Lifshitz spacetimes from AdS **null and cosmological solutions**

K. Narayan

Chennai Mathematical Institute

arXiv:1005.3291, Koushik Balasubramanian, KN.

[Also: hep-th/0602107, 0610053, Das, Michelson, KN, Trivedi; arXiv:0711.2994, Awad, Das, KN, Trivedi; arXiv:0807.1517, Awad, Das, Nampuri, KN, Trivedi.]

- Basic setup: Lifshitz spacetimes
- AdS/CFT with null and cosmological deformations
- Null: dim'nal reduction, holographic correlators, field theory
- Spacelike and anisotropic Lifshitz, AdS_4 and M-theory ...

AdS/condmat and Lifshitz systems

Interesting to explore the space of physical systems accessible within string theory, incorporating key qualitative physical features. Generalizations of AdS/CFT to nonrelativistic systems \rightarrow holographic condensed matter. Son; Balasubramanian,McGreevy; Adams et al; Herzog et al; Maldacena et al; ...

Lifshitz fixed points: arise in magnetic systems with antiferromagnetic interactions, dimer models, liquid crystals, ...

Symmetries: t, x_i -translations, x_i -rotations, anisotropic scaling $t \rightarrow \lambda^z t, x_i \rightarrow \lambda x_i \quad [z: \text{ dynamical exponent}].$

Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. Kachru, Liu, Mulligan [z = 1: AdS] Scaling: $t \to \lambda^z t, x_i \to \lambda x_i, r \to \lambda r$.

Solution to 4-dim gravity with $\Lambda < 0$ and massive gauge field $A \sim \frac{dt}{r^z}$ (or alternatively gauge field + 2-form: dualize to get A-mass)

Lifshitz from string constructions?

Many holographic condmat investigations are at the level of effective gravity actions with appropriate matter content.

If basic qualitative features of a certain physical system are realizable holographically: string constructions? Expect to learn interesting things from string embedding, more microsopic description.

Naive expectations: $Li_d \times M^{10-d}$ or $Li_d \times M^{11-d}$ solution in string or M-theory. Supported by extra fluxes in the compact space M^{10-d} .

(Takayanagi et al) These ansatze (+warping) do not work. Basic violations — flux positivity, existence of certain forms assumed etc.

 $z = \frac{3}{2}$ Lifshitz solutions from D3/D7-constructions (Takayanagi et al): necessarily anistropic, require scalar that breaks scaling symmetry. Similar solutions exist, where geometry is Lifshitz but scalar or other field breaks symmetry.

We'll describe alternative ways to construct z = 2 Lifshitz.

AdS null/cosmological deformations

 $AdS_5 \times S^5$: $ds^2 = \frac{1}{r^2}(\eta_{\mu\nu}dx^{\mu}dx^{\nu} + dr^2) + ds_{S^5}^2$ (Poincare), with 5-form field strength and dilaton (scalar) $\Phi = const$. Turn on non-normalizable deformations for metric, dilaton (DMNT):

$$ds^{2} = \frac{1}{r^{2}} (\tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + dr^{2}) + ds^{2}_{S^{5}} , \qquad \Phi = \Phi(x^{\mu}) .$$

This is a solution in string theory if

$$\tilde{R}_{\mu\nu} = \frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi , \qquad \frac{1}{\sqrt{-\tilde{g}}} \partial_{\mu} (\sqrt{-\tilde{g}} \, \tilde{g}^{\mu\nu} \partial_{\nu} \Phi) = 0 ,$$

i.e. if it is a solution to a 4-dim Einstein-dilaton system. We'll be most interested in: $\Phi = \Phi(x^+)$ or $\Phi = \Phi(t)$.

General family of solutions: $(Z(x^m)$ harmonic function)

 $ds^2 = Z^{-1/2} \tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + Z^{1/2} g_{mn} dx^m dx^n$, $\Phi = \Phi(x^{\mu})$, $g_{mn}(x^m)$ is Ricci flat, and $\tilde{g}_{\mu\nu} = \tilde{g}_{\mu\nu}(x^{\mu})$. $[\mu = 0123, m = 4 \dots 9.]$ AdS_4 solutions and M-theory: later.

AdS null deformations

 $ds^{2} = \frac{1}{r^{2}} [e^{f(x^{+})} (-2dx^{+}dy^{-} + dx_{i}^{2}) + dr^{2}] + ds_{S^{5}}^{2}, \quad \Phi(x^{+}).$ Constraint on these solutions: $R_{++} = \frac{1}{2} (f')^{2} - f'' = \frac{1}{2} (\Phi')^{2}.$ Function-worth of solutions: generically can choose $\Phi(x^{+}).$ The coord. transfmn. $w = re^{-f/2}, \quad x^{-} = y^{-} - \frac{w^{2}f'}{4},$ gives $ds^{2} = \frac{1}{w^{2}} [-2dx^{+}dx^{-} + dx_{i}^{2} + \frac{1}{4}w^{2} (\Phi')^{2} (dx^{+})^{2}] + \frac{dw^{2}}{w^{2}}.$

Now boundary at w = 0 manifestly flat 4D Minkowski spacetime.

This is a general feature: often possible to find new coordinates such that boundary metric $ds_4^2 = \lim_{r \to 0} r^2 ds_5^2$ is flat, at least as an expansion about the boundary (r = 0) if not exactly.

These are Penrose-Brown-Henneaux (PBH) transformations: subset of bulk diffeomorphisms leaving metric invariant (in Fefferman-Graham form), acting as Weyl transformation on boundary.

AdS null deformations

Conformal: $ds^2 = \frac{1}{r^2} \left[e^{f(x^+)} (-2dx^+ dy^- + dx_i^2) + dr^2 \right]$

Lightlike \Rightarrow no nonzero contraction in curvature invariants. Potential singularities at $r = \infty$ likely absent. Tidal forces?

Earlier cosmological interpretation: $x^+ \equiv lightcone time$. Bulk cosmological singularities (Bang/Crunch): choose $e^f \to 0$. Time-dependent cplng $g_{YM}^2 = e^{\Phi(x^+)}$ in dual gauge theory.

PBH: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2(\Phi')^2(dx^+)^2 \right] + \frac{dw^2}{w^2}$ Regard x^+ as a compact coordinate with fixed size: $x^- \equiv t$ (time). Consistent: $g_{++} \sim (\Phi')^2 > 0$ suggests ∂_+ is spacelike vector. Strictly speaking: $x^+ = const$ surfaces are null surfaces, with null normal dx^+ ($g^{++} = 0$). $x^- = const$ surfaces spacelike ($g^{--} < 0$). Corroborates that in PBH system, natural to take $x^- \sim time$. Choose e^f , Φ periodic in x^+ , regular. Spacetime likely regular. Tidal forces? (recall tidal forces in Lifshitz spacetimes)

AdS null deformations: symmetries

PBH: $ds^2 = \frac{1}{w^2} [-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2(\Phi')^2(dx^+)^2] + \frac{dw^2}{w^2}$ Symmetries: x^-, x_i -translations, x_i -rotations, z = 2 scaling $x^- \equiv t \rightarrow \lambda^2 t, \ x_i \rightarrow \lambda x_i, \ w \rightarrow \lambda w \ (x^+ \text{ compact, no scaling}).$ x^+ noncompact: lightlike boosts $x^+ \rightarrow \lambda x^+, \ x^- \rightarrow \frac{1}{\lambda}x^-$. x^+ compact \Rightarrow lightlike boosts broken: they change physical parameters in compactified nonrelativistic theory which we hold fixed. $g_{++} \sim (\Phi')^2 = 0$: AdS in lightcone coordinates with x^+ compactified

- nonrelativistic, Schrodinger (Galilean) symmetries

[Goldberger, Barbon et al, Maldacena et al].

Galilean boosts $x_i \to x_i - v_i x^-$, $x^+ \to x^+ - \frac{1}{2}(2v_i x_i - v_i^2 x^-)$: broken here. z = 2 special conformal symmetry also broken. Nontrivial x^+ -dependence $\Rightarrow z = 2$ Galilean broken to Lifshitz. Symmetries can also be seen in conformal coordinates earlier.

Dimensional reduction

PBH: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2(\Phi')^2(dx^+)^2 \right] + \frac{dw^2}{w^2}$. Naive, standard Kaluza-Klein reduction along x^+ as: $ds^2 = g_{mn}dx^m dx^n = G_{\mu\nu}dx^\mu dx^\nu + G_{dd}(x^d + A_\mu dx^\mu)^2$. Then $\{g_{++}, g_{+-}\}$ -terms: $\frac{1}{w^2} \left[\frac{1}{4}w^2(\Phi')^2(dx^+)^2 - 2dx^+ dx^- \right]$ $= \frac{1}{4} (\Phi')^2 \left[dx^+ - \frac{4dx^-}{w^2(\Phi')^2} \right]^2 - \frac{4(dx^-)^2}{w^4(\Phi')^2}$.

Long-wavelength bulk 4-dim metric: $ds^2 = -\frac{4(dx^{-})^2}{w^4(\Phi')^2} + \frac{dx_i^2}{w^2} + \frac{dw^2}{w^2}$. z = 2 scaling: $x^- \equiv t \to \lambda^2 t$, $x_i \to \lambda x_i$, $w \to \lambda w$.

However, annoying remnant factor $(\Phi')^2$ with x^+ -dependence. Naive dim'nal reduction not valid here: nontrivial dependence of metric, scalar on compact x^+ -dimension. Must examine dim'nal reduction more carefully.

Dim'nal reduction, rigorously

Construct "minimal" off-shell metric ansatz containing PBH metric $\left[ds^{2} = \frac{1}{w^{2}}\left[-2dx^{+}dx^{-} + dx_{i}^{2} + \frac{1}{4}w^{2}(\Phi')^{2}(dx^{+})^{2}\right] + \frac{dw^{2}}{w^{2}}\right].$ $ds^{2} = -N^{2}(x^{+})K^{2}(s^{i})dt^{2} + \frac{1}{N^{2}(x^{+})}(dx^{+} + N^{2}(x^{+})A)^{2} + \frac{1}{w^{2}}(ds^{i})^{2}$ $N(x^+)$ controls g_{++} component, $x^- \equiv t$ and $s^i = x^i, w$. Kaluza-Klein gauge field $A \equiv A_0 K dt$ (purely electric, $A_i = 0$). On-shell solution: $g_{tt} = -N^2 K^2 (1 - A_0^2) = 0$, $N = \frac{2}{\Phi}$, $K = \frac{1}{m^2}$. Want off-shell lower dim'nal effective action: expand out 5-dim Ricci scalar and action for scalar Φ , retaining $K(s^i)$ and $A_0(s^i)$ independently to separate gauge field parts from lower dim metric. From effective action, read off effective lower dim metric.

No nontrivial x^+ -dependence \Rightarrow standard KK-reduction. Lower dim effective action contains metric, *massless* gauge field and scalar.

Dim'nal reduction, rigorously

$$ds^{2} = -N^{2}(x^{+})K^{2}(s^{i})dt^{2} + \frac{1}{N^{2}(x^{+})}(dx^{+} + N^{2}(x^{+})A)^{2} + \frac{1}{w^{2}}(ds^{i})^{2}$$

$$\Rightarrow R^{(5)} = -2(NN'' + (N')^{2}) - \left[\frac{2}{K}(w^{2}\partial_{i}^{2}K - w\partial_{w}K + 3K)\right] + \frac{1}{8}F_{0i}^{2} + 2(NN'' + (N')^{2})A_{0}^{2}$$

 $R^{(5)}$ contains $R^{(4)} = -\frac{2}{K}(w^2\partial_i^2 K - w\partial_w K + 3K)$.

Suggests lower dim spacetime is: $ds^2 = -K^2(s^i)dt^2 + \frac{1}{w^2}ds^{i^2}$.

Possible A-mass term actually vanishes: $\int dx^+ \partial_+ (NN')$. However, nontrivial gauge field mass from scalar kinetic terms:

$$-\frac{1}{2}g^{++}(\partial_{+}\Phi)^{2} \rightarrow -\frac{1}{2}N^{2}(1-A_{0}^{2})(\Phi')^{2} + \dots \rightarrow \frac{1}{2}N^{2}(\Phi')^{2}A_{0}^{2}$$

On-shell: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2 (\Phi')^2 (dx^+)^2 \right] + \frac{dw^2}{w^2}$ $\Rightarrow g_{tt} = -N^2 K^2 (1 - A_0^2) = 0, \quad N = \frac{2}{\Phi'}, \quad K = \frac{1}{w^2}.$

Fixes A-mass, and gives Li_4 : $ds^2 = -\frac{dt^2}{w^4} + \frac{dx^{i^2}}{w^2} + \frac{dw^2}{w^2}$.

Dimensional reduction

 $ds^{2} = -N^{2}(x^{+})K^{2}(s^{i})dt^{2} + \frac{1}{N^{2}(x^{+})}(dx^{+} + N^{2}(x^{+})A)^{2} + \frac{1}{w^{2}}(ds^{i})^{2}.$ Consistency: 5-dim system is an on-shell solution to Einstein equations with scalar depending only on x^{+} if (from [00]-component) $(\partial_{i}A_{0} + A_{0}\frac{\partial_{i}K}{K})^{2} = \frac{4}{w^{2}}$, admitting solution $K = \frac{1}{w^{2}}, A = -\frac{dt}{w^{2}}$. Also consistent with scalar EOM.

Perhaps surprising that naive dim'nal reduction involves $\Phi' \sim \frac{1}{N(x^+)}$ which however disappears in the effective metric Li_4 implied by $R^{(5)}$. Nontrivial x^+ -dependence might appear to complicate Wilsonian separation-of-scales argument: mixing with other modes? e.g. turn on KK vector potential $A_i dx^i$. No conclusive result here for consistent dim'nal reduction: then $R^{(5)}$ has extraneous factors of $N(x^+)$ appearing in analogous calculation. Harder to interpret lower dim system. Explore further.

Scalar probes of Lifshitz

Long wavelength geometry seen by bulk supergravity scalar? Scalar action $S = \frac{1}{G_5} \int d^5x \sqrt{-g} g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi$: restrict to modes with no x^+ -dependence $(i.e. \ \partial_+ \varphi = 0) \Rightarrow$

$$S \to \frac{1}{G_5} \int \frac{d^4x}{w^5} \left[-w^4 \left(\frac{\int dx^+ (\Phi')^2}{4} \right) (\partial_- \varphi)^2 + w^2 L (\partial_i \varphi)^2 + w^2 L (\partial_w \varphi)^2 \right]$$
$$= \frac{1}{G_4} \int \frac{d^4x}{w^5} \left[-w^4 (\partial'_- \varphi)^2 + w^2 (\partial_i \varphi)^2 + w^2 (\partial_w \varphi)^2 \right],$$

L: compactification size. $G_4 = \frac{G_5}{L}$, 4-dim Newton const.

Rescale $x^- \to x^{-\prime} = \frac{L}{\int dx^+ (\Phi')^2} x^- \to \text{ scalar action in 4-dim } z = 2$ Lifshitz background $ds^2 = -\frac{dt^2}{w^4} + \frac{dx^{i^2}}{w^2} + \frac{dw^2}{w^2}$.

Eqn of motion: 4-dim Lifshitz geometry arises on scales large compared with the typical scale of variation (compactification size), *i.e.* effectively setting $\Phi' \sim const$.

Dual field theory

PBH: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2 (\Phi')^2 (dx^+)^2 \right] + \frac{dw^2}{w^2}$. (DMNT) $d = 4 \mathcal{N} = 4$ SYM theory with gauge coupling lightlike-deformed as $g_{YM}^2(x^+) = e^{\Phi(x^+)} \rightarrow \text{ dim'nally reduce.}$ boundary metric $ds_4^2 = \lim_{w \to 0} w^2 ds_5^2$ manifestly flat. Lightlike deformation \Rightarrow no nonzero contraction exists involving metric and coupling alone (only $\partial_+ \Phi$ nonvanishing, $g^{++} = 0$) \Rightarrow various physical observables (in particular trace anomaly) unaffected.

After dim'nal reduction along x^+ : free gauge theory exhibits z = 2Lifshitz scaling. Varying coupling breaks nonrelativistic z = 2Schrodinger symmetry to z = 2 Lifshitz, perhaps not surprising. On general grounds, this is DLCQ of $\mathcal{N}=4$ SYM with coupling having nontrivial variation $g_{YM}^2(x^+)$: better defined?

Dual theory: holographic 2-pt fn

PBH: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{4}w^2 (\Phi')^2 (dx^+)^2 \right] + \frac{dw^2}{w^2}$. Strong coupling gauge theory \equiv weak coupling Lifshitz geometry. Holographic 2-point function: operators \mathcal{O} dual to massive scalars φ . Exact PBH coord calculation hindered: scalar wave eqn not exactly solvable. Near boundary, mode fns asymptote to AdS lightcone mode fns. Thus 2-pt fn asymptotes to AdS_5 2-pt fn (lightcone coords) $\langle O(x)O(x')\rangle \sim \frac{1}{[(\Delta \vec{x})^2]^{\Delta}}, \text{ with } \Delta = 2 + \sqrt{4 + m^2},$ $(\Delta \vec{x})^2 = -2(\Delta x^+)(\Delta x^-) + \sum_{i=1,2} (\Delta x^i)^2$. Compactified x⁺-dimension: $\Delta x^+ \ll \Delta x^-, \Delta x^i \quad [\equiv \text{equal time}]$ $\Rightarrow \quad (\Delta \vec{x})^2 = -2(\Delta x^+)(\Delta x^-) + \sum_{i=1,2} (\Delta x^i)^2 \sim \sum_i (\Delta x^i)^2$ $\Rightarrow \langle O(x)O(x')\rangle_{PBH} \sim \frac{1}{[\sum_{i}(\Delta x^{i})^{2}]^{\Delta}}.$ Agrees with equal-time 2-pt fn of 2 + 1-dim Lifshitz theory

(Kachru,Liu,Mulligan, $\Delta = 4$, massless bulk scalar).

Equal time correlators: 2 + 1-Lifshitz $\equiv 2D$ Eucl. CFT (Fradkin et al)

Dual theory: holographic 2-pt fn

Conformal coords: $ds^2 = \frac{1}{r^2} [e^{f(x^+)}(-2dx^+dy^- + dx_i^2) + dr^2]$. Boundary metric $\tilde{g}_{\mu\nu} = e^{f(x^+)}\eta_{\mu\nu}$, coupling $g_{YM}^2(x^+) = e^{\Phi(x^+)}$. Lightlike $e^f \Rightarrow$ various observables unaffected. However, conformal factor provides dressing factors for operators, correlators: specifically, conformally dressed operators in conformally flat background behave like undressed operators in flat space.

Exact holographic 2-pt fn for conformally dressed operators: $\langle e^{\frac{f(x)\Delta}{2}}O(x)e^{\frac{f(x')\Delta}{2}}O(x')\rangle = e^{\frac{f(x)(\Delta-1)}{2}}e^{\frac{f(x')(\Delta-1)}{2}}(\frac{\Delta\lambda}{\Delta x^+})^{1-\Delta}\frac{1}{[(\Delta \vec{x})^2]^{\Delta}},$ where $\Delta = 2 + \sqrt{4 + m^2}, \ \lambda = \int e^{f(x^+)}dx^+$. Long wavelength: approximate $e^{f(x^+)} \sim 1, \ \frac{\Delta\lambda}{\Delta x^+} \sim \frac{d\lambda}{dx^+} = e^f \sim 1$: $\Rightarrow \langle e^{\frac{f(x)\Delta}{2}}O(x)e^{\frac{f(x')\Delta}{2}}O(x')\rangle \sim \frac{1}{[(\Delta \vec{x})^2]^{\Delta}} \sim \frac{1}{[\sum_i (\Delta x^i)^2]^{\Delta}}.$ Agrees with equal-time 2-pt fn of 2 + 1-dim Lifshitz theory (Kachru,Liu,Mulligan, $\Delta = 4$, massless bulk scalar).

Time-dep: AdS cosmologies

Recall: $ds^2 = \frac{1}{r^2} (\tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + dr^2) + ds_{S^5}^2$, $\Phi = \Phi(x^{\mu})$. Solution if: $\tilde{R}_{\mu\nu} = \frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi$, $\frac{1}{\sqrt{-\tilde{g}}} \partial_{\mu} (\sqrt{-\tilde{g}} \ \tilde{g}^{\mu\nu} \partial_{\nu} \Phi) = 0$.

 $\begin{aligned} AdS_5 \text{-Kasner cosmologies:} \quad e^{\Phi} &= |t| \sqrt{2(1 - \sum_i p_i^2)}, \qquad \sum_i p_i = 1, \\ ds^2 &= \frac{1}{r^2} [dr^2 - dt^2 + \sum_{i=1}^3 t^{2p_i} (dx^i)^2]. \end{aligned}$

Anisotropic Lifshitz-like scaling symmetries:

 $r o \lambda r, \quad t o \lambda t, \quad x^i o \lambda^{1-p_i} x^i$.

Dilaton, 5-form also respect symmetries.

Const dilaton \Rightarrow no symmetric AdS-Kasner solution $(p_i = \frac{1}{3})$.

Qualitatively different from null: time-dep, cosmological singularity. Also singularity at $r \to \infty$ ($R_{ABCD}R^{ABCD}$, R diverge).

Initial conditions evolving to these cosmological singularities?

[Static radial Kasner-like solutions exist: require nontrivial dilaton.]

AdS-BKL cosmologies

In fact, larger family of cosmological solutions where spatial metric is one of the homogenous spaces in the Bianchi classification (ADNNT):

 $ds^{2} = \frac{1}{r^{2}} \left[dr^{2} - dt^{2} + \eta_{ab}(t) (e^{a}_{\alpha} dx^{\alpha}) (e^{b}_{\beta} dx^{\beta}) \right] , \quad e^{\Phi} = e^{\Phi(t)} .$ $e^a_{\alpha} dx^{\alpha}$ are a triad of 1-forms defining symmetry directions. Spatially homogenous dilaton means spatial $R^a_{(a)}$ vanish, and $R^0_0 = \frac{1}{2} (\partial_0 \Phi)^2$. Bianchi-IX: $ds^2 = \frac{1}{r^2} \left[dr^2 - dt^2 + \eta_i^2(t) e^i_\alpha e^i_\beta dx^\alpha dx^\beta \right], \ e^\Phi = |t|^\alpha$. Approximate Kasner-like solution $\eta_i(t) \simeq t^{p_i}$ with $\sum_{i} p_{i} = 1$, $\sum_{i} p_{i}^{2} = 1 - \frac{\alpha^{2}}{2}$, approximate Lifshitz scaling regime. If all $p_i > 0$, cosmology "stable". Else, spatial curvatures force BKL bounces between distinct Kasner-Lifshitz regimes. Dilaton-driven attractor-like behaviour: α increases along bounce. Attractor basin: generic Kasner-like solution with all $p_i > 0$. Const dilaton ($\alpha = 0$) \Rightarrow bounces continue indefinitely.

AdS cosmologies

Qualitatively different from earlier null AdS solutions: time-dependence, bulk cosmological singularity. Gauge theory duals: conjectured as $\mathcal{N}=4$ SYM theory living on time-dep base space $\tilde{g}_{\mu\nu}$, time-dep cplng $g_{YM}^2 = e^{\Phi}$ (dilatonic cases). Time-dep of boundary metric $\tilde{g}_{\mu\nu}$ imparts BKL-bouncing behaviour to gauge theory too. Bounces betw distinct Lifshitz regimes.

Symmetric Kasner-like AdS-BKL-dilaton cosmology family: near singularity, spatial curvatures unimportant. Leading singular behaviour dilaton-driven, symmetric AdS-Kasner spacetime.

Gauge theory response: near-singularity wavefunction singular, divergent energy. If time-dep coupling $g_{YM}^2 = e^{\Phi}$ does not strictly vanish, likely nonsingular.

AdS_4 Lifshitz and M-theory

 $ds^2 = \frac{1}{r^2} (\tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + dr^2) + 4d\Omega_{X^7}^2, \quad G_4 = 6\text{vol}(M_4) + Cd\Phi \wedge \Omega_3.$ C normalization const, X^7 Sasaki-Einstein 7-manifold admitting harmonic 3-form Ω_3 . Scalar $\Phi(x^{\mu})$: no natural interpretation in 11-dim, arises from 4-form flux after compactification.

 $\Phi = const, \ \tilde{g}_{\mu\nu} = \eta_{\mu\nu} \Rightarrow \text{ usual } AdS_4 \times X^7 \text{ solution.}$ Effective 3-dim system: $\tilde{R}_{\mu\nu} = \frac{1}{2}\partial_{\mu}\Phi\partial_{\nu}\Phi, \quad \Box \Phi = 0$. 3-dim gravity \tilde{g}_{MN} trivial: dynamics driven by scalar.

Null: $ds^2 = \frac{1}{w^2} \left[-2dx^+ dx^- + dx_i^2 + \frac{1}{2}w^2(\Phi')^2(dx^+)^2 \right] + \frac{dw^2}{w^2}$. Dim'nal reduction $\Rightarrow 2 + 1$ -dim bulk z = 2 Lifshitz spacetime $ds^2 = -\frac{dt^2}{w^4} + \frac{dx^2}{w^2} + \frac{dw^2}{w^2}$.

Field theory dual: 1 + 1-dim strongly coupled theory, dim'nal redux of null deformation of Chern-Simons theories on M2-branes at conical (CY 4-fold) singularities. ABJM generalizations ... Explore further.

AdS Lifshitz and M-theory

AdS₅ null deformation: lifts to (11-dim) M-theory. Similar to earlier solution: $ds^2 = \frac{-2dx^+ dx^- + d\vec{x}^2 + dw^2}{w^2} + (dx^+)^2$, $\varphi(x^+) = \sqrt{\frac{2}{\ell^2}} \frac{e^{i\ell x^+}}{R}$. Note: no x^+ -dep in metric, KK-reduction standard, gives $z = 2 Li_4$ and gauge field. M-theory lift: $AdS_5^{null} \times \mathbb{CP}^2 \times S^1 \times S^1$ supported by G-flux.

Boundary theory: unclear, possibly M5-brane dual.

Time-dep solutions: AdS_4 cosmologies. 3-dim gravity driven purely by scalar. AdS_4 -Kasner-Lifshitz: $e^{\Phi} = |t| \sqrt{2(1-\sum_i p_i^2)}, \quad \sum_i p_i = 1,$ $ds^2 = \frac{1}{r^2} [dr^2 - dt^2 + \sum_{i=1}^2 t^{2p_i} (dx^i)^2].$

 AdS_4 -BKL-dilaton cosmologies: dilaton driven. No nontrivial AdS_4 -Kasner-Lifshitz or AdS_4 -BKL cosmologies with const scalar (2 Kasner exponents with 2 constraints).

Conclusions, open questions

AdS null solutions \rightarrow dim'nal redux $\rightarrow z = 2$ Lifshitz spacetimes: dual to DLCQ of $\mathcal{N}=4$ SYM with varying coupling.

• This is on-shell solution in string theory: fluctuations about Lifshitz (or null AdS)? Finite temperature?

• More general Lifshitz-z from string theory?

• Interesting radial dependence of scalar/metric: holographic RG flows between AdS-lightcone (Schrodinger), Lifshitz, or $Li_{z_1} \rightarrow Li_{z_2}$? Holographic superfluids?

• Further exploration of 2 + 1-dim field theory dual to Lifshitz: DLCQ of $\mathcal{N}=4$ SYM with varying coupling.

• Further exploration of AdS_4 solutions: 1 + 1-dim field theory dual possibly deformation of Chern-Simons theories on M2-branes at singularities (generalizations of ABJM ...).

* More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra of $X_a = e_a^{\alpha} \partial_{\alpha}$ is SU(2). Spatial Ricci, decomposing along triad $R^a_{(a)} = R^a_{\alpha} e^{\alpha}_a$: $R_{(1)}^{1} = \frac{\partial_{t}(\eta_{2}\eta_{3}\partial_{t}\eta_{1})}{\eta_{1}\eta_{2}\eta_{3}} - \frac{1}{2(\eta_{1}\eta_{2}\eta_{3})^{2}}[(\eta_{2}^{2} - \eta_{3}^{2})^{2} - \eta_{1}^{4}] = 0, \quad \dots$ Say $p_1 < 0$: then $\eta_1^4 \sim t^{-4|p_1|}$ non-negligible at some time. This forces metric to transit from one Kasner regime to another. As long as some $p_i < 0$, these bounces continue as: $p_i^{(n+1)} = \frac{-p_-^{(n)}}{1+2n^{(n)}}, \quad p_j^{(n+1)} = \frac{p_+^{(n)}+2p_-^{(n)}}{1+2n^{(n)}}, \quad \alpha_{(n+1)} = \frac{\alpha_n}{1+2n^{(n)}},$ for the bounce from the (n)-th to the (n + 1)-th Kasner regime.

If $p_{-} < 0$, then $\alpha_{n+1} > \alpha_n$. Also $\alpha_{n+1} - \alpha_n = \alpha_n \left(\frac{-2p_{-}}{1+2p_{-}}\right)$, i.e., α increases slowly for small α : attractor-like behaviour. Finite number of bounces. If all $p_i > 0$, no bounce: cosmology "stable". For no dilaton ($\alpha = 0$), BKL bounces purely oscillatory.

* More on AdS BKL-cosmologies

Parametrization: $p_1 = x$, $p_{2,3} = \frac{1-x}{2} \pm \frac{\sqrt{1-\alpha^2+2x-3x^2}}{2}$. Lower bound: $p_1 \geq \frac{1-\sqrt{4-3\alpha^2}}{3}$. Solution existence forces $\alpha^2 \leq \frac{4}{3}$. Under bounces, α increases, window of allowed p_i shrinks. Lower bound hits $p_1 \geq 0 \Rightarrow \alpha^2 \geq 1$. Bounces stop, cosmology "stabilizes". Attractor-like behaviour: e.g.: $\{p_1^0 = x_0 = 0.3, \alpha_0 = 0.001\}$, flows (initially slowly) to $\{p_i > 0\}$ after 15 oscillations ($\alpha_{15} = 1.0896$).

E.g.: $\left(-\frac{1}{5}, \frac{9}{35}, \frac{33}{35}\right) \rightarrow \left(-\frac{5}{21}, \frac{7}{21}, \frac{19}{21}\right) \rightarrow \left(-\frac{3}{11}, \frac{5}{11}, \frac{9}{11}\right) \rightarrow \left(-\frac{1}{5}, \frac{3}{5}, \frac{3}{5}\right) \rightarrow \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. [multiple flows with same endpoint]

Chaotic behaviour: 7% change to smallest exponent $-\frac{1}{5}$ gives $\left(-\frac{13}{70}, \frac{9}{35}, \frac{65}{70}\right) \rightarrow \left(-\frac{2}{11}, \frac{13}{44}, \frac{39}{44}\right) \rightarrow \left(-\frac{3}{28}, \frac{2}{7}, \frac{23}{28}\right) \rightarrow \left(\frac{1}{11}, \frac{3}{22}, \frac{17}{22}\right)$, drastically different endpoint.

Note also that dilatonic ($\alpha \neq 0$) [attractor-like] and non-dilatonic ($\alpha = 0$) [oscillatory] flows drastically different.