
Data and datatypes

! Programs manipulate data

! Basic built in data types

! Int, Float, Char, . . .

! Built in collective datatypes

! Arrays, lists, . . .
! Choice depends on underlying architecture

! Random access arrays for traditional von Neumann machines
! Lists for functional programming

! Many useful data structures

! Stacks, queues, trees, . . .

! Programming language cannot anticipate all requirements



User defined datatypes

! Stack in C

int s[100];

int tos = 0; /* points to top of stack */

! Should not be able to access s[5] if tos == 7

! Abstract datatype

! Data organization in terms of how the data in the data
structure can be manipulated

! Implementation should not allow user to circumvent this



User defined datatypes

! Stack in C

int s[100];

int tos = 0; /* points to top of stack */

! Should not be able to access s[5] if tos == 7

! Abstract datatype

! Data organization in terms of how the data in the data
structure can be manipulated

! Implementation should not allow user to circumvent this

! Can we enforce this rather than depend on programmer
discipline?



Class

Classes, [Simula, 1967]

! The word “class” is not very significant



Class

Classes, [Simula, 1967]

! The word “class” is not very significant

Class definition has two parts

! How the data is stored in this type.

! What functions are available to manipulate this data.



Stack as a class

class stack {
int values[100]; /* values stored in an array */
int tos = 0; /* top of stack, initially 0 */

push (int i, ...){ /* push i onto stack */
values[tos] = i;
tos = tos+1; /* Should check tos < 100!! */

}

int pop (...){ /* pop and return top of stack */
tos = tos - 1; /* Should check tos > 0!! */
return values[tos];

}

bool is_empty (...){ /* is the stack empty? */
return (tos == 0); /* yes iff tos is 0 */

}
}



Classes

! Traditionally, we pass data to functions

! push(s,i) /* stack s, data i */



Classes

! Traditionally, we pass data to functions

! push(s,i) /* stack s, data i */

! Instead, instantiate classes as objects, each with a private
copy of functions

stack s,t; /* References to stack */

s = new stack; /* Create one stack ... */

t = new stack; /* ... and another */

s.push(7);



Classes

! Traditionally, we pass data to functions

! push(s,i) /* stack s, data i */

! Instead, instantiate classes as objects, each with a private
copy of functions

stack s,t; /* References to stack */

s = new stack; /* Create one stack ... */

t = new stack; /* ... and another */

s.push(7);

! This creates only one object with two “names”

s = new stack; /* Create one stack ... */

t = s; /* ... assign another name */



Classes . . .

! In our class definition, the data to be passed to a function is
implicit

! Each function is implicitly attached to an object, and works
on that object

i = s.pop();

if (t.is_empty()) {...}



No ... in arguments to functions

class stack {
int values[100]; /* values stored in an array */
int tos = 0; /* top of stack, initially 0 */

push(int i){ /* push i onto stack */
values[tos] = i;
tos = tos+1; /* Should check tos < 100!! */

}

int pop(){ /* pop and return top of stack */
tos = tos - 1; /* Should check tos > 0!! */
return values[tos];

}

bool is_empty(){ /* is the stack empty? */
return (tos == 0); /* yes iff tos is 0 */

}
}



Classes and objects

! An object is an instance of a class

! Traditionally, functions are more “fundamental” than data

! Here, functionality is implicitly tied to data representation



Classes and objects

! An object is an instance of a class

! Traditionally, functions are more “fundamental” than data

! Here, functionality is implicitly tied to data representation

! OO terminology

! Internal variables — instance variables, fields
! Functions — methods



Public vs private

! Implementation details should be private



Public vs private

! Implementation details should be private

class date {

int day, month, year;

}

! How do we read and set values for date objects?

! Functions getdate and setdate

! Accessor and mutator methods



Public vs private

! Implementation details should be private

class date {

int day, month, year;

}

! How do we read and set values for date objects?

! Functions getdate and setdate

! Accessor and mutator methods

! Programmers are lazy!

! Allow access to internal variables of an object

if (s.tos == 0){ ... }



Public vs private

! To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}



Public vs private

! To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}

! Should private variables be visible to other objects of the same
class?



Public vs private

! To restore data integrity, classify internals as public or
private

class stack{

private int values[100];

private int tos = 0;

...

}

! Should private variables be visible to other objects of the same
class?

! Does it make sense to have private methods?



Private methods?

class stack {

...

push (int i){ /* push i onto stack */

if (stack_full){

extend_stack();

}

... /* Code to add i to stack * /

}

extend_stack(){

... /* Code to get additional space for stack data */

}

...

}



Static components

! All functions defined in classes

! Classes have to be instantiated

! Where does computation begin?



Static components

! All functions defined in classes

! Classes have to be instantiated

! Where does computation begin?

! Need functions that exist without instantiating a class

! static functions

! Also useful for library functions

! IO.read(), IO.write(...)



Static components

! All functions defined in classes

! Classes have to be instantiated

! Where does computation begin?

! Need functions that exist without instantiating a class

! static functions

! Also useful for library functions

! IO.read(), IO.write(...)

! Also static fields

class Math {

public static double PI = 3.1415927;

public static double E = 2.7182818;

public static double sin(double x) { ... }

...

}



Private static?

Does a combination of private and static make sense?

class interest-rate {

private static double base_rate = 7.32;

private double deposit-amount;

public double sixmonth-yield(){ ... }

/* uses base-rate and deposit-amount */

public double oneyear-yield(){ ... }

/* uses base-rate and deposit-amount */

...

}



Static fields and methods

! Static entities exist before any objects are created

! Static fields are shared across objects



Static fields and methods

! Static entities exist before any objects are created

! Static fields are shared across objects

class stack {

...

private static int num_push = 0;

/* number of pushes across all stacks */

push (int i, ...){

...

num_push++; /* update static variable */

...

}

...

}



Static fields and methods

! Static entities exist before any objects are created

! Static fields are shared across objects

class stack {

...

private static int num_push = 0;

/* number of pushes across all stacks */

push (int i, ...){

...

num_push++; /* update static variable */

...

}

...

}

! Static methods should not refer to non-static fields



Constants

class Math {

public static double PI = 3.1415927;

...

}

User can modify PI!



Constants

class Math {

public static double PI = 3.1415927;

...

}

User can modify PI!
Declare PI to be final

class Math {

public static final double PI = 3.1415927;

...

}

What could it mean for a function to be final?



Java basics

! Java program : collection of classes

! Each class xyz in a separate file xyz.java



Java basics

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments



Java basics

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine



Java basics

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine

! javac compiles Java into bytecode for JVM
! javac xyz.java creates “class” file xyz.class



Java basics

! Java program : collection of classes

! Each class xyz in a separate file xyz.java

! To start the computation: one class must have a static
method

public static void main(String[] args)

! void is the return type
! String[] args refers to command line arguments

! Java programs are usually interpreted on Java Virtual
Machine

! javac compiles Java into bytecode for JVM
! javac xyz.java creates “class” file xyz.class

! java xyz interprets and runs bytecode in class file



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

! Store in helloworld.java



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

! Store in helloworld.java

! javac helloworld.java to compile to bytecode

! Creates helloworld.class



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

! Store in helloworld.java

! javac helloworld.java to compile to bytecode

! Creates helloworld.class

! java helloworld to execute



Hello world

class helloworld{

public static void main(String[] args){

System.out.println("Hello world!");

}

}

! Store in helloworld.java

! javac helloworld.java to compile to bytecode

! Creates helloworld.class

! java helloworld to execute

! Note:

! javac requires extension .java
! java should not be provided .class
! javac automatically follows dependencies and compiles all

classes required


