
Classes and objects

! A class is a template for a datatype

! Instance variables or fields
! Functions, or methods, to operate on data

! An object is an instance of a class

! Private copy of instance variables
! Methods implicitly attached to objects—e.g., s.pop()



Classes and objects

! A class is a template for a datatype

! Instance variables or fields
! Functions, or methods, to operate on data

! An object is an instance of a class

! Private copy of instance variables
! Methods implicitly attached to objects—e.g., s.pop()

! Ideally an object is a black box whose internals are
manipulated through a well defined interface



Classes and objects

! A class is a template for a datatype

! Instance variables or fields
! Functions, or methods, to operate on data

! An object is an instance of a class

! Private copy of instance variables
! Methods implicitly attached to objects—e.g., s.pop()

! Ideally an object is a black box whose internals are
manipulated through a well defined interface

d :: Date

getDate setDate



Classes and objects . . .

! However, most OO languages do give direct access to internal
data

! Fields and methods can be private or public

! static fields and methods can be used without creating
objects

! final means a value that cannot be modified



Constructors

! Can we initialize an object?
Analogue of

int i = 10;



Constructors

! Can we initialize an object?
Analogue of

int i = 10;

! Special methods called constructors

! Invoked once, when an object is created
! Usually have the same name as the class

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

}



Constructors

! Can we initialize an object?
Analogue of

int i = 10;

! Special methods called constructors

! Invoked once, when an object is created
! Usually have the same name as the class

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

}

! Date d = new Date(27,1,2009);



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}

! Invoke appropriate constructor by context

! Date d1 = new Date(27,1,2008);
! Date d2 = new Date(27,1);



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}

! Invoke appropriate constructor by context

! Date d1 = new Date(27,1,2008);
! Date d2 = new Date(27,1);

! Two functions can have the same name, different signatures

! Overloading



Constructors . . .

! A later constructor can call an earlier one

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

public Date(int d, int m){

this(d,m,2009);

}

}

! this refers to the object to which method is associated

! Objects have a notion of “self”!



Constructors . . .

! Can reverse the order

class Date{

private int day, month, year;

public Date(int d, int m){

day = d; month = m; year = 2009;

}

public Date(int d, int m, int y){

this(d,m);

year = y;

}

}

! Call to other constructor must be first instruction



Constructors . . .

! If no constructors are defined, default constructor initializes
methods to default values

! Date d = new Date();
! Note the brackets after Date

! Default constructor is available only if no constructors are
defined



Back to Java

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments



Back to Java

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine



Back to Java

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine

! javac compiles Java into bytecode for JVM
! javac xyz.java creates “class” file xyz.class



Back to Java

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine

! javac compiles Java into bytecode for JVM
! javac xyz.java creates “class” file xyz.class

! java xyz interprets and runs bytecode in class file



Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean



Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean

! Size of int etc are fixed, operational semantics is wrt JVM



Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean

! Size of int etc are fixed, operational semantics is wrt JVM

! char is 2 bytes, Unicode, but otherwise behaves as usual



Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean

! Size of int etc are fixed, operational semantics is wrt JVM

! char is 2 bytes, Unicode, but otherwise behaves as usual

char c = ’a’;

c = ’X’;

if (c != ’}’) {...}



Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean

! Size of int etc are fixed, operational semantics is wrt JVM

! char is 2 bytes, Unicode, but otherwise behaves as usual

char c = ’a’;

c = ’X’;

if (c != ’}’) {...}

! Explicit boolean type

boolean b, c = false;

b = true;

b = (i == 7);



Java syntax . . .

! Expressions are similar to C
! x = 7 returns value 7
! flag = (x = 0) is caught as a syntax error

! Compound statements are familiar
! if (condition) ... else ...
! while (condition) ...
! do ... while (condition)
! for (i = 0; i < n; i++) ...

! No goto, but labelled break and continue

outer_loop: // this is a loop label
for (i = 0; i < n; i++){
for (j = 0; j < n; j++){

if (a[i][j] == k){
break outer_loop; // exits the outer for loop

}
}

}



Java syntax, strings

! String is a built in class

! String s,t;

! String constants enclosed in double quotes

! String s = "Hello", t = "world";

! Strings are not arrays of characters

! Cannot write s[3] = ’p’; s[4] = ’!’;

! Instead, invoke method substring in class String

! s = s.substring(0,3) + "p!";

! + is overloaded for string concatenation

! If we change a String, we get a new object

! After the update, s points to a new String

! Java does automatic garbage collection



Java syntax, arrays

! Arrays are also objects

! Typical declaration

int[] a;
a = new int[100];

! Can write int a[] instead of int[] a

! Can combine as int[] a = new int[100];

! Aside: Why the seemingly redundant reference to int in new?

! Can create new arrays at run time

! a.length gives size of a

! Note, for String, it is a method s.length()!



Java arrays, . . .

public class arraycheck{
public static void main(String[] argv){
int[] a;
int i, n;

n = 10;
a = new int[n];
for (i = 0; i < n; i++){

a[i] = i;
}

n = 20;
a = new int[n];
for (i = 0; i < n; i++){

a[i] = -i;
}

}
}



Java syntax

class helloworld{
public static void main(String[] args){
System.out.println("Hello world!");

}
}

! args is an array of String

! argv in C

! Don’t explicitly need the number of arguments (argc in C)

! Use args.length to get this



More about private fields

! Should private fields be visible to other objects of the same
type?

! How do we check if two objects are equal?

Date s,t;
..
if (s == t) { ... };



More about private fields

! Should private fields be visible to other objects of the same
type?

! How do we check if two objects are equal?

Date s,t;
..
if (s == t) { ... };

! == checks whether s and t are the same object

! Date s = new Date(27,1,2009); s == t
√

Date t = s;

! Date s = new Date(27,1,2009); s == t ×

Date t = new Date(27,1,2009);



More about private fields

! Should private fields be visible to other objects of the same
type?

! How do we check if two objects are equal?

Date s,t;
..
if (s == t) { ... };

! == checks whether s and t are the same object

! Date s = new Date(27,1,2009); s == t
√

Date t = s;

! Date s = new Date(27,1,2009); s == t ×

Date t = new Date(27,1,2009);

! We want to check if the contents of s and t are the same



More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}



More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}

! Invoke as s.isequal(t) (or t.isequal(s))



More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}

! Invoke as s.isequal(t) (or t.isequal(s))

! The object that executes isequal needs access to private
information of the other object . . .



More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}

! Invoke as s.isequal(t) (or t.isequal(s))

! The object that executes isequal needs access to private
information of the other object . . .

! . . . but both are objects of the same type, so internal structure
is not a secret!



More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}

! Invoke as s.isequal(t) (or t.isequal(s))

! The object that executes isequal needs access to private
information of the other object . . .

! . . . but both are objects of the same type, so internal structure
is not a secret!

! Note the use of this to refer to the parent object

! this can be omitted if context is clear



Subclasses

! A class Employee for employee data
class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
double bonus(float percent){

return (percent/100.0)*salary;
}

}



Subclasses

! Managers are special types of employees with extra features

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

! Manager objects inherit other fields and methods from
Employee

! Every Manager has a name, salary and methods to access
and manipulate these.



Subclasses

! Managers are special types of employees with extra features

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

! Manager objects inherit other fields and methods from
Employee

! Every Manager has a name, salary and methods to access
and manipulate these.

! Manager is a subclass of Employee

! Think of subset



Subclasses

! Manager objects do not automatically have access to private
data of parent class.



Subclasses

! Manager objects do not automatically have access to private
data of parent class.

! Common to extend a parent class written by someone else



Subclasses

! Can use parent class’s constructor using super

class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}



Subclasses

! Can use parent class’s constructor using super

class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

! In Manager

public Manager(String n, double s, String sn){
super(n,s); /* super calls

Employee constructor */
secretary = sn;

}



Subclasses

! Subclass can override methods of super class



Subclasses

! Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}



Subclasses

! Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}

! In general, subclass has more features than parent class



Subclasses

! Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}

! In general, subclass has more features than parent class

! Can use a subclass in place of a superclass

Employee e = new Manager(...)

! Every Manager is an Employee, but not vice versa!

! Recall

! int[] a = new int[100];
! Aside: Why the seemingly redundant reference to int in new?

! One can now presumably write

Employee[] e = new Manager(...)[100]


