x)=2x>+5x+3

® f(7)=2x>+5x+3)[x:=7]=2-7°+5-7+3=724

Suresh PLC 2021: Lecture 14 March 3, 2021 6/12

The computation rule 3

Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® (Ax.M)N —, M[x:=N]

® A term of the form (Ax.M)N is a redex

® M|[x:=N]is the contractum
M|x := N: substitute free occurrences of x in M by NV
This is the normal rule we use for functions:

® f(x)=2x>+5x+3

® f(7)=2x>+5x+3)[x:=7]=2-7°+5-7+3=724

B is the only rule we need

Suresh PLC 2021: Lecture 14 March 3, 2021

6/12

The computation rule 3

Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum
M|x := N: substitute free occurrences of x in M by NV
'This is the normal rule we use for functions:
® f(x)=2x>+5x+3
o F(7)=02x°+5x+3)[x:=7]=2-7°+5-7+3=724
B is the only rule we need
MN is meaningful only if A/ is of the form Ax.P

Suresh PLC 2021: Lecture 14 March 3, 2021

6/12

The computation rule 3

Basic rule for computation (rewriting) is called g-reduction (or
contraction)

® (Ax.M)N —, M[x:=N]
® A term of the form (Ax.M)N is a redex
® M|[x:=N]is the contractum
M|x := N: substitute free occurrences of x in M by NV
This is the normal rule we use for functions:
® f(x)=2x>+5x+3
o F(7)=02x°+5x+3)[x:=7]=2-7°+5-7+3=724
B is the only rule we need
MN is meaningful only if A/ is of the form Ax.P
® Cannot do anything with terms like xx or (y(1x.x))(27.y)

Suresh PLC 2021: Lecture 14 March 3, 2021

6/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the
scope of a Ax inside M/

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in M is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A/ is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A/ is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
e EV(MN)=FV(M)UFV(N)

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A/ is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
e EV(MN)=FV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
e EV(MN)=FV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
® BV(M): set of all variables occurring bound in M/

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
e FV(MN)=FV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
® BV(M): set of all variables occurring bound in M/
® BV(x) =g, for any x € Var

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
o FV(MN)=FEV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
® BV(M): set of all variables occurring bound in M/
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

® An occurrence of a variable x in A/ is free if it does not occur in the
scope of a Ax inside M/
® FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
o FV(MN)=FEV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
® BV(M): set of all variables occurring bound in //
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)
o BV(ax.M) = BV(M)U({x} NEV(M))

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

An occurrence of a variable x in /M is free if it does not occur in the
scope of a Ax inside M/
FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
o FV(MN)=FEV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
BV(M): set of all variables occurring bound in //
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)
o BV(ax.M) = BV(M)U({x} NEV(M))
Example: M = xy(Ax.z)(2y.y)

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

An occurrence of a variable x in /M is free if it does not occur in the
scope of a Ax inside M/
FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
o FV(MN)=FEV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
BV(M): set of all variables occurring bound in //
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)
o BV(ax.M) = BV(M)U({x} NEV(M))
Example: M = xy(Ax.z)(2y.y)
o FV(M)={x. .2}

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

An occurrence of a variable x in /M is free if it does not occur in the
scope of a Ax inside M/
FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
* EV(MN)=EV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
BV(M): set of all variables occurring bound in //
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)
. BV()tx M) = BV(M)U({x} NEV(M))

Example: M = xy(dx.z)(2y.y)
* FV(M) {x. 7,2}
* BV(M)={y}

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Free and bound variables

An occurrence of a variable x in /M is free if it does not occur in the
scope of a Ax inside M/
FV(M): set of all variables occurring free in M/
® FV(x)={x}, for any x € Var
o FV(MN)=FEV(M)UFV(N)
o FV(ax.M)=FV(M)\ {x)
BV(M): set of all variables occurring bound in //
® BV(x)=@, for any x Var
e BV(MN) = BV(M)UBV(N)
o BV(ax.M) = BV(M)U({x} NEV(M))
Example: M = xy(Ax.z)(2y.y)
o FV(M)={x. .2}
* BV(M)={y}
® Warning: Possible for a variable to be both in FV(M) and BV(M)

Suresh PLC 2021: Lecture 14 March 3, 2021 7/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny

® N takes two arguments and applies the first argument to the second

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy

® Meaning: Take an argument and apply it to itself!

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy
® Meaning: Take an argument and apply it to itself!
e The y substituted for inner x has been “confused” with the y bound
by 2y

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy
® Meaning: Take an argument and apply it to itself!
e The y substituted for inner x has been “confused” with the y bound
by 2y
e Rename bound variables to avoid capture

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy
® Meaning: Take an argument and apply it to itself!
e The y substituted for inner x has been “confused” with the y bound
by 2y
e Rename bound variables to avoid capture

® (Ax.(2y.xy))y = (Ax.(Az.x2))y — 4 Az.y2

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy
® Meaning: Take an argument and apply it to itself!
e The y substituted for inner x has been “confused” with the y bound
by 2y
® Rename bound variables to avoid capture
® (Ax.(2y.xy))y = (Ax.(Az.x2))y — 4 Az.y2
® Renaming bound variables does not change the funciton

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

Variable capture

® Consider N =2x.(Ay.xy)and M =Ny
® [V takes two arguments and applies the first argument to the second
® M fixes the first argument of V
® Meaning of M: Take an argument and apply y to it!

¢ p-reduction on M yields 1y.yy
® Meaning: Take an argument and apply it to itself!
e The y substituted for inner x has been “confused” with the y bound
by 1y
e Rename bound variables to avoid capture
® (Ax.(2y.xy))y = (Ax.(Az.x2))y — 4 Az.y2
® Renaming bound variables does not change the funciton
® fx)=2x+7vs f(z)=2z+7

Suresh PLC 2021: Lecture 14 March 3, 2021 8/12

M[x :=N]

® x[x:=N]=N

Suresh PLC 2021: Lecture 14 March 3, 2021 9/12

® x[x:=N]=N
® y[x:=N]=y,where ye Varand y £ x

Suresh PLC 2021: Lecture 14 March 3, 2021 9/12

® x[x:=N]=N
® y[x:=N]=y,where ye Varand y £ x
o (PQ)xi=N]=(Plx = N(Qlx = N)

Suresh PLC 2021: Lecture 14

March 3, 2021

9/12

® x[x:=N]=N

® y[x:=N]=y,where ye Varand y £ x
o (PQx = N=(Px = N(Qlx = N)
® Ax.P)[x:=N]=2ax.P

Suresh PLC 2021: Lecture 14

March 3, 2021

9/12

® x[x:=N]=N
® y[x:=N]=y,where ye Varand y £ x
* (PQ)x:=N]=(P[x:=N])Q[x:=N])

Suresh PLC 2021: Lecture 14

March 3, 2021

9/12

where y e Var and y # x
. (PQ)x = V] = (Pl = N)(QLx == V)

® (1y.P)[x:=N]=2y.(P[x:=N]), where y # x and y ¢ FV(N)
® (1y.P)x:=N]=2z.((P[y = z])[x := N]), where y # x, y e FV(N), and
z does not occur in P or V

Suresh PLC 2021: Lecture 14 March 3, 2021 9/12

]
® y[x:=N]=y,where ye Varand y £ x
o (PQ)[x == N] = (P[x == NYQLx = V)

) .
® (1y.P)[x:=N]=2y.(P[x:=N]), where y # x and y ¢ FV(N)
® (1y.P)x:=N]=2z.((P[y = z])[x := N]), where y # x, y e FV(N), and
z does not occur in P or V

® We fix a global ordering on Var and choose z to be the first variable
not occurring in either P or V

Suresh PLC 2021: Lecture 14 March 3, 2021 9/12

]
® y[x:=N]=y,where y e Var and y # x
o (PQ)[x == N] = (P[x == NYQLx = V)

) .
® (1y.P)[x:=N]=2y.(P[x:=N]), where y # x and y ¢ FV(N)
® (1y.P)x:=N]=2z.((P[y = z])[x := N]), where y # x, y e FV(N), and
z does not occur in P or V

® We fix a global ordering on Var and choose z to be the first variable
not occurring in either P or V
® Makes the definition deterministic

Suresh PLC 2021: Lecture 14 March 3, 2021 9/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

Suresh PLC 2021: Lecture 14 March 3, 2021 10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

(Ax M)N — 5 M[x :=N]

M—, M N—, N’ M—s, M
MN—,M'N MN—,MN 2x.M—,x.M

Suresh PLC 2021: Lecture 14 March 3, 2021

10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

(Ax M)N — 5 M[x :=N]

M—, M N—, N’ M—s, M
MN—,M'N MN—,MN" 2x.M—>,Ax.M’

o M —*—>5 N': repeatedly apply p-reduction to get V

Suresh PLC 2021: Lecture 14 March 3, 2021

10/12

Applying 3 in context

® We can contract a redex appearing anywhere inside an expression

e Captured by the following rules

(Ax M)N — 5 M[x :=N]

M—, M N—, N’ M—s, M
MN—,M'N MN—,MN" 2x.M—>,Ax.M’

o M —*—>5 N': repeatedly apply p-reduction to get V
® There is a sequence M, M,,..., M, such that

M=My— M —4-—s M, =N

Suresh PLC 2021: Lecture 14 March 3, 2021

10/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of n: [7]

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

* [#]={[0].[1},....[»—1]}

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

® [n]={[0].[1],....[»n—1]}
® Thus

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

® [n]=A{[0].[1],....[»n—1]}
® Thus

* [0]=2

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

* [#]={[0].[1},....[n—1]}

® Thus
* [0]=0
* [1]={2}

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

* [#]={[0].[1},....[n—1]}

® Thus
* [0]=0
* [1]={2}

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers

® Encoding of 7: [n]

® [n]={[0].[1],....[n—1]}
® Thus

* [0]=o

* [1]={e}

* [2]={o.{2}}

* [3]={2.{2}.{2.{2}}}

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Encoding arithmetic

e In set theory, use nesting to encode numbers
® Encoding of 7: [n]

* [»]={[0].[1],....[n—1]}

® Thus
* [0]=o
* [1]={e}
* [2]={o.{2}}
* [3]={w,{2}.{2.{2}}}

® In J-calculus, we encode 7 by the number of times we apply a

function (successor) to an element (zero)

Suresh PLC 2021: Lecture 14 March 3, 2021 1/12

Church numerals

o [n]=Afx.f"x

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x

o flx=x

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
° fox:x

o frix=f(f")

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance
® [0]=2fx.x

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance
® [0]=2fx.x
® [1]=2fx.fx

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x

o flx=x

o frlx=f(f"x)

® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times
® For instance

® [0]=2fx.x

® [1]=2fx.fx

* 2]=2fxf(fx)

Suresh PLC 2021: Lecture 14 March 3, 2021 12/12

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance

® [0]=2fx.x

® [1]=2fx.fx

* 2]=2fxf(fx)

* Bl=afxf(f(fx)

Suresh PLC 2021: Lecture 14 March 3, 2021

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times

® For instance

® [0]=2fx.x

® [1]=2fx.fx

* 2]=2fxf(fx)

* Bl=afxf(f(fx)

Suresh PLC 2021: Lecture 14 March 3, 2021

Church numerals

o [n]=Afx.f"x
o flx=x
o frlx=f(f"x)
® Thus f"x = f(f(---(fx)--)), where f is applied repeatedly » times
® For instance
® [0]=2fx.x
[1]=2fx.fx
[2]=2fx.7F(fx)
[B]=afxf(f(f*)

o [nlgy=@fxf((fx))gy—5g((gy))=2g"y

Suresh PLC 2021: Lecture 14 March 3, 2021

