
ALGO Quiz 2 November 21, 2020

� This exam has 5 questions for a total of 135 marks, of which you can score at

most 100 marks.

� The deadline for emailing your answers is 14:15 hours on November 21, 2020.

Email your answers to: algo2020cmi@gmail.com. Do not use this email ad-

dress for any other communication.

� You may answer any subset of questions or parts of questions. All answers will

be evaluated.

� You are free to refer to the lectures/your notes/any other material that you

wish, but you are not permitted to confer with one another in any manner.

Note that \referring" to material does not cover copying material from else-

where, except for statements of theorems, lemmas and such. In particular, do

not copy arguments wholesale from external sources.

� Warning: CMI's academic policy regarding cheating applies to this exam.

Unstated assumptions and lack of clarity in solutions can and will be used against you

during evaluation. You may freely refer to statements from the lectures in your arguments.

You don't need to reprove these unless the question explicitly asks you to, but you must

be precise. That is, \As we saw in class ... " will not get you any credit, but \As we saw

in Exercise x of Lecture y" will. You may assume that comparing any two integers takes

constant time. Please feel free to ask us via the designated channels if you have questions

about the questions.

Whenever you are asked to design an algorithm, you must make it as e�cient as

possible. The credit will depend on the running time of your algorithm as well, apart from

its correctness.

1. Let G be a connected and undirected graph on n vertices and m edges (that is:

|V(G)| = n, |E(G)| = m). The distance d(u, v) between two vertices u, v in G is the

number of edges in a shortest path in G between the two vertices. Vertices u, v in G

are said to

1. form a remote pair if d(u, v) > n
2
, and

2. form a tenuous pair if there exists a vertex x /∈ {u, v} in G such that the graph

G− x obtained by deleting x from G contains no path between u and v.

This question has two parts. Part (a) is the \full" question. Part (b) is a lighter

variant with fewer marks to score. If you �nd part (a) too di�cult, then you can try

the easier part (b). We will evaluate all answers, and marks from (only) the part with

the higher score will be added to the total.

At-Home Exam Page 1 11:00{14:00

mailto:algo2020cmi@gmail.com

(a) [25]This is the \full" version.

i. Describe a modi�cation to the BFS algorithm that takes (i) the adjacency

list of graph G and (ii) a vertex u of G as input, runs in O(m+n) time, and

decides whether there is a vertex v in G such that u, v form a remote tenuous

pair. Further, if there is such a vertex v then the algorithm must output (i)

one such vertex v and (ii) a vertex x /∈ {u, v} such that G − x contains no

path between u and v.

ii. Prove that your algorithm is correct, and that it runs in O(m+ n) time.

(b) This is the \light" version.

i. [5]Describe a modi�cation to the BFS algorithm that takes (i) the adjacency

list of graph G and (ii) a vertex u of G as input, runs in O(m + n) time,

and decides whether there is a vertex v in G such that u, v form a remote|

not necessarily tenuous|pair. Further, if there is such a vertex v then

the algorithm must output one such vertex v. Prove that your algorithm is

correct, and that it runs in O(m+ n) time.

ii. [5]Describe an algorithm that takes (i) the adjacency list of graph G and (ii) a

vertex u of G as input, runs in time polynomial in n, and decides whether

there is a vertex v in G such that u, v form a remote tenuous pair. Further, if

there is such a vertex v then the algorithm must output (i) one such vertex v

and (ii) a vertex x /∈ {u, v} such that G− x contains no path between u and

v. Prove that your algorithm is correct, and that it runs in time polynomial

in n.

Warning: Read the instructions below before you attempt a solution!

You will get the credit for the above problem only if your algorithm and its

analysis are correct, and it runs within the required bound. You will get the

credit for a modification of the BFS algorithm if you either (i) write correct

pseudocode for the entire algorithm, OR (ii) write pseudocode for BFS and

describe how to make the required changes to your BFS code (and not merely

what these changes are) to get an algorithm that solves the problem.

2. A digraph is connected if its underlying undirected graph is connected. All digraphs

in this problem are connected, and have no parallel arcs or self-loops. We say that a

vertex v in a digraph D is a prince if there are directed paths in D from v to every

other vertex in D. Note that if D is strongly connected then every vertex in D is a

prince. In this problem we see how to quickly identify princes in digraphs which may

not be strongly connected.

(a) [15]Suppose D is digraph that does have at least one prince. Suppose we do a DFS on

D starting from an arbitrary vertex; recall that for digraphs we repeat|without

Page 2

resetting the clock|the DFS from unvisited vertices till every vertex is visited.

Let v be a vertex that is assigned the largest �nishing time by this run of DFS.

Prove that v must then be a prince.

(b) [10]Write the pseudocode for an algorithm that takes the adjacency list of a digraphD

with n vertices and m arcs as input, runs in O(m+n) time, and decides whether

D has at least one prince. If D does have a prince then the algorithm must return

(any) one prince. You do not have to prove the correctness or running time

bound of this algorithm, but you will get the credit for this part only if your

algorithm is correct and runs within the required bound.

3. [25]A cycle-hitting set of an undirected graph G is any subset S ⊆ E(G) of the edge set

of G such that the graph G− S obtained by deleting all edges of S from G is a forest.

The weight w(S) of a cycle-hitting set S is the sum of the weights of all edges in S.

Write the pseudocode for an algorithm which, given a connected undirected graph G

with edge weights w : E(G) → N as input, runs in O(|E(G)| log |V(G)|) time, and �nds

and returns a cycle-hitting set S of G of the smallest weight. That is, S must be a

cycle-hitting set of G, and there must not exist a cycle-hitting set S ′ of G such that

w(S ′) < w(S).

Prove that your algorithm is correct, and that it runs within the stated bound.

Note: You will get credit for this question only if your argument for the

correctness of the algorithm is correct; you won’t get any credit for just

producing correct pseudocode out of thin air.

4. [25]You are given an n × n square grid with some squares black and the remaining ones

white. Describe a polynomial-time algorithm using network ows to place tokens on

the squares of this grid, satisfying the following conditions:

1. every token is on a white square

2. every row and every column of the grid contains exactly one token

Your algorithm should detect if no such placement is possible. The �gure on the next

page shows an example.

Page 3

5. [25]You are given n courses. There is a directed edge from course p to course q if p is a

prerequisite of q, which means q cannot be started unless p is completed. Each course

also has a duration (number of weeks required for completion of the course) associated

with it, and di�erent courses may have di�erent durations. Describe a linear-time

algorithm to determine the minimum number of weeks required to complete all the

courses, if any number of courses can be taken simultaneously as long as all their

prerequisites have been met.

Page 4

