
Concurrent Programming

Monitors [Per Brinch Hansen, CAR Hoare]

! Attach synchronization control to the data that is being
protected

! Monitor is like a class in an OO language

! Data definition — to which access is restricted across threads

! Collections of functions operating on this data — all are
implicitly mutually exclusive

! Monitor guarantees mutual exclusion — if one function is
active, any other function will have to wait for it to finish



Monitors

monitor bank_account{

double accounts[100];

boolean transfer (double amount, int source, int target){
// transfer amount accounts[source] -> accounts[target]

if (accounts[source] < amount){ return false; }
accounts[source] -= amount;
accounts[target] += amount;

return true;
}

double audit(){
// compute the total balance across all accounts
double balance = 0.00;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }
return balance;

}

}



Monitors . . .

transfer(500.00,i,j);
transfer(400.00,j,k);

! Mechanism for a thread to suspend itself and give up the
monitor

! A suspended process is waiting for monitor to change its state

! Separate internal queue, as opposed to external queue where
initially blocked threads wait

! Dual operation to wake up suspended processes



Monitors . . .

boolean transfer (double amount, int source, int target){
while (accounts[source] < amount){ wait(); }
accounts[source] -= amount;

accounts[target] += amount;
notify();
return true;

}

What happens when a process executes notify()?

! Signal and exit — notifying process immediately exits the
monitor

! Signal and wait — notifying process swaps roles and goes into
the internal queue of the monitor

! Signal and continue — notifying process keeps control till it
completes and then one of the notified processes steps in



Monitors . . .

! Makes sense to have more than one internal queue

monitor bank_account{

double accounts[100];

queue q[100]; // one internal queue for each account

boolean transfer (double amount, int source, int target){

while (accounts[source] < amount){
q[source].wait(); // wait in the queue associated with source

}

accounts[source] -= amount;
accounts[target] += amount;
q[target].notify(); // notify the queue associated with target

return true;
}

}



Monitors in Java

! Java implements monitors with a single internal queue

! Monitors incorporated within existing class definitions



Monitors in Java

! Java implements monitors with a single internal queue

! Monitors incorporated within existing class definitions

! Function declared synchronized is to be executed atomically

! Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue



Monitors in Java

! Java implements monitors with a single internal queue

! Monitors incorporated within existing class definitions

! Function declared synchronized is to be executed atomically

! Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue

! Each object has a lock

! To execute a synchronized method, thread must acquire lock

! Thread gives up lock when the method exits

! Only one thread can have the lock at any time



Monitors in Java

! Java implements monitors with a single internal queue

! Monitors incorporated within existing class definitions

! Function declared synchronized is to be executed atomically

! Trying to execute a synchronized function while another is in
progress blocks the second thread into an external queue

! Each object has a lock

! To execute a synchronized method, thread must acquire lock

! Thread gives up lock when the method exits

! Only one thread can have the lock at any time

! wait() and notify() to suspend and resume

! notify() signals one (arbitrary) waiting process

! notifyAll() signals all waiting processes

! Java uses signal and continue



Monitors in Java . . .

public class bank_account{

double accounts[100];

public synchronized boolean

transfer (double amount, int source, int target){
while (accounts[source] < amount){ wait(); }
accounts[source] -= amount; accounts[target] += amount;

notifyAll();
return true;

}

public synchronized double audit(){
double balance = 0.0;

for (int i = 0; i < 100; i++){ balance += accounts[i]; }
return balance;

}

public double current_balance(int i){ // not synchronized!
return accounts[i];

}
}



Object locks

! Every object has a lock in Java



Object locks

! Every object has a lock in Java

! Can synchronize arbitrary blocks of code

public class XYZ{
Object o = new Object();

public int f(){
..
synchronized(o){ ... }

}

public double g(){

..
synchronized(o){ ... }
}

}
}



Object locks

! Every object has a lock in Java

! Can synchronize arbitrary blocks of code

public class XYZ{
Object o = new Object();

public int f(){
..
synchronized(o){ ... }

}

public double g(){

..
synchronized(o){ ... }
}

}
}

! f() and g() can start in parallel

! Only one of the threads can grab the lock for o



Object locks . . .

! Each object has its own internal queue

Object o = new Object();

public int f(){
..
synchronized(o){

...
o.wait(); // Wait in queue attached to "o"
...

}
}

public double g(){
..
synchronized(o){

...
o.notifyAll(); // Wake up queue attached to "o"
...

}
}



Object locks . . .

! Can convert methods from “externally” synchronized to
“internally” synchronized

public double h(){
synchronized(this){
...

}
}



Object locks . . .

! Can convert methods from “externally” synchronized to
“internally” synchronized

public double h(){
synchronized(this){
...

}
}

! “Anonymous” wait(), notify(), notifyAll() abbreviate
this.wait(), this.notify(), this.notifyAll()



Object locks . . .

! Actually, wait() can be “interrupted” by an
InterruptedException

! Should write

try{

wait();
}
catch (InterruptedException e) { ... };



Object locks . . .

! Actually, wait() can be “interrupted” by an
InterruptedException

! Should write

try{

wait();
}
catch (InterruptedException e) { ... };

! Error to use wait(), notify(), notifyAll() outside
synchronized method

! IllegalMonitorStateException



Object locks . . .

! Actually, wait() can be “interrupted” by an
InterruptedException

! Should write

try{

wait();
}
catch (InterruptedException e) { ... };

! Error to use wait(), notify(), notifyAll() outside
synchronized method

! IllegalMonitorStateException

! Likewise, use o.wait(), o.notify(), o.notifyAll() only
in block synchronized on o



Java threads

! Have a class extend Thread

! Define a function run() where execution can begin in parallel

public class Parallel extends Thread{

private int id;

public Parallel(int i){ id = i; }

public void run(){
for (int j = 0; j < 100; j++){
System.out.println("My id is "+id);
try{

sleep(1000); // Go to sleep for 1000 ms
}
catch(InterruptedException e){}

}
}

}



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){
p[i] = new Parallel(i);
p[i].start(); // Start off p[i].run() in concurrent thread

}

}



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){
p[i] = new Parallel(i);
p[i].start(); // Start off p[i].run() in concurrent thread

}

}

! p[i].start() initiates p[i].run() in a separate thread



Java threads . . .

Invoking threads

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];

for (int i = 0; i < 5; i++){
p[i] = new Parallel(i);
p[i].start(); // Start off p[i].run() in concurrent thread

}

}

! p[i].start() initiates p[i].run() in a separate thread

! Directly calling p[i].run() does not execute in separate
thread!



Java threads . . .

! sleep(...) is a static function in Thread

! Argument is time to sleep, in milliseconds

! Use Thread.sleep(...) if current class does not extend
Thread

! sleep(..) throws InterruptedException (like wait())



Java threads . . .

! Cannot always extend Thread

! Single inheritance



Java threads . . .

! Cannot always extend Thread

! Single inheritance

! Instead, implement Runnable

public class Parallel implements Runnable{ // only this line

// has changed
private int id;
public Parallel(int i){ ... } // Constructor

public void run(){ ... }

}



Java threads . . .

! To use Runnable class, must explicitly create a Thread and
start() it

public class TestParallel {

public static void main(String[] args){

Parallel p[] = new Parallel[5];
Thread t[] = new Thread[5];

for (int i = 0; i < 5; i++){
p[i] = new Parallel(i);
t[i] = new Thread(p[i]); // Make a thread t[i] from p[i]

t[i].start(); // Start off p[i].run() concurrently
// Note: t[i].start(), not p[i].start()

}

}
}



Life cycle of a Java thread

A thread can be in four states

! New: Created but not start()ed.

! Runnable: start()ed and ready to be scheduled.

! Need not be actually “running”
! No guarantee made about how scheduling is done
! Most Java implementations use time-slicing

! Blocked: not available to run

! Within sleep(..) — unblocked when sleep timer expires
! Suspended by wait() — unblocked by notify() or

notfifyAll().
! Blocked on input/output — unblocked when the i/o succeeds.

! Dead: thread terminates.



Interrupts

! One thread can interrupt another using interrupt()

! p[i].interrupt(); interrupts thread p[i]



Interrupts

! One thread can interrupt another using interrupt()

! p[i].interrupt(); interrupts thread p[i]

! Raises InterruptedException within wait(), sleep()



Interrupts

! One thread can interrupt another using interrupt()

! p[i].interrupt(); interrupts thread p[i]

! Raises InterruptedException within wait(), sleep()
! No exception raised if thread is running!



Interrupts

! One thread can interrupt another using interrupt()

! p[i].interrupt(); interrupts thread p[i]

! Raises InterruptedException within wait(), sleep()
! No exception raised if thread is running!

! interrupt() sets a status flag
! interrupted() checks interrupt status and clears the flag



Interrupts

! One thread can interrupt another using interrupt()

! p[i].interrupt(); interrupts thread p[i]

! Raises InterruptedException within wait(), sleep()
! No exception raised if thread is running!

! interrupt() sets a status flag
! interrupted() checks interrupt status and clears the flag

! Detecting an interrupt while running or waiting

public void run(){
try{

j = 0;
while(!interrupted() && j < 100){

System.out.println("My id is "+id);
sleep(1000); // Go to sleep for 1000 ms

j++;
}

}

catch(InterruptedException e){}
}



Interrupts

! Check another thread’s interrupt status using interrupted

! t.isInterrupted() to check status of t’s interrupt flag

! Does not clear flag



Interrupts

! Check another thread’s interrupt status using interrupted

! t.isInterrupted() to check status of t’s interrupt flag

! Does not clear flag

! isAlive() checks running status of a thread

! t.isAlive() is true if t is Runnable or Blocked

! t.isAlive() is false if t is New or Dead



Interrupts

! Check another thread’s interrupt status using interrupted

! t.isInterrupted() to check status of t’s interrupt flag

! Does not clear flag

! isAlive() checks running status of a thread

! t.isAlive() is true if t is Runnable or Blocked

! t.isAlive() is false if t is New or Dead

! Can also stop(), suspend() and resume() a thread, but
should not!



An example

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.



An example

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty



An example

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

! Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.



An example

! A narrow North-South bridge can accommodate traffic only in
one direction at a time.

! When a car arrives at the bridge

1. Cars on the bridge going in the same direction ⇒ can cross

2. No other car on the bridge ⇒ can cross (implicitly sets
direction)

3. Cars on the bridge going in the opposite direction ⇒ wait for
the bridge to be empty

! Cars waiting to cross from one side may enter bridge in any
order after direction switches in their favour.

! When bridge becomes empty and cars are waiting, yet another
car can enter in the opposite direction and makes them all
wait some more.



An example . . .

! Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

! Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)



An example . . .

! Design a class Bridge to implement consistent one-way
access for cars on the highway synchronization primitives

! Should permit multiple cars to be on the bridge at one time
(all going in the same direction!)

! Bridge has a public method

public void cross(int id, boolean d, int s)

! id is identity of car

! d indicates direction

! true is North

! false is South

! s indicates time taken to cross (milliseconds)



An example . . .

public void cross(int id, boolean d, int s)

! Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST
2009

2. The direction changes
Car 5 switches bridge direction to North at Thu
Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13
23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003



An example . . .

public void cross(int id, boolean d, int s)

! Method cross prints out diagnostics

1. A car is stuck waiting for the direction to change
Car 7 going North stuck at Thu Mar 13 23:00:11 IST
2009

2. The direction changes
Car 5 switches bridge direction to North at Thu
Mar 13 23:00:14 IST 2009

3. A car enters the bridge.
Car 8 going North enters bridge at Thu Mar 13
23:00:14 IST 2003

4. A car leaves the bridge.
Car 16 leaves at Thu Mar 13 23:00:15 IST 2003

! Use java.util.Date to generate time stamps


