
Class hierarchy

! Subclasses inherit attributes from parent class

! Subclasses can add functionality

! A subclass is more specific than its parent
! Subclasses can be used in place of the parent class

! class Employee {...}

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

Employee e = new Manager()



Overriding and dynamic dispatch

! Subclass can override parent class method

! Function name and signature must both match
! public equals(Date d) does not override public equals

(Object o)

! Dynamic dispatch allows each object to “know” which
method to use.

class Employee { ... public double bonus(double p) ...}

class Manager extends Employee{
... public double bonus(double p) ...

}

Employee e = new Manager();
...
print(e.bonus(x));



Java class hierarchy

! No multiple inheritance — tree-like

! Universal superclass Object

! Useful methods defined in Object

boolean equals(Object o) // defaults to pointer equality

String toString() // converts the values of the
// instance variable to String

! To print o, use System.out.println(o+"");



Subclasses, subtyping and inheritance

! Class hierarchy provides both subtyping and inheritance

! Subtyping

! Compatibility of interfaces.
! B is a subtype of A if every function that can be invoked on an

object of type A can also be invoked on an object of type B.

! Inheritance
! Reuse of implementations.
! B inherits from A if some functions for B are written in terms of

functions of A.



Subtyping vs inheritance

Consider the following classes

! queue, with methods insert-rear, delete-front

! stack, with methods insert-front, delete-front

! deque, with methods insert-front, delete-front,
insert-rear, delete-rear



Subtyping vs inheritance

Consider the following classes

! queue, with methods insert-rear, delete-front

! stack, with methods insert-front, delete-front

! deque, with methods insert-front, delete-front,
insert-rear, delete-rear

What are the subtype and inheritance relationships between these
classes?



Subtyping vs inheritance

! queue, with methods insert-rear, delete-front

! stack, with methods insert-front, delete-front

! deque, with methods insert-front, delete-front,
insert-rear, delete-rear



Subtyping vs inheritance

! queue, with methods insert-rear, delete-front

! stack, with methods insert-front, delete-front

! deque, with methods insert-front, delete-front,
insert-rear, delete-rear

Subtyping

! deque has more functionality than queue or stack

! deque is a subtype of both these types



Subtyping vs inheritance

! queue, with methods insert-rear, delete-front

! stack, with methods insert-front, delete-front

! deque, with methods insert-front, delete-front,
insert-rear, delete-rear

Subtyping

! deque has more functionality than queue or stack

! deque is a subtype of both these types

Inheritance

! Can suppress two functions in a deque and use it as a queue

or stack

! Both queue and stack inherit from deque



Subclasses, subtyping and inheritance

! Class hierarchy provides both subtyping and inheritance

! Subtyping

! Compatibility of interfaces.
! B is a subtype of A if every function that can be invoked on an

object of type A can also be invoked on an object of type B.

! Inheritance
! Reuse of implementations.
! B inherits from A if some functions for B are written in terms of

functions of A.

Using one idea (hierarchical classes) to implement both concepts
blurs the distinction between the two



Abstract classes

! Collect together classes under a common heading

! Classes Circle, Square and Rectangle are all shapes

! Create a class Shape so that Circle, Square and Rectangle

extend Shape



Abstract classes

! Collect together classes under a common heading

! Classes Circle, Square and Rectangle are all shapes

! Create a class Shape so that Circle, Square and Rectangle

extend Shape

! We want to force every shape to define a function

public double perimeter()



Abstract classes

! Collect together classes under a common heading

! Classes Circle, Square and Rectangle are all shapes

! Create a class Shape so that Circle, Square and Rectangle

extend Shape

! We want to force every shape to define a function

public double perimeter()

! Define a function in Shape that returns an absurd value

public double perimeter() { return -1.0; }

! Rely on the subclass to redefine this function



Abstract classes . . .

! A better solution

! Provide an abstract definition in Shape

public abstract double perimeter();

! Forces subclasses to provide a concrete implementation



Abstract classes . . .

! A better solution

! Provide an abstract definition in Shape

public abstract double perimeter();

! Forces subclasses to provide a concrete implementation

! Cannot create objects from a class that has abstract functions

! Shape must itself be declared to be abstract

abstract class Shape{
...
public abstract double perimeter();
...

}



Abstract classes . . .

! Can still declare variables whose type is an abstract class

Shape sarr[] = new Shape[3];

Circle c = new Circle(...); sarr[0] = c;
Square s = new Square(...); sarr[1] = s;
Rectangle r = new Rectangle(...); sarr[2] = r;

for (i = 0; i < 2; i++){
size = sarr[i].perimeter();

// each sarr[i] calls the appropriate method
...

}



Generic functions

! Use abstract classes to specify generic properties

abstract class Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s, 0 if this == 0,
// +1 if this > s

}



Generic functions

! Use abstract classes to specify generic properties

abstract class Comparable{
public abstract int cmp(Comparable s);

// return -1 if this < s, 0 if this == 0,
// +1 if this > s

}

! Now we can sort any array of objects that extend Comparable

class Sortfunctions{
public static void quicksort(Comparable[] a){

...
// Usual code for quicksort, except that
// to compare a[i] and a[j] we use a[i].cmp(a[j])

}
}



Generic functions . . .

! class Sortfunctions{
public static void quicksort(Comparable[] a){

...
}

}

! To use this definition of quicksort, we write

class Myclass extends Comparable{
double size; // quantity used for comparison
...
public int cmp(Comparable s){

if (s instanceof Myclass){
// compare this.size and ((Myclass) s).size
// Note the cast to access s.size
...

}
}

}



Mutiple inheritance

! How do can we sort Circle objects?

! Circle already extends Shape
! Java does not allow Circle to also extend Comparable!



Mutiple inheritance

! How do can we sort Circle objects?

! Circle already extends Shape
! Java does not allow Circle to also extend Comparable!

! An interface is an abstract class with no concrete components

interface Comparable{
public abstract int cmp(Comparable s);

}



Mutiple inheritance

! How do can we sort Circle objects?

! Circle already extends Shape
! Java does not allow Circle to also extend Comparable!

! An interface is an abstract class with no concrete components

interface Comparable{
public abstract int cmp(Comparable s);

}

! A class that extends an interface is said to “implement” it:

class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}
...

}



Mutiple inheritance

! How do can we sort Circle objects?

! Circle already extends Shape
! Java does not allow Circle to also extend Comparable!

! An interface is an abstract class with no concrete components

interface Comparable{
public abstract int cmp(Comparable s);

}

! A class that extends an interface is said to “implement” it:

class Circle extends Shape implements Comparable{
public double perimeter(){...}
public int cmp(Comparable s){...}
...

}

! Can implement multiple interfaces


