Extremal Surfaces, de Sitter Entropy and Entanglement in Ghost Theories

K. Narayan Chennai Mathematical Institute

- de Sitter space and dS/CFT
- Extremal surfaces and de Sitter entropy
- Ghost CFTs, "ghost-spins" and entanglement

1904.01223 (KN), Honorable Mention, Gravity Research Foundation Essay Awards 2019 [Refs: arXiv:1711.01107 (KN), work in progress; also '18 (Dileep Jatkar, Kedar Kolekar, KN), '17, '16 (DJ, KN), '16, '15 (KN)]

Partially related refs: Arias, Diaz, Sundell; Miyaji, Takayanagi; Sato; Dong, Silverstein, Torroba

Holography, de Sitter space, dS/CFT

 $20^{+} \text{ yrs since } AdS/CFT \quad \text{'97 Maldacena; '98 Gubser,Klebanov,Polyakov; Witten.}$ Holography: quantum gravity in $\mathcal{M} \leftrightarrow$ dual without gravity on $\partial \mathcal{M}$ ('t Hooft, Susskind).

(Witten@Strings'98, '01) Gauge/gravity duality and asymptotics —

 $\Lambda < 0: AdS \rightarrow$ asymptotics at spatial infinity. Dual: unitary Lorentzian CFT, includes time.

 $\Lambda = 0$: flat space \rightarrow null infinity \rightarrow S-matrix, symmetries...

$\Lambda > 0$: de Sitter space

Fascinating for various reasons. Less clear. Boundary at future/past timelike infinity \mathcal{I}^{\pm} . Dual \rightarrow Euclidean CFT ...

[note: gravity dual of ordinary Euclidean CFT \longrightarrow Euclidean AdS]

de Sitter space and dS/CFT

dS/CFT: dual Euclidean non-unitary CFT on dS boundary at future/past timelike infinity \mathcal{I}^{\pm} ('01 Strominger; Witten). $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + d\vec{x}^2)$

(Maldacena '02) analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from Eucl $AdS \to Hartle-Hawking$ wavefunction of the universe $\Psi_{dS} = Z_{CFT}$.

future timelike infinity

past timelike infinity

horizon

horizon

de Sitter space and dS/CFT

dS/CFT: dual Euclidean non-unitary CFT on dS boundary at future/past timelike infinity \mathcal{I}^{\pm} ('01 Strominger; Witten). $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + d\vec{x}^2)$

(Maldacena '02) analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from Eucl AdS \to Hartle-Hawking wavefunction of the universe $\Psi_{dS} = Z_{CFT}$. EAdS interior regularity \to Bunch-Davies dS initial conditions, $\varphi_k \sim e^{ik\tau}$. $Z = \Psi[\varphi] \sim e^{iS_{cl}[\varphi]} \sim e^{-\int_k R_{dS}^2 k^3 \varphi_{-k}^0 \varphi_k^0 + ...} \to \text{dual CFT: } \langle O_k O_{k'} \rangle \sim \frac{\delta^2 Z}{\delta \varphi_k^0 \delta \varphi_{k'}^0}$ $\underline{dS_4}$: Energy-momentum $\langle TT \rangle$ 2-pt fn $\to C_3 \sim -\frac{R_{dS}^2}{G_4}$, ghost-CFT? Dual CFT central charge $C_d \sim i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}}$ negative/imaginary more generally. Anninos,Hartman,Strominger: higher-spin dS_4 dual to Sp(N) ghost $CFT_3, ...$

horizon

past timelike infinity

de Sitter space and dS/CFT

dS/CFT: dual Euclidean non-unitary CFT on dS boundary at future/past timelike infinity \mathcal{I}^{\pm} ('01 Strominger; Witten). $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + d\vec{x}^2)$

(Maldacena '02) analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from Eucl AdS \to Hartle-Hawking wavefunction of the universe $\Psi_{dS} = Z_{CFT}$. EAdS interior regularity \to Bunch-Davies dS initial conditions, $\varphi_k \sim e^{ik\tau}$. $Z = \Psi[\varphi] \sim e^{iS_{cl}[\varphi]} \sim e^{-\int_k R_{dS}^2 k^3 \varphi_{-k}^0 \varphi_k^0 + \dots} \to \text{dual CFT: } \langle O_k O_{k'} \rangle \sim \frac{\delta^2 Z}{\delta \varphi_k^0 \delta \varphi_{k'}^0}$ $\underline{dS_4}$: Energy-momentum $\langle TT \rangle$ 2-pt fn $\to C_3 \sim -\frac{R_{dS}^2}{G_4}$, ghost-CFT? Dual CFT central charge $C_d \sim i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}}$ negative/imaginary more generally. Anninos,Hartman,Strominger: higher-spin dS_4 dual to Sp(N) ghost CFT_3, \dots

Bulk expectation values $\langle \varphi_k \varphi_{k'} \rangle \sim \int D\varphi \varphi_k \varphi_{k'} |\Psi|^2$ Ψ^* and Ψ in bulk vevs \rightarrow dual involves two CFT copies. [In general $\Psi = \Psi[g^3]$, final 3-metric is g^3 ; sum over final boundary condus for bulk vevs.]

horizon

past timelike infinity

Entanglement as probe of dS/CFT?

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Ryu-Takayanagi: $EE = \frac{A_{min.surf.}}{4G}$

[\sim black hole entropy] Area of codim-2 minimal surface in gravity dual.

Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi). (Lewkowycz, Maldacena, ...)

Operationally: const time slice, boundary subsystem \rightarrow bulk slice, codim-2 extremal surface

A speculative generalization of Ryu-Takayanagi to de Sitter space \equiv bulk analog of setting up entanglement entropy in dual CFT \rightarrow restrict to some boundary Eucl time slice \rightarrow codim-2 dS surfaces.

de Sitter entropy as some sort of entanglement entropy? dS isometries ⇒ all boundary Eucl time slices equivalent. Entanglement entropy in ghost-like theories? Positive norm subsectors?

Extremal surfaces, de Sitter entropy

Ryu-Takayanagi: CFT ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2}(dr^2 - dt^2 + dx_i^2)$ $S_A = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \rightarrow (\partial_r x)^2 = \frac{(r/r_*)^{2d-2}}{1 - (r/r_*)^{2d-2}}.$

Ryu-Takayanagi: CFT ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2} (dr^2 - dt^2 + dx_i^2)$ $S_A = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \rightarrow (\partial_r x)^2 = \frac{(r/r_*)^{2d-2}}{1 - (r/r_*)^{2d-2}}.$

 $\frac{\text{de Sitter, Poincare}}{\rightarrow \text{ bulk Eucl time slice } w = const, \text{ subregion at } I^+ \rightarrow \text{codim-2 extremal surface.}} \rightarrow \text{EE in dual Eucl CFT}$

 $[\text{strip}] \ S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1 - (\partial_{\tau}x)^2}.$ $Extremize \to (\partial_{\tau}x)^2 = \frac{B^2\tau^{2d-2}}{1 + B^2\tau^{2d-2}}, \quad B^2 = const.$

Real surfaces: sign difference from $AdS \Rightarrow$ no <u>real</u> "turning point".

Ryu-Takayanagi: CFT ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2} (dr^2 - dt^2 + dx_i^2)$ $S_A = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \rightarrow (\partial_r x)^2 = \frac{(r/r_*)^{2d-2}}{1 - (r/r_*)^{2d-2}}.$

<u>de Sitter, Poincare</u> : $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT}$ \rightarrow bulk Eucl time slice w = const, subregion at $I^+ \rightarrow$ codim-2 extremal surface.

 $[\text{strip}] \ S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1 - (\partial_{\tau}x)^2}.$ $Extremize \to (\partial_{\tau}x)^2 = \frac{B^2\tau^{2d-2}}{1 + B^2\tau^{2d-2}}, \quad B^2 = const.$

Real surfaces: sign difference from $AdS \Rightarrow$ no <u>real</u> "turning point".

• $B^2 < 0$. Near $\tau \to 0$: $\dot{x}^2 \sim B^2 \tau^4$ i.e. $x(\tau) \sim \pm i |B| \tau^3 + x(0)$ $[dS_4]$.

 $x(\tau)$ real \Rightarrow imaginary path $\tau = iT \rightarrow$ complex extremal surface \equiv analytic continuation $r \rightarrow -i\tau, R \rightarrow -iR_{dS}$ from AdS Ryu-Takayanagi.

Complex surfaces: no canonical action $\rightarrow S_{dS_4} \sim -\frac{R_{dS}^2}{G_4}V_1(\frac{1}{\epsilon} - c\frac{1}{l}) \rightarrow \underline{\text{negative area}} [dS_4]$ (also spherical extr surfaces)

de Sitter, static coordinatization

 $dS_{d+1}: \quad ds^2 = -(1 - \frac{r^2}{l^2})dt^2 + \frac{dr^2}{1 - \frac{r^2}{l^2}} + r^2 d\Omega_{d-1}^2.$ $N, S \quad (0 \le r < l): \text{ static patches. } t \text{ is time} \to \text{translations}$ are symmetries. Event horizons for observers in N, S.

de Sitter entropy = area of cosmological horizon. (Gibbons,Hawking) Euclidean continuation $t \rightarrow -it_E$ is sphere (no boundary): Eucl action $I_E = -\log Z = \beta F$.

de Sitter entropy
$$S_{dS_{d+1}} = -I_E = \frac{l^{d-1}V_{S^{d-1}}}{4G_{d+1}} \rightarrow \frac{\pi l^2}{G_4} [dS_4].$$

de Sitter, static coordinatization

 $dS_{d+1}: \quad ds^2 = -(1 - \frac{r^2}{l^2})dt^2 + \frac{dr^2}{1 - \frac{r^2}{l^2}} + r^2 d\Omega_{d-1}^2.$ $N, \ S \ (0 \le r < l): \text{ static patches. } t \text{ is time} \to \text{translations}$ are symmetries. Event horizons for observers in N, S.

de Sitter entropy = area of cosmological horizon. (Gibbons,Hawking) Euclidean continuation $t \rightarrow -it_E$ is sphere (no boundary): Eucl action $I_E = -\log Z = \beta F$.

de Sitter entropy
$$S_{dS_{d+1}} = -I_E = \frac{l^{d-1}V_{S^{d-1}}}{4G_{d+1}} \rightarrow \frac{\pi l^2}{G_4} [dS_4].$$

 $\frac{dS/CFT \to \text{future/past universes } F, P \to \tau = \frac{l}{r}, \ w = \frac{t}{l} \to \frac{ds^2}{\tau^2} \left(-\frac{d\tau^2}{1-\tau^2} + (1-\tau^2)dw^2 + d\Omega_{d-1}^2 \right) \quad \tau \text{ is bulk time now.}$

Real extremal surfaces stretching from I^+ to I^- ?

- · no real turning point earlier, surfaces do not return to I^+ : maybe end at I^- ?
- · bulk physics $\rightarrow \Psi^* \Psi \rightarrow$ two boundaries?

Extremal surfaces, de Sitter entropy

$$ds^{2} = \frac{l^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{f} + f dw^{2} + d\Omega_{d-1}^{2} \right), \quad [f = 1 - \tau^{2}] \quad [\tau = \frac{l}{\tau}]$$

Boundary Euclidean time slice \rightarrow codim-2 surfaces, area $\sim \frac{l^{d-1}}{G_{d+1}}$ S^{d-1} , all equatorial planes equivalent.

Area
$$S = l^{d-1}V_{S^{d-2}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1/f - f(w')^2}$$

Extremize $\rightarrow \quad \dot{w}^2 \equiv (1 - \tau^2)^2 (w')^2 = \frac{B^2 \tau^{2d-2}}{1 - \tau^2 + B^2 \tau^{2d-2}}$
B=const, $S = \frac{2l^{d-1}V_{S^{d-2}}}{4G_{d+1}} \int_{\epsilon}^{\tau_*} \frac{d\tau}{\tau^{d-1}} \frac{1}{\sqrt{1 - \tau^2 + B^2 \tau^{2d-2}}}$

Hartman-Maldacena surfaces (AdS bh) rotated.

Turning point τ_* at $|\dot{w}| \rightarrow \infty$: $1 - \tau_*^2 + B^2 \tau_*^{2d-2} = 0.$

$$dS_4$$
: real τ_* for $0 < B < \frac{1}{2}$

Extremal surfaces, de Sitter entropy

$$ds^{2} = \frac{l^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{f} + f dw^{2} + d\Omega_{d-1}^{2} \right), \quad [f = 1 - \tau^{2}] \quad [\tau = \frac{l}{\tau}]$$

Boundary Euclidean time slice \rightarrow codim-2 surfaces, area $\sim \frac{l^{d-1}}{G_{d+1}}$ S^{d-1} , all equatorial planes equivalent.

Area
$$S = l^{d-1}V_{S^{d-2}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{1/f - f(w')^2}$$

Extremize $\rightarrow \quad \dot{w}^2 \equiv (1 - \tau^2)^2 (w')^2 = \frac{B^2 \tau^{2d-2}}{1 - \tau^2 + B^2 \tau^{2d-2}}$
B=const, $S = \frac{2l^{d-1}V_{S^{d-2}}}{4G_{d+1}} \int_{\epsilon}^{\tau_*} \frac{d\tau}{\tau^{d-1}} \frac{1}{\sqrt{1 - \tau^2 + B^2 \tau^{2d-2}}}$

Hartman-Maldacena surfaces (AdS bh) rotated.

Turning point τ_* at $|\dot{w}| \to \infty$: $1 - \tau_*^2 + B^2 \tau_*^{2d-2} = 0.$ $\underline{dS_4}$: real τ_* for $0 < B < \frac{1}{2}$

Limiting surface as $B \to \frac{1}{2}$: $\tau_* \to \sqrt{2}$. Whole space, $\Delta w \to \infty$.

Real connected surfaces from I^+ to I^- : limiting surface as $\Delta w \to \infty$. Area law divergence $\rightarrow S^{div} = \frac{\pi l^2}{G_4} \frac{l}{\epsilon_c}$; Finite part (limiting surface) $S^{fin} \sim \frac{\pi l^2}{G_4} \Delta w$

Area coefficients scale as de Sitter entropy

 \rightarrow akin to the number of degrees of freedom in the dual CFT.

Entanglement in ghost systems; "Ghost-spins"

 $dS_4/CFT_3 \rightarrow -ve$ central charge, ghost-like CFT. -ve norm states $\rightarrow EE < 0$? +ve norm, +ve EE?

bc-ghosts, c = -2: replica and EE

 $T(w) = (\partial_w z)^2 T(z) + \frac{c}{12} \{z, w\}, \text{ Schwarzian } \{z, w\} = \frac{z'''}{z'} - \frac{3}{2} (\frac{z''}{z'})^2 \text{ (Calabrese, Cardy)}$ Subsystem A: interval betw x = u, v; replica w-space $\rightarrow z = (\frac{w-u}{w-v})^{1/n} \rightarrow z$ -plane.

z-plane: $\langle T(z) \rangle_{\mathbb{C}} = 0 \rightarrow z$ -plane maps to SL(2, Z) inv vacuum.

$$\langle T(w) \rangle_{\mathcal{R}_n} = \frac{c}{12} \{ z, w \} = \frac{\langle T(w) \Phi_n(u) \Phi_{-n}(v) \rangle}{\langle \Phi_n(u) \Phi_{-n}(v) \rangle} \to tr \rho_A^n \equiv \frac{Z_n}{Z_1^n} \sim \text{twist op 2-pt fn.}$$

- Replica argument is applicable for the ghost ground state if it is the SL(2) vacuum: c = -2 bc-ghost CFT $\rightarrow |\downarrow\rangle = |0\rangle$ with $L_0 = 0$.
- Regularity condition $\langle T(z) \rangle_{\mathbb{C}} = 0 \rightarrow \langle -Q | T(z) | 0 \rangle = 0$

Incorporate background charge, or $\langle T(z) \rangle = 0$ trivially from zero modes. $[c = -2 \rightarrow Q = -1]$

Replica formulation formally applies now: $|c < 0 \Rightarrow S_A < 0|$

$$\mathbb{Z}_{N} \text{ bc-orbifold CFTs (Saleur, Kausch, Flohr, ... '90s) confirm negative confidence of twist ops } [l \equiv v - u]$$
$$tr\rho_{A}^{n} = \prod_{k=1}^{n-1} \langle 0 | \sigma_{k/N}^{-}(v) \sigma_{k/N}^{+}(u) | 0 \rangle = l^{\frac{1}{3}(n-1/n)} \rightarrow S_{A} = -\lim_{n \to 1} \partial_{n} tr\rho_{A}^{n} = -\frac{2}{3} \log \frac{l}{\epsilon}$$

"Ghost-spins"

Abstract away from technicalities of ghost CFTs, replica subtleties: simple QM toy models of ghost-like theories with negative norm states \rightarrow reduced density matrix (RDM) after partial trace \rightarrow EE.

"Ghost-spins"

Abstract away from technicalities of ghost CFTs, replica subtleties: simple QM toy models of ghost-like theories with negative norm states \rightarrow reduced density matrix (RDM) after partial trace \rightarrow EE.

Recall ordinary spin: $\langle \uparrow | \uparrow \rangle = \langle \downarrow | \downarrow \rangle = 1$, $\langle \uparrow | \downarrow \rangle = \langle \downarrow | \uparrow \rangle = 0$ $|\psi\rangle = c_1 |\uparrow\rangle + c_2 |\downarrow\rangle \rightarrow \langle \psi |\psi\rangle = |c_1|^2 + |c_2|^2 > 0$

 $\begin{array}{l} \text{cook up} \end{array} \begin{array}{l} \text{``Ghost-spin''} \to 2\text{-state spin variable with indefinite norm.} \\ \left\langle \uparrow \mid \uparrow \right\rangle = \left\langle \downarrow \mid \downarrow \right\rangle = 0, \quad \left\langle \uparrow \mid \downarrow \right\rangle = \left\langle \downarrow \mid \uparrow \right\rangle = 1 \\ \left| \psi \right\rangle = c_1 \mid \uparrow \rangle + c_2 \mid \downarrow \rangle \quad \to \quad \left\langle \psi \mid \psi \right\rangle = c_1 c_2^* + c_2 c_1^* \neq 0. \quad e.g. \mid \uparrow \rangle - \mid \downarrow \rangle \text{ has norm } -2. \\ \left| \pm \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\mid \uparrow \rangle \pm \mid \downarrow \rangle \right); \quad \left\langle + \mid + \right\rangle = \gamma_{++} = 1, \quad \left\langle - \mid - \right\rangle = \gamma_{--} = -1, \quad \left\langle + \mid - \right\rangle = \left\langle - \mid + \right\rangle = 0 \end{array}$

"Ghost-spins"

Abstract away from technicalities of ghost CFTs, replica subtleties: simple QM toy models of ghost-like theories with negative norm states \rightarrow reduced density matrix (RDM) after partial trace \rightarrow EE.

Recall ordinary spin: $\langle \uparrow | \uparrow \rangle = \langle \downarrow | \downarrow \rangle = 1$, $\langle \uparrow | \downarrow \rangle = \langle \downarrow | \uparrow \rangle = 0$ $|\psi\rangle = c_1 |\uparrow\rangle + c_2 |\downarrow\rangle \rightarrow \langle \psi |\psi\rangle = |c_1|^2 + |c_2|^2 > 0$

 $\begin{array}{l} \text{cook up} \end{array} \begin{array}{l} \text{``Ghost-spin''} \to 2\text{-state spin variable with indefinite norm.} \\ \left\langle \uparrow \mid \uparrow \right\rangle = \left\langle \downarrow \mid \downarrow \right\rangle = 0, \quad \left\langle \uparrow \mid \downarrow \right\rangle = \left\langle \downarrow \mid \uparrow \right\rangle = 1 \\ \left| \psi \right\rangle = c_1 \mid \uparrow \rangle + c_2 \mid \downarrow \rangle \quad \to \quad \left\langle \psi \mid \psi \right\rangle = c_1 c_2^* + c_2 c_1^* \neq 0. \quad e.g. \mid \uparrow \rangle - \mid \downarrow \rangle \text{ has norm } -2. \\ \left| \pm \right\rangle \equiv \frac{1}{\sqrt{2}} \left(\mid \uparrow \rangle \pm \mid \downarrow \rangle \right); \quad \left\langle + \mid + \right\rangle = \gamma_{++} = 1, \quad \left\langle - \mid - \right\rangle = \gamma_{--} = -1, \quad \left\langle + \mid - \right\rangle = \left\langle - \mid + \right\rangle = 0 \end{array}$

Two ghost-spins: $\rho = |\psi\rangle\langle\psi| \rightarrow \text{trace over one ghost-spin} \rightarrow$ RDM for remaining ghost-spin $\rightarrow \text{von Neumann entropy.}$ Even number of ghost-spins $\rightarrow \text{calculations, interpretation sensible.}$

Two ghost-spins

 $|\psi\rangle = \sum \psi^{ij} |ij\rangle: \ \langle \psi|\psi\rangle = \gamma_{ik}\gamma_{jl}\psi^{ij}\psi^{kl*} = |\psi^{++}|^2 + |\psi^{--}|^2 - |\psi^{+-}|^2 - |\psi^{-+}|^2 = \pm 1$

Trace over one ghost-spin $\rightarrow \rho_A$ for remaining ghost-spin \rightarrow von Neumann entropy S_A .

RDM:
$$(\rho_A)^{ik} = \gamma_{jl} \psi^{ij} \psi^{kl^*} = \gamma_{jj} \psi^{ij} \psi^{kj^*}$$
 $(\gamma_{\pm\pm} = \pm 1)$
 $(\rho_A)^{++} = |\psi^{++}|^2 - |\psi^{+-}|^2,$ $(\rho_A)^{+-} = \psi^{++} \psi^{-+*} - \psi^{+-} \psi^{--*},$
 $(\rho_A)^{-+} = \psi^{-+} \psi^{++*} - \psi^{--} \psi^{+-*},$ $(\rho_A)^{--} = |\psi^{-+}|^2 - |\psi^{--}|^2.$

Define $\log \rho_A$ using expansion & mixed-index RDM $(\rho_A)_i{}^k = \gamma_{ij} (\rho_A)^{jk}$.

EE: $S_A = -\gamma_{ij} (\rho_A \log \rho_A)^{ij} \rightarrow -(\rho_A)^+_+ (\log \rho_A)^+_+ - (\rho_A)^-_- (\log \rho_A)^-_-$

In general, $+ve \text{ norm} \Rightarrow +ve \text{ RDM}$, EE. [however, correlated ghost-spins]

Two ghost-spins

 $|\psi\rangle = \sum \psi^{ij} |ij\rangle: \ \langle \psi|\psi\rangle = \gamma_{ik}\gamma_{jl}\psi^{ij}\psi^{kl*} = |\psi^{++}|^2 + |\psi^{--}|^2 - |\psi^{+-}|^2 - |\psi^{-+}|^2 = \pm 1$

Trace over one ghost-spin $\rightarrow \rho_A$ for remaining ghost-spin \rightarrow von Neumann entropy S_A .

RDM:
$$(\rho_A)^{ik} = \gamma_{jl} \psi^{ij} \psi^{kl^*} = \gamma_{jj} \psi^{ij} \psi^{kj^*}$$
 $(\gamma_{\pm\pm} = \pm 1)$
 $(\rho_A)^{++} = |\psi^{++}|^2 - |\psi^{+-}|^2,$ $(\rho_A)^{+-} = \psi^{++} \psi^{-+*} - \psi^{+-} \psi^{--*},$
 $(\rho_A)^{-+} = \psi^{-+} \psi^{++*} - \psi^{--} \psi^{+-*},$ $(\rho_A)^{--} = |\psi^{-+}|^2 - |\psi^{--}|^2.$

Define $\log \rho_A$ using expansion & mixed-index RDM $(\rho_A)_i{}^k = \gamma_{ij}(\rho_A)^{jk}$. EE: $S_A = -\gamma_{ij}(\rho_A \log \rho_A)^{ij} \rightarrow -(\rho_A)^+_+ (\log \rho_A)^+_+ - (\rho_A)^-_- (\log \rho_A)^-_-$ In general, +ve norm $\Rightarrow +ve$ RDM, EE. [however, correlated ghost-spins]

Simple subfamily, diagonal
$$\rho_A$$
: $\log \rho_A$ diag
 $(\rho_A)^+_+ = \pm x, \quad (\rho_A)^-_- = \pm (1-x), \quad 0 < x = \frac{|\psi^{++}|^2}{|\psi^{++}|^2 + |\psi^{--}|^2} < 1$
 $\langle \psi | \psi \rangle > 0: \quad S^+_A = -x \log x - (1-x) \log(1-x) > 0 \quad \boxed{+ve \text{ norm } \Rightarrow +ve \text{ EE}}$
 $\langle \psi | \psi \rangle < 0: \quad S^-_A = x \log(-x) + (1-x) \log(-(1-x)) = -S^+_A + i\pi$
 $\boxed{-ve \text{ norm } \Rightarrow \rho^A \text{ eigenvalues } -ve \Rightarrow -ve \text{ Re(EE), const Im(EE)}}$

Entangled ghost-spins

In general RDM shows new EE patterns.

• e.g. eigenvalues satisfy $(\rho_A)_i^k e_k = \lambda e_i$ *i.e.* $(\rho_A)^{ij} e_j = \gamma^{ij} \lambda e_j$.

-ve norm contributions $\Rightarrow \lambda$ in general complex.

• *n* ghost-spins: $|\psi\rangle = \psi^{++\cdots}|++\cdots\rangle + \psi^{--\cdots}|-\cdots\rangle$,

 $\langle \psi | \psi \rangle = |\psi^{++\dots}|^2 + (-1)^n |\psi^{-\dots}|^2, \quad (\rho_A)^+_+ = |\psi^{++\dots}|^2, \quad (\rho_A)^-_- = (-1)^n |\psi^{-\dots}|^2$

odd n: +ve norm \Rightarrow +ve RDM.

Even n: $\prod^n |-\rangle$ is +ve norm.

2 ghost-spins: $|\psi\rangle = \psi^{++}|+\rangle|+\rangle + \psi^{--}|-\rangle|-\rangle \xrightarrow{+ve}$ Correlated ghost-spins

Entangle identical ghost-spins from each copy $\rightarrow +ve$ norm, RDM, EE Also true for 2 copies of ghost-spin ensembles or chains $\{|\sigma_n\rangle\}$ $\mathcal{GC}_1 \times \mathcal{GC}_2$: $|\psi\rangle = \sum_{|\sigma_n\rangle} \psi^{\sigma_n,\sigma_n} |\sigma_n\rangle |\sigma_n\rangle$, $\langle \psi |\psi \rangle = \sum_{|\sigma_n\rangle} |\psi^{\sigma_n,\sigma_n}|^2 > 0$

Entangled ghost-spins and spins

• Disentangled ghost-spins and spins \Rightarrow product states $|\psi\rangle = |\psi_s\rangle |\psi_{gs}\rangle$

Ghost-spins: $\gamma_{++} = 1$, $\gamma_{--} = -1$; Spin metric +ve definite: $g_{ij} = \delta_{ij}$.

 $\langle \psi | \psi \rangle = \langle \psi_s | \psi_s \rangle \langle \psi_{gs} | \psi_{gs} \rangle, \quad \langle \psi_s | \psi_s \rangle > 0; \qquad \langle \psi_{gs} | \psi_{gs} \rangle \gtrless 0 \to \langle \psi | \psi \rangle = \pm 1 \quad \text{(normalize)}$

 \longrightarrow RDM $\rho_A^s = tr_{gs} \rho$ for spins alone $\rightarrow tr \rho_A^s = \pm 1 \longrightarrow$

+ve norm: $S_A = -\sum_i \lambda_i \log \lambda_i > 0$; -ve norm: $S_A = \sum_i \lambda_i \log \lambda_i + i\pi$, $ReS_A < 0$

• Entangled ghost-spins and spins: more intricate, new EE patterns.

Ghost-spin chains $\rightarrow bc$ **-ghost CFTs**

Infinite ghost-spin chains \rightarrow continuum limit \rightarrow ghost-CFTs? Ghost-spins as microscopic building blocks of ghost/nonunitary CFTs?

Recall: Ising model at critical point is a CFT of free massless fermions.

Hamiltonian $H = J \sum_{n} (\sigma_{b(n)} \sigma_{c(n+1)} + \sigma_{b(n)} \sigma_{c(n-1)})$ Spin variables: $\{\sigma_{bn}, \sigma_{cn}\} = 1$, $[\sigma_{bn}, \sigma_{bn'}] = [\sigma_{cn}, \sigma_{cn'}] = [\sigma_{bn}, \sigma_{cn'}] = 0$. $\sigma_{bn}^{\dagger} = \sigma_{bn}, \ \sigma_{cn}^{\dagger} = \sigma_{cn}; \ \sigma_{b} |\downarrow\rangle = 0, \ \sigma_{b} |\uparrow\rangle = |\downarrow\rangle, \ \sigma_{c} |\uparrow\rangle = 0, \ \sigma_{c} |\downarrow\rangle = |\uparrow\rangle$. Like b_{n}, c_{n} ops of *bc*-CFT, $\{b_{n}, c_{m}\} = \delta_{n, -m}$: but σ_{bn}, σ_{cn} bosonic (distinct sites, commute).

Ghost-spin chains $\rightarrow bc$ **-ghost CFTs**

Infinite ghost-spin chains \rightarrow continuum limit \rightarrow ghost-CFTs? Ghost-spins as microscopic building blocks of ghost/nonunitary CFTs?

Recall: Ising model at critical point is a CFT of free massless fermions.

Hamiltonian $H = J \sum_{n} (\sigma_{b(n)} \sigma_{c(n+1)} + \sigma_{b(n)} \sigma_{c(n-1)})$ Spin variables: $\{\sigma_{bn}, \sigma_{cn}\} = 1$, $[\sigma_{bn}, \sigma_{bn'}] = [\sigma_{cn}, \sigma_{cn'}] = [\sigma_{bn}, \sigma_{cn'}] = 0$. $\sigma_{bn}^{\dagger} = \sigma_{bn}, \ \sigma_{cn}^{\dagger} = \sigma_{cn}; \ \sigma_{b} | \downarrow \rangle = 0, \ \sigma_{b} | \uparrow \rangle = | \downarrow \rangle, \ \sigma_{c} | \uparrow \rangle = 0, \ \sigma_{c} | \downarrow \rangle = | \uparrow \rangle$. Like b_{n}, c_{n} ops of *bc*-CFT, $\{b_{n}, c_{m}\} = \delta_{n, -m}$: but σ_{bn}, σ_{cn} bosonic (distinct sites, commute). <u>Jordan-Wigner</u>: $a_{bn} = \prod_{k=1}^{n-1} i(1 - 2\sigma_{ck}\sigma_{bk})\sigma_{bn}, \ a_{cn} = \prod_{k=1}^{n-1} (-i)(1 - 2\sigma_{ck}\sigma_{bk})\sigma_{cn}$

 $\rightarrow \underline{\text{Fermionic gh.sp. variables}}: \quad \{a_{bi}, a_{cj}\} = \delta_{ij} , \quad \{a_{bi}, a_{bj}\} = 0 , \quad \{a_{ci}, a_{cj}\} = 0 .$

$$\begin{split} H &= J \sum_{n} (\sigma_{b(n)} \sigma_{c(n+1)} + \sigma_{b(n)} \sigma_{c(n-1)}) \rightarrow i J a_{bn} (a_{c(n+1)} - a_{c(n-1)}) \sim -b \partial c \\ & \rightarrow \text{ lattice discretization of } bc\text{-ghost CFT.} \end{split}$$

Momentum variables, continuum limit $H \xrightarrow{J \sim 1/2a} \sum_{k>0} k (b_{-k}c_k + c_{-k}b_k) + zpe$ Conf symm: $a \to \xi^{-1}a$, $H \to \xi H$, $\sigma_{b(n)} \to \xi^{\lambda}\sigma_{b(n)}$, $\sigma_{c(n+1)} \to \xi^{1-\lambda}\sigma_{c(n+1)}$ CFT₃^{Sp(N)}, symplectic fermions ?

Extremal surfaces, de Sitter entropy and entanglement in ghost theories, K. Narayan, CMI - p.25/33

N-level ghost-spins

• O(N) symmetry flavour generalization of the *bc*-ghost system: $\langle \downarrow^A | \uparrow^B \rangle = \delta^{AB} = \langle \uparrow^A | \downarrow^B \rangle, \quad \langle \downarrow^A | \downarrow^B \rangle = \langle \uparrow^A | \uparrow^B \rangle = 0, \quad A, B=1,...,N.$ Essentially *N* copies of the 2-level ghost-spin system. Ghost-spin chains at criticality lead to *bc*-CFTs with O(N) flavour symmetry, $\int b^A \partial c^A$.

• *N*-levels with symplectic-like structure: $\langle \uparrow^A | \downarrow^B \rangle = i \Omega^{AB}, \quad \langle \downarrow^A | \uparrow^B \rangle = i \Omega^{AB}, \quad \langle \uparrow^A | \uparrow^B \rangle = 0 = \langle \downarrow^A | \downarrow^B \rangle, \quad A, B=1,...,2N.$ Symplectic structure built into the inner product; in part motivated by 3-dim ghost-CFTs of symplectic fermions (higher spin dS_4/CFT_3 , Anninos, Hartman, Strominger).

• *N* irreducible levels: *i.e.* generalize states $|\uparrow\rangle, |\downarrow\rangle$ to $|e_1\rangle, \dots, |e_N\rangle$ such that $\langle e_i | e_i \rangle = 0; \quad \langle e_i | e_j \rangle = 1 \text{ for } i \neq j, \quad i, j = 1, 2, \dots, N.$

Elemental ghost-spins not 2-level anymore (with flavour indices), but irreducibly N-level.

Two copies of ghost-spin ensembles: correlated states $\rightarrow +ve$ norm, EE > 0. $\mathcal{GC}_1 \times \mathcal{GC}_2$: $|\psi\rangle = \sum_{|\sigma\rangle} \psi^{\sigma,\sigma} |\sigma\rangle |\sigma\rangle$, $\langle \psi |\psi\rangle = \sum_{|\sigma\rangle} |\psi^{\sigma,\sigma}|^2 > 0$ $\xrightarrow{ground states} \{|\sigma\rangle\} 2^N$ -dim \rightarrow maximal $EE \rightarrow S_A = N \log 2$

dS_4 entropy & entangled **TFD-type ghost-CFT states** $|\psi^{tfd}\rangle = \sum \psi^{i_n^F, i_n^P} |i_n^F\rangle |i_n^P\rangle$

de Sitter entropy as entanglement

Real connected surfaces, I^+ to I^- , limiting surface as $\Delta w \to \infty$ (Hartman-Maldacena AdS bh, rotated)

$$ds^{2} = \frac{l^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{1-\tau^{2}} + (1-\tau^{2})dw^{2} + d\Omega_{d-1}^{2} \right) \rightarrow S^{div} = \frac{\pi l^{2}}{G_{4}} \frac{l}{\epsilon_{c}} \text{ (area law)}$$

Bndry Eucl time slice: any S^{d-1} equatorial plane or w = const slice.

Area law coefficient \sim dS entropy \sim number of degrees of freedom in dual CFT.

Existence of such future/past connected surfaces suggests \rightarrow

Speculation: dS_4 approximately dual to $CFT_F \times CFT_P$ in thermofield-double-like entangled state $|\psi^{tfd}\rangle = \sum \psi^{i_n^F, i_n^P} |i_n^F\rangle |i_n^P\rangle$?

de Sitter entropy as entanglement

Real connected surfaces, I^+ to I^- , limiting surface as $\Delta w \to \infty$ (Hartman-Maldacena AdS bh, rotated)

 $ds^{2} = \frac{l^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{1-\tau^{2}} + (1-\tau^{2})dw^{2} + d\Omega_{d-1}^{2} \right) \rightarrow S^{div} = \frac{\pi l^{2}}{G_{4}} \frac{l}{\epsilon_{c}} \quad (\text{area law})$

Bndry Eucl time slice: any S^{d-1} equatorial plane or w = const slice.

Area law coefficient \sim dS entropy \sim number of degrees of freedom in dual CFT.

Speculation: dS_4 approximately dual to $CFT_F \times CFT_P$ in thermofield-double-like entangled state $|\psi^{tfd}\rangle = \sum \psi^{i_n^F, i_n^P} |i_n^F\rangle |i_n^P\rangle$?

- (Witten, Strominger '01) bulk time evolution: $|i_n^P\rangle \rightarrow |i_n^F\rangle \Rightarrow$ $|\psi^{tfd}\rangle$ unitarily equivalent to $|\psi^{tfd}\rangle = \sum \psi^{i_n^F, i_n^F} |i_n^F\rangle |i_n^F\rangle$ with both ghost CFT copies at I^+ .
- 3-dim N-level ghost-spin chains in universality class of ghost CFT_3 dual to dS_4 : $N \sim \frac{l^2}{G_4}$. Two copies of ghost-CFTs in $|\psi^{tfd}\rangle \rightarrow +ve$ norm, $+ve EE \sim N \rightarrow dS_4$ entropy.
- <u>Near I^{\pm} , $\tau \to 0$ </u>: $ds^2 \sim \frac{l^2}{\tau^2} (-d\tau^2 + dw^2 + d\Omega_{d-1}^2) \to \text{Eucl CFT}_{F,P}$ on $R_w \times S^{d-1}$. Global $dS \to \text{dual } CFT_F \times CFT_F$ on $(R_w \times S^{d-1})^2$. dS_4 temperature? Casimir energy for ghost-CFT on $R_w \times S^{d-1} \sim \frac{1}{l}$?

Conclusions, questions

• de Sitter: future/past connected surfaces, I^+ to I^-

limiting surface as subregion becomes whole space, coefficient dS_4 entropy.

- Ghost-spins: toy QM models, -ve norm states, Re(EE) < 0. Two copies of ghost-spin ensembles: correlated states $|\psi\rangle = \sum_{|\sigma\rangle} \psi^{\sigma,\sigma} |\sigma\rangle |\sigma\rangle$ $\rightarrow +ve$ norm, EE > 0.
- ??? Subregions? Entanglement wedge?
- ??? Interpreting these extremal surface areas as entanglement? Lewkowycz,Maldacena, ...?

??? $dS_4 \leftrightarrow CFT_F \times CFT_F$ in entangled thermofield-double-like states $|\psi^{tfd}\rangle = \sum \psi^{i_n^F, i_n^F} |i_n^F\rangle |i_n^F\rangle$? Horizons, HKLL/Papadodimas,Raju? Replica for $Z_F^* \times Z_F$?

??? Ghost-spins as microscopic building blocks for ghost-CFTs ... 3-dim ghost CFTs? Ghost-spin glasses? Models for $CFT_3^{ghost} \leftrightarrow dS_4$: emergence of time?

??? Ghosts and worldsheet entanglement?

Conceptual issues with Bell pairs of spins and ghost-spins etc ...?

 $\begin{aligned} Extremize &\to (\partial_{\tau} x)^2 = \frac{-A^2 \tau^{2d-2}}{1-A^2 \tau^{2d-2}} . \qquad [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}] \\ \underline{dS_4/CFT_3}: \text{ take } A^2 > 0. \text{ Near } \tau \to 0: \quad \dot{x}^2 \sim -A^2 \tau^4 \quad i.e. \quad x(\tau) \sim \pm iA\tau^3 + x(0). \\ \end{aligned}$ $\begin{aligned} \text{Spatial dirn in Eucl CFT} \Rightarrow x(\tau) \text{ real } \Rightarrow \quad \tau = iT, \text{ imaginary path. Turning point } T_* = \frac{1}{\sqrt{A}} . \\ \text{Join half-extremal-surfaces smoothly at } \tau_*. \quad dS_{d+1}, d \text{ even: } A^2 < 0, \ \tau = iT. \end{aligned}$

 $x(\tau)$ real \Rightarrow imaginary path $\tau = iT \rightarrow$ complex extremal surface \equiv analytic continuation $r \rightarrow -i\tau, R \rightarrow -iR_{dS}$ from AdS Ryu-Takayanagi.

Complex surfaces: no canonical action;

$$S_{AdS} = \frac{R^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + {x'}^2} \to S_{dS} = -i\frac{R_{dS}^{d-1}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \frac{V_{d-2}}{\sqrt{1 - (-1)^{d-1}A^2\tau^{2d-2}}}$$

• de Sitter isometry \Rightarrow boundary Euclidean time direction is any symmetry direction.

• sphere: subleading log-div, conf anomaly $\leftrightarrow \Psi$ log-coeff.

 $\begin{aligned} AdS/CFT: Z_{CFT} &= Z_{bulk}; \quad dS/CFT: \ Z_{CFT} &= \Psi_{dS} \Rightarrow \\ \hline EE_{dS/CFT} &\neq \text{bulk EE (via bulk density matrix, } \Psi^*\Psi) \end{aligned} \text{ (Maldacena, Pimentel)} \\ S_{dS_4} &\sim -\frac{R_{dS}^2}{G_4} V_1(\frac{1}{\epsilon} - c\frac{1}{l}) \rightarrow \underline{\text{negative area}} \text{ in } dS_4, \ \mathcal{C}_3 < 0. \end{aligned}$

Extremal surfaces, de Sitter entropy and entanglement in ghost theories, K. Narayan, CMI – p.31/33

bc-ghost CFTs

• $SL(2,Z)$ vacuum $ 0\rangle \neq$ ghost ground state $ \downarrow\rangle$ in general.
$S \sim \int d^2 z \ b \bar{\partial} c$, $(h_b, h_c) = (\lambda, 1 - \lambda)$, $c = 1 - 3Q^2 < 0$, Background Charge $Q = 1 - 2\lambda$
$b(z) = \sum \frac{b_m}{z^{m+\lambda}}, \ c(z) = \sum \frac{c_m}{z^{m+1-\lambda}}; \ L_0 = \sum_{n>0} n(b_{-n}c_n + c_{-n}b_n) + \frac{\lambda(1-\lambda)}{2}.$
SL(2) inv vacuum $ 0\rangle$: $T(z) 0\rangle = \sum_{m} \frac{L_m}{z^{m+2}} 0\rangle = regular$
$\Rightarrow L_{m \ge -1} 0\rangle = 0, b_{m \ge 1-\lambda} 0\rangle = 0, c_{m \ge \lambda} 0\rangle = 0 \text{whereas} b_0 \downarrow\rangle = 0$
• $j_0^{\dagger} = -(j_0 + Q)$ Charge asymmetry.
• $j_0^{\dagger} = -(j_0 + Q)$ Charge asymmetry. $U(1)$ charge symmetry $\delta b = -i\epsilon b, \ \delta c = i\epsilon c \rightarrow \text{ghost current } j(z) = -: bc:$
• $j_0^{\dagger} = -(j_0 + Q)$ Charge asymmetry. $U(1)$ charge symmetry $\delta b = -i\epsilon b, \ \delta c = i\epsilon c \rightarrow \text{ghost current } j(z) = -: bc:$ $j(z) = \sum_m \frac{j_m}{z^{m+1}}, \qquad [L_m, j_n] = -nj_{m+n} + \frac{1}{2}Qm(m+1)\delta_{m,-n}$
• $\begin{aligned} j_0^{\dagger} &= -(j_0 + Q) \text{Charge asymmetry.} \\ U(1) \text{ charge symmetry } \delta b &= -i\epsilon b, \ \delta c = i\epsilon c \ \rightarrow \text{ ghost current } j(z) &= -:bc: \\ j(z) &= \sum_m \frac{j_m}{z^{m+1}}, [L_m, j_n] = -nj_{m+n} + \frac{1}{2}Qm(m+1)\delta_{m,-n} \\ [j_0, O_p] &= pO_p, \ j_0 q\rangle = q q\rangle \ \Rightarrow p\langle q' O_p q\rangle = \langle q' [j_0, O_p] q\rangle = (-q' - Q - q)\langle q' O_p q\rangle \end{aligned}$

• $\lambda = 1, c = -2$: SL(2) vacuum $|0\rangle = |\downarrow\rangle$ ghost ground state

 $b_{m\geq 0}|0\rangle = 0, \ c_{m\geq 1}|0\rangle = 0; \quad Q = -1: \ \langle +1|0\rangle = \langle 0|c_0|0\rangle = 1 \quad \leftarrow \text{ zero mode insertion}$ $\langle b(z)c(w)\rangle_0 \equiv \langle 0|c_0 \sum_{m,n} \frac{b_m}{z^{m+1}} \frac{c_n}{w^n}|0\rangle = \langle 0|c_0 \sum_{m=0}^{\infty} \frac{w^m}{z^{m+1}} b_m c_{-m}|0\rangle = \frac{1}{z-w} \langle 0|c_0|0\rangle$ whereas $\langle 0|b(z)c(w)|0\rangle = \frac{1}{z-w} \langle 0|0\rangle = 0.$ Plethora of negative norm states

Entangled ghost-spins

• In general RDM shows new EE patterns.

e.g. eigenvalues satisfy $(\rho_A)_i^k e_k = \lambda e_i \ i.e. \ (\rho_A)^{ij} e_j = \gamma^{ij} \lambda e_j \Rightarrow$

 $\pm \text{ norm:} \quad \lambda^2 - (\mathrm{tr}\rho_A)\lambda - \mathrm{det}\rho_A^{ik} = (\lambda \mp \frac{1}{2})^2 - \frac{1}{4} - \mathrm{det}\rho_A^{ik} = 0.$

2 gs state: $\det \rho_A^{ik} = -|\psi^{++}\psi^{--} - \psi^{+-}\psi^{-+}|^2$ can be large, -ve: λ in general complex.