
GUIs and event driven programming

! How do we design graphical user interfaces?



GUIs and event driven programming

! How do we design graphical user interfaces?

! Multiple applications simultaneously displayed on screen



GUIs and event driven programming

! How do we design graphical user interfaces?

! Multiple applications simultaneously displayed on screen

! Keystrokes, mouse clicks have to be sent to appropriate
window



GUIs and event driven programming

! How do we design graphical user interfaces?

! Multiple applications simultaneously displayed on screen

! Keystrokes, mouse clicks have to be sent to appropriate
window

! In parallel to main activity, record and respond to these
events

! Web browser renders current page
! Clicking on a link loads a different page



Keeping track of events

Low level solution

! Remember coordinates and extent of each window



Keeping track of events

Low level solution

! Remember coordinates and extent of each window

! Track coordinates of mouse



Keeping track of events

Low level solution

! Remember coordinates and extent of each window

! Track coordinates of mouse

! OS reports mouse click at (x , y)

! Check which windows are positioned at (x , y)
! Check if one of them is “active”
! Inform that window about mouse click



Keeping track of events

Low level solution

! Remember coordinates and extent of each window

! Track coordinates of mouse

! OS reports mouse click at (x , y)

! Check which windows are positioned at (x , y)
! Check if one of them is “active”
! Inform that window about mouse click

! Tedious and error-prone



Keeping track of events . . .

Better solution

! Programming language support for higher level events

! Button was clicked, box was ticked . . .



Keeping track of events . . .

Better solution

! Programming language support for higher level events

! Button was clicked, box was ticked . . .

! OS reports low level events

! Mouse clicked at (x , y), key ’a’ pressed



Keeping track of events . . .

Better solution

! Programming language support for higher level events

! Button was clicked, box was ticked . . .

! OS reports low level events

! Mouse clicked at (x , y), key ’a’ pressed

! Run time support for language maps low level events to high
level events



Keeping track of events . . .

Better solution . . .

! Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events



Keeping track of events . . .

Better solution . . .

! Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

! Each event is associated with a listener that knows what to do

! e.g., clicking Close window exits application



Keeping track of events . . .

Better solution . . .

! Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

! Each event is associated with a listener that knows what to do

! e.g., clicking Close window exits application

! Programming language has mechanisms for

! Describing what types of events a component can generate
! Setting up an association between components and listeners



Keeping track of events . . .

Better solution . . .

! Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

! Each event is associated with a listener that knows what to do

! e.g., clicking Close window exits application

! Programming language has mechanisms for

! Describing what types of events a component can generate
! Setting up an association between components and listeners

! Different events invoke different functions

! Window frame has Maximize, Iconify, Close buttons



Keeping track of events . . .

Better solution . . .

! Programmer directly defines components such as windows,
buttons, . . . that “generate” high level events

! Each event is associated with a listener that knows what to do

! e.g., clicking Close window exits application

! Programming language has mechanisms for

! Describing what types of events a component can generate
! Setting up an association between components and listeners

! Different events invoke different functions

! Window frame has Maximize, Iconify, Close buttons

! Language “sorts” out events and automatically calls the
correct function in the listener



An example

! A Button with one event, the button being pressed



An example

! A Button with one event, the button being pressed

! Pressing the button invokes the function buttonpush(..) in
a listener

interface ButtonListener{
public abstract void buttonpush(...);

}

class MyClass implements ButtonListener{
...
public void buttonpush(...){

... // what to do when a button is pushed
}

}

Button b = new Button();
MyClass m = new MyClass();
b.add_listener(m); // Tell b to notify m when pushed



An example . . .

! We have set up an association between Button b and a
listener ButtonListener m



An example . . .

! We have set up an association between Button b and a
listener ButtonListener m

! Nothing more needs to be done!



An example . . .

! We have set up an association between Button b and a
listener ButtonListener m

! Nothing more needs to be done!

! Communicating each button push to the listener is done
automatically by the run-time system

! Information about the button push event is passed as an
object to the listener

! buttonpush(...) has arguments
! Listener can decipher source of event, for instance



Timer

! Recall Timer example

! Myclass m creates a Timer t that runs in parallel

! Timer t notifies a TimerOwner when it is done via a function
notify()

! In our example, Myclass m was itself the TimerOwner to be
notified

! In principle, Timer t could be passed a reference to any
object that implements TimerOwner interface



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT

! Relationship between components generating events and
listeners is flexible



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT

! Relationship between components generating events and
listeners is flexible

! One listener can listen to multiple objects

! Three buttons on window frame all report to common listener



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT

! Relationship between components generating events and
listeners is flexible

! One listener can listen to multiple objects

! Three buttons on window frame all report to common listener

! One component can inform multiple listener

! Exit browser reported to all windows currently open



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT

! Relationship between components generating events and
listeners is flexible

! One listener can listen to multiple objects

! Three buttons on window frame all report to common listener

! One component can inform multiple listener

! Exit browser reported to all windows currently open

! Must explicitly set up association between component and
listener



Event driven programming in Java

! Swing toolkit to define high-level components

! Built on top of lower level event handling system called AWT

! Relationship between components generating events and
listeners is flexible

! One listener can listen to multiple objects

! Three buttons on window frame all report to common listener

! One component can inform multiple listener

! Exit browser reported to all windows currently open

! Must explicitly set up association between component and
listener

! Events are “lost” if nobody is listening!



A detailed example in Swing

A button that paints its background red

! JButton is Swing class for buttons

! Corresponding listener class is ActionListener

! Only one type of event, button push — invokes
actionPerformed(...) in listener

! Button push is an ActionEvent



A detailed example in Swing . . .

class MyButtons{
private JButton b;
public MyButtons(ActionListener a){

b = new JButton("MyButton"); // Set the label on the button
b.addActionListener(a); // Associate an listener

}
}



A detailed example in Swing . . .

class MyButtons{
private JButton b;
public MyButtons(ActionListener a){

b = new JButton("MyButton"); // Set the label on the button
b.addActionListener(a); // Associate an listener

}
}

class MyListener implements ActionListener{
public void actionPerformed(ActionEvent evt){...}
// What to do when a button is pressed

}

class XYZ{
MyListener l = new MyListener(); // ActionListener l
MyButtons m = new MyButtons(l); // Button m, reports to l

}



A detailed example in Swing . . .

! To actually display the button, we have to do more

! Embed the button in a panel — JPanel

! Embed the panel in a frame — JFrame

! Display the frame!



A JPanel for our button . . .

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonPanel extends JPanel implements ActionListener{
private JButton redButton;

public ButtonPanel(){
redButton = new JButton("Red"); // Create the button

redButton.addActionListener(this); // Make panel a listener
add(redButton); // Embed button in panel

}

public void actionPerformed(ActionEvent evt){
Color color = Color.red; // Set background colour

setBackground(color); // to red when button
repaint(); // is clicked

}

}



A JFrame for our panel . . .

! JFrame itself generates seven different types of events

! Corresponding listener class is WindowListener

! Each of the seven events automatically calls a different
function in WindowListener



A JFrame for our panel . . .

! JFrame itself generates seven different types of events

! Corresponding listener class is WindowListener

! Each of the seven events automatically calls a different
function in WindowListener

! Need to implement windowClosing event to terminate the
window

! Other six types of events can be ignored



A JFrame for our panel . . .

! JFrame itself generates seven different types of events

! Corresponding listener class is WindowListener

! Each of the seven events automatically calls a different
function in WindowListener

! Need to implement windowClosing event to terminate the
window

! Other six types of events can be ignored

! One more complication

! JFrame is “complex”, many layers
! Items to be displayed have to be added to ContentPane



A JFrame for our panel . . .

public class ButtonFrame extends JFrame implements WindowListener {
Private Container contentPane;

public ButtonFrame(){
setTitle("ButtonTest"); setSize(300, 200);
addWindowListener(this); /// ButtonFrame listens to itself

contentPane = this.getContentPane(); // ButtonPanel is added
contentPane.add(new ButtonPanel()); // to the contentPane

}

// Seven methods required for implementing WindowListener
// Six out of seven are dummies (stubs)

public void windowClosing(WindowEvent e){ // Exit when window
System.exit(0); // is killed

}

public void windowActivated(WindowEvent e){}
... // 5 more dummy methods

}



Finally, a main function

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ButtonTest

{ public static void main(String[] args)
{ JFrame frame = new ButtonFrame();

frame.show();
}

}



Three buttons

! A panel with three buttons, to paint the panel red, yellow or
blue

! Make the panel listen to all three buttons

! Determine what colour to use by identifying source of the
event



import java.awt.*;

import java.awt.event.*;
import javax.swing.*;

public class ButtonPanel extends JPanel implements ActionListener{

private JButton yellowButton; // Panel has three buttons

private JButton blueButton;
private JButton redButton;

public ButtonPanel(){
yellowButton = new JButton("Yellow");
blueButton = new JButton("Blue");

redButton = new JButton("Red");

yellowButton.addActionListener(this); // ButtonPanel is the

blueButton.addActionListener(this); // listener for all
redButton.addActionListener(this); // three buttons

add(yellowButton);
add(blueButton);
add(redButton);

}
...



public class ButtonPanel extends JPanel implements ActionListener{
...
public void actionPerformed(ActionEvent evt){

Object source = evt.getSource(); // Find the source of the

// event
Color color = getBackground(); // Get current background

// colour

if (source == yellowButton) color = Color.yellow;
else if (source == blueButton) color = Color.blue;

else if (source == redButton) color = Color.red;

setBackground(color);

repaint();
}

}


