
An exercise in concurrent programming

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.



An exercise in concurrent programming

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty



An exercise in concurrent programming

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

! Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.



An exercise in concurrent programming

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

! Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.

! When bridge becomes empty and cars are waiting, yet another
car can enter in the opposite direction and makes them all
wait some more.



An example . . .

! Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

! Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)



An example . . .

! Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

! Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)

! Bridge has a public method

public void cross(int id, boolean d, int s)

! id is identity of car

! d indicates direction

! true is North
! false is South

! s indicates time taken to cross (milliseconds)



An example . . .

public void cross(int id, boolean d, int s)

! Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST
2009

2. The direction changes
Car 5 switches bridge direction to North at Thu
Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13
23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003



An example . . .

public void cross(int id, boolean d, int s)

! Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST
2009

2. The direction changes
Car 5 switches bridge direction to North at Thu
Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13
23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003

! Use java.util.Date to generate time stamps



Analysis

! The “data” that is shared is the Bridge



Analysis

! The “data” that is shared is the Bridge

! State of the bridge is represented by two quantities

! Number of cars on bridge — an int
! Current direction of bridge — a boolean



Analysis

! The “data” that is shared is the Bridge

! State of the bridge is represented by two quantities

! Number of cars on bridge — an int
! Current direction of bridge — a boolean

! The method

public void cross(int id, boolean d, int s)

changes the state of the bridge



Analysis

! The “data” that is shared is the Bridge

! State of the bridge is represented by two quantities

! Number of cars on bridge — an int
! Current direction of bridge — a boolean

! The method

public void cross(int id, boolean d, int s)

changes the state of the bridge

! Concurrent execution of cross can cause problems . . .



Analysis

! The “data” that is shared is the Bridge

! State of the bridge is represented by two quantities

! Number of cars on bridge — an int
! Current direction of bridge — a boolean

! The method

public void cross(int id, boolean d, int s)

changes the state of the bridge

! Concurrent execution of cross can cause problems . . .

! . . . but making cross a synchronized method is too restrictive

! Only one car on the bridge at a time

! Problem description explicitly disallows such a solution



Analysis . . .

! Break up cross into a sequence of actions



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge

! enter and leave can print out the diagnostics required



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge

! enter and leave can print out the diagnostics required

! Which of these affect the state of the bridge?



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge

! enter and leave can print out the diagnostics required

! Which of these affect the state of the bridge?

! enter : increment number of cars, perhaps change direction

! leave : decrement number of cars



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge

! enter and leave can print out the diagnostics required

! Which of these affect the state of the bridge?

! enter : increment number of cars, perhaps change direction

! leave : decrement number of cars

! Make enter and leave synchronized



Analysis . . .

! Break up cross into a sequence of actions

! enter — get on the bridge

! travel — drive across the bridge

! leave — get off the bridge

! enter and leave can print out the diagnostics required

! Which of these affect the state of the bridge?

! enter : increment number of cars, perhaps change direction

! leave : decrement number of cars

! Make enter and leave synchronized

! travel is just a means to let time elapse — use sleep



Analysis . . .

Code for cross

public void cross(int id, boolean d, int s){

// Get onto the bridge (if you can!)

enter(id,d);

// Takes time to cross the bridge

try{
Thread.sleep(s);

}
catch(InterruptedException e){}

// Get off the bridge
leave(id);

}



Analysis . . .

Entering the bridge

! If the direction of this car matches the direction of the bridge,
it can enter



Analysis . . .

Entering the bridge

! If the direction of this car matches the direction of the bridge,
it can enter

! If the direction does not match but the number of cars is zero,
it can reset the direction and enter



Analysis . . .

Entering the bridge

! If the direction of this car matches the direction of the bridge,
it can enter

! If the direction does not match but the number of cars is zero,
it can reset the direction and enter

! Otherwise, wait() for the state of the bridge to change



Analysis . . .

Entering the bridge

! If the direction of this car matches the direction of the bridge,
it can enter

! If the direction does not match but the number of cars is zero,
it can reset the direction and enter

! Otherwise, wait() for the state of the bridge to change

! In each case, print a diagnostic message



Code for enter

private synchronized void enter(int id, boolean d){
Date date;

// While there are cars going in the wrong direction
while (d != direction && bcount > 0){

date = new Date();
System.out.println("Car "+id+" going "+direction_name(d)+" stuck

// Wait for our turn
try{

wait();

}
catch (InterruptedException e){}

}

...

}



Code for enter

private synchronized void enter(int id, boolean d){
...

while (d != direction && bcount > 0){ ... wait() ...}
...

// Switch direction, if needed
if (d != direction){

direction = d;

date = new Date();
System.out.println("Car "+id+" switches bridge direction

to "+direction_name(direction)+" at "+date);

}

// Register our presence on the bridge

bcount++;

date = new Date();

System.out.println("Car "+id+" going "+direction_name(d)+"
enters bridge at "+date);

}



Analysis . . .

Leaving the bridge is much simpler

! Decrement the car count



Analysis . . .

Leaving the bridge is much simpler

! Decrement the car count

! notify() waiting cars



Analysis . . .

Leaving the bridge is much simpler

! Decrement the car count

! notify() waiting cars

. . . provided car count is zero



Analysis . . .

Leaving the bridge is much simpler

! Decrement the car count

! notify() waiting cars

. . . provided car count is zero

private synchronized void leave(int id){
Date date = new Date();
System.out.println("Car "+id+" leaves at "+date);

// "Check out"
bcount--;

// If everyone on the bridge has checked out, notify the
// cars waiting on the opposite side

if (bcount == 0){
notifyAll();

}

}


