
Event driven programming

! GUI components such as buttons, checkboxes generate high
level events



Event driven programming

! GUI components such as buttons, checkboxes generate high
level events

! Each event is automatically sent to a listener

! Listener capability is described using an interface

! Event is sent as an object — listener can query the event to
obtain details such as event source



Event driven programming

! GUI components such as buttons, checkboxes generate high
level events

! Each event is automatically sent to a listener

! Listener capability is described using an interface

! Event is sent as an object — listener can query the event to
obtain details such as event source

! In Java, association between event generators and listeners is
flexible

! One listener can listen to multiple objects

! One component can inform multiple listeners



Event driven programming

! GUI components such as buttons, checkboxes generate high
level events

! Each event is automatically sent to a listener

! Listener capability is described using an interface

! Event is sent as an object — listener can query the event to
obtain details such as event source

! In Java, association between event generators and listeners is
flexible

! One listener can listen to multiple objects

! One component can inform multiple listeners

! Must explicitly set up association between component and
listener

! Events are “lost” if nobody is listening!



Swing example: A checkbox

! JCheckbox: a box that can be ticked



Swing example: A checkbox

! JCheckbox: a box that can be ticked

! A panel with two checkboxes, Red and Blue

! If only Red is ticked, make background red
! If only Blue is ticked, make background blue
! If both are ticked, make background green



Swing example: A checkbox

! JCheckbox: a box that can be ticked

! A panel with two checkboxes, Red and Blue

! If only Red is ticked, make background red
! If only Blue is ticked, make background blue
! If both are ticked, make background green

! Only one action — click the box

! Listener is again ActionListener



Swing example: A checkbox

! JCheckbox: a box that can be ticked

! A panel with two checkboxes, Red and Blue

! If only Red is ticked, make background red
! If only Blue is ticked, make background blue
! If both are ticked, make background green

! Only one action — click the box

! Listener is again ActionListener

! Checkbox has a state: ticked or not ticked

! Method isSelected() to determine the current state of the
checkbox



Swing example: A checkbox

! JCheckbox: a box that can be ticked

! A panel with two checkboxes, Red and Blue

! If only Red is ticked, make background red
! If only Blue is ticked, make background blue
! If both are ticked, make background green

! Only one action — click the box

! Listener is again ActionListener

! Checkbox has a state: ticked or not ticked

! Method isSelected() to determine the current state of the
checkbox

! Rest is very similar to basic button example



CheckBoxPanel

import ...
public class CheckBoxPanel extends JPanel implements ActionListener{

private JCheckBox redBox;
private JCheckBox blueBox;

public CheckBoxPanel(){
redBox = new JCheckBox("Red");
blueBox = new JCheckBox("Blue");

redBox.addActionListener(this);
blueBox.addActionListener(this);

redBox.setSelected(false);
blueBox.setSelected(false);

add(redBox);
add(blueBox);

}
...

}



CheckBoxPanel . . .

public class CheckBoxPanel extends JPanel implements ActionListener{
...

public void actionPerformed(ActionEvent evt){

Color color = getBackground();

if (blueBox.isSelected()) color = Color.blue;
if (redBox.isSelected()) color = Color.red;

if (blueBox.isSelected() && redBox.isSelected()) color = Color.green;

setBackground(color);

repaint();
}

}



A JFrame for our CheckBoxPanel . . .

public class CheckBoxFrame extends JFrame implements WindowListener{
private Container contentPane;

public CheckBoxFrame(){
setTitle("ButtonTest"); setSize(300, 200);
addWindowListener(this);

contentPane = this.getContentPane();
contentPane.add(new CheckBoxPanel());

}

public void windowClosing(WindowEvent e){ // Exit when window
System.exit(0); // is killed

}
public void windowActivated(WindowEvent e){}
... // 5 more dummy methods

}



Swing example: Multicasting

! Two panels, each with three buttons, Red, Blue, Yellow

! Clicking a button in either panel changes background colour
in both panels



Swing example: Multicasting

! Two panels, each with three buttons, Red, Blue, Yellow

! Clicking a button in either panel changes background colour
in both panels

! Both panels must listen to all six buttons



Swing example: Multicasting

! Two panels, each with three buttons, Red, Blue, Yellow

! Clicking a button in either panel changes background colour
in both panels

! Both panels must listen to all six buttons

! However, each panel has references only for its local buttons
! How do we determine the source of an event from a remote

button?



Swing example: Multicasting

! Two panels, each with three buttons, Red, Blue, Yellow

! Clicking a button in either panel changes background colour
in both panels

! Both panels must listen to all six buttons

! However, each panel has references only for its local buttons
! How do we determine the source of an event from a remote

button?

! Associate an ActionCommand with a button

! Assign the same action command to both Red buttons, . . .

! Choose colour according to ActionCommand



Swing example: Multicasting

! Two panels, each with three buttons, Red, Blue, Yellow

! Clicking a button in either panel changes background colour
in both panels

! Both panels must listen to all six buttons

! However, each panel has references only for its local buttons
! How do we determine the source of an event from a remote

button?

! Associate an ActionCommand with a button

! Assign the same action command to both Red buttons, . . .

! Choose colour according to ActionCommand

! Need to add both panels as listeners for each button

! Add a public function to add a new listener to all buttons in a
panel



Multicast ButtonPanel

import ...
public class ButtonPanel extends JPanel implements ActionListener{

private JButton yellowButton;

private JButton blueButton;
private JButton redButton;

public ButtonPanel(){
yellowButton = new JButton("Yellow");
blueButton = new JButton("Blue");

redButton = new JButton("Red");

yellowButton.setActionCommand("YELLOW");

blueButton.setActionCommand("BLUE");
redButton.setActionCommand("RED");

add(yellowButton);
add(blueButton);
add(redButton);

}

...



Multicast ButtonPanel

public class ButtonPanel extends JPanel implements ActionListener{
...
public void actionPerformed(ActionEvent evt){

Color color = getBackground();
String cmd = evt.getActionCommand(); // Use ActionCommand to

// determine what to do

if (cmd.equals("YELLOW")) color = Color.yellow;
else if (cmd.equals("BLUE")) color = Color.blue;

else if (cmd.equals("RED")) color = Color.red;

setBackground(color);

repaint();
}

...

}



Multicast ButtonPanel

public class ButtonPanel extends JPanel implements ActionListener{
...

public void addListener(ActionListener o){
yellowButton.addActionListener(o); // Add a commmon listener
blueButton.addActionListener(o); // for all buttons in

redButton.addActionListener(o); // this panel
}

}



The JFrame for the multicast example

public class ButtonFrame extends JFrame implements WindowListener{
private Container contentPane;
private ButtonPanel b1, b2;

public ButtonFrame(){
...

b1 = new ButtonPanel(); // Create two button panels
b2 = new ButtonPanel();

b1.addListener(b1); // Make each panel listen
b1.addListener(b2); // to both sets of buttons
b2.addListener(b1);

b2.addListener(b2);

contentPane = this.getContentPane();

contentPane.setLayout(new BorderLayout()); // Set layout to
contentPane.add(b1,"North"); // ensure that
contentPane.add(b2,"South"); // panels don’t

// overlap
} ...

}



The event queue

! OS passes on low-level events to run-time support for
event-driven components

! Run-time support generates high level events from low level
events



The event queue

! OS passes on low-level events to run-time support for
event-driven components

! Run-time support generates high level events from low level
events

! Events are stored in an event queue

! Can optimize — e.g., combine consecutive mouse movements

! All events, low and high level, go into the queue



The event queue

! OS passes on low-level events to run-time support for
event-driven components

! Run-time support generates high level events from low level
events

! Events are stored in an event queue

! Can optimize — e.g., combine consecutive mouse movements

! All events, low and high level, go into the queue

! Application may have a need to capture low level events as
well

! May want to “capture” the mouse in an application
! In a line drawing program, after selecting the first point, must

select the target point
! All other mouse events are captured and “consumed”



The event queue

! OS passes on low-level events to run-time support for
event-driven components

! Run-time support generates high level events from low level
events

! Events are stored in an event queue

! Can optimize — e.g., combine consecutive mouse movements

! All events, low and high level, go into the queue

! Application may have a need to capture low level events as
well

! May want to “capture” the mouse in an application
! In a line drawing program, after selecting the first point, must

select the target point
! All other mouse events are captured and “consumed”

! Low level events have listener interfaces, like high level events



Manipulating the event queue

! Normally, a Java Swing program interacts with the queue
implicitly

! Identify and associate listeners to events
! When an event reaches the head of the event queue, it is

despatched to all listed listeners
! If there are no listeners, the event is discarded

! Can also explicitly manipulate event queue in Java


