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d :: Date

getDate setDate



Classes and objects . . .

! However, most OO languages do give direct access to internal
data

! Fields and methods can be private or public

! static fields and methods can be used without creating
objects

! final means a value that cannot be modified



Constructors

! Can we initialize an object?
Analogue of

int i = 10;



Constructors

! Can we initialize an object?
Analogue of

int i = 10;

! Special methods called constructors

! Invoked once, when an object is created
! Usually have the same name as the class

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

}



Constructors

! Can we initialize an object?
Analogue of

int i = 10;

! Special methods called constructors

! Invoked once, when an object is created
! Usually have the same name as the class

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

}

! Date d = new Date(27,1,2009);



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}

! Invoke appropriate constructor by context

! Date d1 = new Date(27,1,2008);
! Date d2 = new Date(27,1);



Constructors . . .

! Can have more than one constructor

public Date(int d, int m){

day = d; month = m; year = 2009;

}

! Invoke appropriate constructor by context

! Date d1 = new Date(27,1,2008);
! Date d2 = new Date(27,1);

! Two functions can have the same name, different signatures

! Overloading



Constructors . . .

! A later constructor can call an earlier one

class Date{

private int day, month, year;

public Date(int d, int m, int y){

day = d; month = m; year = y;

}

public Date(int d, int m){

this(d,m,2009);

}

}

! this refers to the object to which method is associated

! Objects have a notion of “self”!



Constructors . . .

! Can reverse the order

class Date{

private int day, month, year;

public Date(int d, int m){

day = d; month = m; year = 2009;

}

public Date(int d, int m, int y){

this(d,m);

year = y;

}

}

! Call to other constructor must be first instruction



Constructors . . .

! If no constructors are defined, default constructor initializes
methods to default values

! Date d = new Date();
! Note the brackets after Date

! Default constructor is available only if no constructors are
defined
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Back to Java

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine

! javac compiles Java into bytecode for JVM
! javac xyz.java creates “class” file xyz.class

! java xyz interprets and runs bytecode in class file
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Java syntax

Basic datatypes are similar to other programming languages

int (4 bytes), long (8 bytes), short (2 bytes)
float (4 bytes), double (8 bytes)
char (2 bytes)
boolean

! Size of int etc are fixed, operational semantics is wrt JVM

! char is 2 bytes, Unicode, but otherwise behaves as usual

char c = ’a’;

c = ’X’;

if (c != ’}’) {...}

! Explicit boolean type

boolean b, c = false;

b = true;

b = (i == 7);



Java syntax . . .

! Expressions are similar to C
! x = 7 returns value 7
! flag = (x = 0) is caught as a syntax error

! Compound statements are familiar
! if (condition) ... else ...
! while (condition) ...
! do ... while (condition)
! for (i = 0; i < n; i++) ...

! No goto, but labelled break and continue

outer_loop: // this is a loop label
for (i = 0; i < n; i++){
for (j = 0; j < n; j++){

if (a[i][j] == k){
break outer_loop; // exits the outer for loop

}
}

}



Java syntax, strings

! String is a built in class

! String s,t;

! String constants enclosed in double quotes

! String s = "Hello", t = "world";

! Strings are not arrays of characters

! Cannot write s[3] = ’p’; s[4] = ’!’;

! Instead, invoke method substring in class String

! s = s.substring(0,3) + "p!";

! + is overloaded for string concatenation

! If we change a String, we get a new object

! After the update, s points to a new String

! Java does automatic garbage collection



Java syntax, arrays

! Arrays are also objects

! Typical declaration

int[] a;
a = new int[100];

! Can write int a[] instead of int[] a

! Can combine as int[] a = new int[100];

! Aside: Why the seemingly redundant reference to int in new?

! Can create new arrays at run time

! a.length gives size of a

! Note, for String, it is a method s.length()!



Java arrays, . . .

public class arraycheck{
public static void main(String[] argv){
int[] a;
int i, n;

n = 10;
a = new int[n];
for (i = 0; i < n; i++){

a[i] = i;
}

n = 20;
a = new int[n];
for (i = 0; i < n; i++){

a[i] = -i;
}

}
}



Java syntax

class helloworld{
public static void main(String[] args){
System.out.println("Hello world!");

}
}

! args is an array of String

! argv in C

! Don’t explicitly need the number of arguments (argc in C)

! Use args.length to get this
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More about private fields

! Should private fields be visible to other objects of the same
type?

! How do we check if two objects are equal?

Date s,t;
..
if (s == t) { ... };

! == checks whether s and t are the same object

! Date s = new Date(27,1,2009); s == t
√

Date t = s;

! Date s = new Date(27,1,2009); s == t ×

Date t = new Date(27,1,2009);

! We want to check if the contents of s and t are the same
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More about private fields

! Add a function isequal to the class Date

class Date {
private int day, month, year;

public boolean isequal(Date d){
return (this.day == d.day) &&

(this.month == d.month) &&
(this.year == d.year)

}

! Invoke as s.isequal(t) (or t.isequal(s))

! The object that executes isequal needs access to private
information of the other object . . .

! . . . but both are objects of the same type, so internal structure
is not a secret!

! Note the use of this to refer to the parent object

! this can be omitted if context is clear



Subclasses

! A class Employee for employee data
class Employee{
private String name;
private double salary;

// Some Constructors ...

// "mutator" methods
public boolean setName(String s){ ... }
public boolean setSalary(double x){ ... }

// "accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

// other methods
double bonus(float percent){

return (percent/100.0)*salary;
}

}



Subclasses

! Managers are special types of employees with extra features

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

! Manager objects inherit other fields and methods from
Employee

! Every Manager has a name, salary and methods to access
and manipulate these.



Subclasses

! Managers are special types of employees with extra features

class Manager extends Employee{
private String secretary;
public boolean setSecretary(name s){ ... }
public String getSecretary(){ ... }

}

! Manager objects inherit other fields and methods from
Employee

! Every Manager has a name, salary and methods to access
and manipulate these.

! Manager is a subclass of Employee

! Think of subset
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Subclasses

! Manager objects do not automatically have access to private
data of parent class.

! Common to extend a parent class written by someone else
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Subclasses

! Can use parent class’s constructor using super

class Employee{
...
public Employee(String n, double s){

name = n; salary = s;
}
public Employee(String n){

this(n,500.00);
}

}

! In Manager

public Manager(String n, double s, String sn){
super(n,s); /* super calls

Employee constructor */
secretary = sn;

}
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Subclasses

! Subclass can override methods of super class

double bonus(float percent){

return 1.5*super.bonus(percent);

}

! In general, subclass has more features than parent class

! Can use a subclass in place of a superclass

Employee e = new Manager(...)

! Every Manager is an Employee, but not vice versa!

! Recall

! int[] a = new int[100];
! Aside: Why the seemingly redundant reference to int in new?

! One can now presumably write

Employee[] e = new Manager(...)[100]


