
Exception handling

! Exception — unexpected event that disrupts normal execution



Exception handling

! Exception — unexpected event that disrupts normal execution

! Different levels of severity

! Divide by zero
! End of file on read



Exception handling

! Exception — unexpected event that disrupts normal execution

! Different levels of severity

! Divide by zero
! End of file on read

! Need to recover from exceptions

! Take corrective action if possible
! Abort only if no option left



Exception handling

! Exception — unexpected event that disrupts normal execution

! Different levels of severity

! Divide by zero
! End of file on read

! Need to recover from exceptions

! Take corrective action if possible
! Abort only if no option left

! Identifying the cause of an exception

! Need to go beyond rudimentary coding in terms of integer
return values, as in C

! Exceptions have types!



Exception handling in Java

! If an error occurs, an operation throws an exception



Exception handling in Java

! If an error occurs, an operation throws an exception

! Information about the exception is encapsulated as an object



Exception handling in Java

! If an error occurs, an operation throws an exception

! Information about the exception is encapsulated as an object

! Program in which the offending operation occurred should
catch the exception object . . .



Exception handling in Java

! If an error occurs, an operation throws an exception

! Information about the exception is encapsulated as an object

! Program in which the offending operation occurred should
catch the exception object . . .

! . . . and handle it

! Analyze the object to determine the cause of the error
! Take corrective action if possible



Exception handling in Java

! All exceptions are subclasses of Throwable

! Two subclasses, Error and Exception



Exception handling in Java

! All exceptions are subclasses of Throwable

! Two subclasses, Error and Exception
! Error — problems beyond program’s control

An Error . . . indicates serious problems that a

reasonable application should not try to catch. Most
such errors are abnormal conditions.



Exception handling in Java

! All exceptions are subclasses of Throwable

! Two subclasses, Error and Exception
! Error — problems beyond program’s control

An Error . . . indicates serious problems that a

reasonable application should not try to catch. Most
such errors are abnormal conditions.

! Exception — normally caught

! RunTimeException — run time errors reported by JVM:

divide-by-zero, array out-of-bounds . . .



Exception handling in Java

try-catch structure to handle exceptions

try{
... // Code that might generate error

}
catch (ExceptionType1 e){...}

// Corrective code for ExceptionType1

catch (ExceptionType2 e){...}
// Corrective code for ExceptionType2



Exception handling in Java

try-catch structure to handle exceptions

try{
... // Code that might generate error

}
catch (ExceptionType1 e){...}

// Corrective code for ExceptionType1

catch (ExceptionType2 e){...}
// Corrective code for ExceptionType2

! Error in try block generates exception object



Exception handling in Java

try-catch structure to handle exceptions

try{
... // Code that might generate error

}
catch (ExceptionType1 e){...}

// Corrective code for ExceptionType1

catch (ExceptionType2 e){...}
// Corrective code for ExceptionType2

! Error in try block generates exception object

! Exception object is sequentially checked against each catch



Exception handling in Java

try-catch structure to handle exceptions

try{
... // Code that might generate error

}
catch (ExceptionType1 e){...}

// Corrective code for ExceptionType1

catch (ExceptionType2 e){...}
// Corrective code for ExceptionType2

! Error in try block generates exception object

! Exception object is sequentially checked against each catch

! What happens if first catch is

catch (Throwable e1){...}



Exception handling in Java

! If some catch condition matches, appropriate code is
executed

! If no catch matches, abort and propagate exception object
up one level, to calling class



Exception handling in Java

! May need to do some cleanup (deallocate resources etc)



Exception handling in Java

! May need to do some cleanup (deallocate resources etc)

! This code may be left undone when an exception occurs



Exception handling in Java

! May need to do some cleanup (deallocate resources etc)

! This code may be left undone when an exception occurs

! Add a block labelled finally

try{
...

}

catch (ExceptionType1 e){...}

catch (ExceptionType2 e){...}

finally{
...

// Always executed, whether try terminates normally
// or exceptionally. Use for cleanup statements.

}



Customized exceptions

! Don’t want negative values in a LinearList



Customized exceptions

! Don’t want negative values in a LinearList

! Define a new class extending Exception

class NegativeException extends Exception{

private int error_value;
// Stores negative value that generated exception

public NegativeException(String message, int i){
super(message); // Appeal to superclass
error_value = i; // constructor to set message

}

public int report_error_value(){
return error_value;

}
}



Customized exceptions

Inside LinearList

class LinearList{
...
public add(int i){
...
if (i < 0){
throw new NegativeException("Negative input",i);

}
...

}

}



Customized exceptions

! A program using LinearList should be aware that
LinearList.add() can result in such an exception



Customized exceptions

! A program using LinearList should be aware that
LinearList.add() can result in such an exception

! Exception should be advertized by LinearList

class LinearList{
...
public add(int i) throws NegativeException{
...

}
...

}



Customized exceptions

! A program using LinearList should be aware that
LinearList.add() can result in such an exception

! Exception should be advertized by LinearList

class LinearList{
...
public add(int i) throws NegativeException{
...

}
...

}

! Need not advertize exceptions of type Error or
RunTimeException



Customized exceptions

Using LinearList.add() with customized exception

LinearList l = new LinearList();
...
try{
...
l.add(i);
...

}
catch (NegativeException ne){
System.out.print("Negative input supplied was ");
System.out.print(ne.report_error_value);

}
...



Parameter passing in Java

! Scalars are passed by value

! No way to write a function to swap two ints



Parameter passing in Java

! Scalars are passed by value

! No way to write a function to swap two ints

! Objects are passed by reference



Parameter passing in Java

! Scalars are passed by value

! No way to write a function to swap two ints

! Objects are passed by reference

! How do we swap two objects?



Parameter passing in Java

! Scalars are passed by value

! No way to write a function to swap two ints

! Objects are passed by reference

! How do we swap two objects?

class Myclass{
...
public void swap(Myclass p){ // Swap "this" with p
Myclass tmp;
tmp = p;
p = this;
this = tmp;

}
}

! Will not work!



Parameter passing

! Instead, we must write something like:

class Myclass{
...
public void swap(Myclass p){
Myclass tmp = new Myclass(...); // Make a new tmp object
... // Copy contents of p into tmp
... // Copy contents of this into p
... // Copy contents of tmp back into this

}
}



Parameter passing

! Return values?

! Suppose we add a function to Employee

class Employee{
...
// "accessor" methods
public Date get_joindate(){ return joindate; }
...

}



Parameter passing

! Return values?

! Suppose we add a function to Employee

class Employee{
...
// "accessor" methods
public Date get_joindate(){ return joindate; }
...

}

! Now we write

Employee e = new Employee(...);
Date d = e.get_joindate();
d.advance(100); // e loses 100 days seniority!



Parameter passing

! Return values?

! Suppose we add a function to Employee

class Employee{
...
// "accessor" methods
public Date get_joindate(){ return joindate; }
...

}

! Now we write

Employee e = new Employee(...);
Date d = e.get_joindate();
d.advance(100); // e loses 100 days seniority!

! Get public access to a private field of Employee



Parameter passing

! Return values?

! Suppose we add a function to Employee

class Employee{
...
// "accessor" methods
public Date get_joindate(){ return joindate; }
...

}

! Now we write

Employee e = new Employee(...);
Date d = e.get_joindate();
d.advance(100); // e loses 100 days seniority!

! Get public access to a private field of Employee

! Should make a copy of joindate before returning it



Cloning

! Object class defines Object clone(Object o)



Cloning

! Object class defines Object clone(Object o)

! Makes a bit-wise copy

! Nested objects will not be cloned automatically!



Cloning

! Object class defines Object clone(Object o)

! Makes a bit-wise copy

! Nested objects will not be cloned automatically!

! To use clone, must implement Cloneable

class Employee implements Cloneable{
...

! Marker interface — empty!



Cloning

! Object class defines Object clone(Object o)

! Makes a bit-wise copy

! Nested objects will not be cloned automatically!

! To use clone, must implement Cloneable

class Employee implements Cloneable{
...

! Marker interface — empty!

! Inside clone(), expect a check such as

Object clone(Object o){
if (o instanceof Cloneable){

... // go ahead and clone
}else{

... // complain and quit
}

}



Packages

! Java has an organizational unit called package

! By default, all classes in a directory belong to a package
! If neither public nor private is specified, visibility is with

respect to package



Packages

! Java has an organizational unit called package

! By default, all classes in a directory belong to a package
! If neither public nor private is specified, visibility is with

respect to package

! Can use import to use packages directly

import java.math.BigDecimal

or

import java.math.*

! All classes in .../java/math

! Note that * is not recursive



Protected

! protected means visible within subtree

! Normally, a subclass cannot change visibility of a function



Protected

! protected means visible within subtree

! Normally, a subclass cannot change visibility of a function

! However, protected can be made public



Protected

! protected means visible within subtree

! Normally, a subclass cannot change visibility of a function

! However, protected can be made public

! clone() is defined as protected


