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e de Sitter space, dS/CFT and de Sitter entropy;

e dS extremal surfaces: future-past, no-boundary, time-entanglement/pseudo-entropy,
analytic cont’ns, LM replica geometries, pseudo-Renyi

o QM: pseudo-entropy, time-entanglement — cosmological transition matrix

e Slow-roll inflation, no-bndy surfaces
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2509.02775, Kanhu Nanda, KN, Somnath Porey, Gopal Yadav, 2409.14208, Kaberi Goswami, KN, G Yadav

[collaborations: K. Goswami, D. Jatkar, K. Kolekar, K. Nanda, S. Porey, H. Saini, G. Yadav]



Holography and asymptotics

254 yrs since AdS/CFT ’97 Maldacena; ’98 Gubser,Klebanov,Polyakov; Witten.

Holography: quantum gravity in M < dual without gravity on 8M ('t Hooft, Susskind).

(Witten@Strings'98, '01)  Gauge/gravity duality and asymptotics —

A <0: AdS — asymptotics at spatial infinity.
Dual: unitary Lorentzian CFT, includes time.

A =0: flat space — null infinity.

S-matrix, symmetries, Carroll/celestial . ..

I+
future timelike infinity

A > 0: de Sitter space
Boundary at future/past timelike infinity Z=. borizon horion

Dual — Euclidean CFT ... Time emergent.

[note: gravity dual of ordinary Euclidean CFT — Euclidean AdS] ——

past timelike infinity
T

Might regard de Sitter as toy model for cosmology.
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de Sitter space, entropy, dS/CFT

de Sitter entropy = area of cosmological horizon (Gibbons Hawking).

Some sort of (holographic) entanglement? Ryu-Takayanagi generalizations?
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de Sitter space, entropy, dS/CFT

de Sitter entropy = area of cosmological horizon (Gibbons Hawking).

Some sort of (holographic) entanglement? Ryu-Takayanagi generalizations?

dS/CFT: (01 Strominger; Witten) future timelike infinity ZT as a natural
dS boundary. Euclidean non-unitary CFT dual. Time emergent.
[note: gravity dual of ordinary Eucl CFT — Eucl AdS]

, . . . Hartle-Hawki
(Maldacena '02) AdS, analytic continuation — | Zopr = Vyg “f;%e?un:g():ff the Universe

Bulk expectation values (¢rpp/) ~ [ Do oppp | ¥|? — dual = two CFT copies.

Dual energy-momentum (T'T) 2-pt fn — C negative/imaginary, ghost-CFT.

Anninos,Hartman,Strominger: higher-spin dSy dual to Sp(N) ghost CFTg, ...
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de Sitter space, entropy, dS/CFT

de Sitter entropy = area of cosmological horizon (Gibbons Hawking).

Some sort of (holographic) entanglement? Ryu-Takayanagi generalizations?

dS boundary. Euclidean non-unitary CFT dual. Time emergent.
[note: gravity dual of ordinary Eucl CFT — Eucl AdS]

, . . . Hartle-Hawki
(Maldacena '02) AdS, analytic continuation — | Zopr = Vyg \\:&e?un:t‘?ml)nff the Univerae

Bulk expectation values (¢rpp/) ~ [ Do oppp | ¥|? — dual = two CFT copies.

Dual energy-momentum (T'T) 2-pt fn — C negative/imaginary, ghost-CFT.

Anninos,Hartman,Strominger: higher-spin dSy dual to Sp(N) ghost CFTg, ...

2 -
R ) o R2 k3,0 0
Sy, Poincare: ds2=—9S(—dr2+dz?) iSole) o o~ e Rask® e pept-
454 =
2
— dual CFT: (0,0,/) ~ ﬁ S cg~ - Das
k &Pk’ e

Global/static dS from global AdS: other analytic continuations.

Vgslel ~ e
r— —ir, Rpgg — —iRgg- }

dS/CFT: (01 Strominger; Witten) future timelike infinity ZT as a natural
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de Sitter space, extremal surfaces
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dS, future boundary, extremal surfaces

[KN '15-25] A natural generalization of Ryu-Takayanagi to de Sitter =
bulk analog of setting up entanglement entropy in dual Eucl CFT —
define some boundary Eucl time slice — codim-2 RT/HRT surfaces
anchored at /1, dipping into holographic (time) direction.

Fo




dS, future boundary, extremal surfaces

[KN '15-25] A natural generalization of Ryu-Takayanagi to de Sitter =
bulk analog of setting up entanglement entropy in dual Eucl CFT —
define some boundary Eucl time slice — codim-2 RT/HRT surfaces

anchored at /1, dipping into holographic (time) direction.

Fo

Extremization: surfaces anchored at future boundary I+ —

No real IT — It turning point (Lorentzian ds).
Surfaces do not return to I,  mterior boundary condns? Time contours?



dS, future boundary, extremal surfaces

[KN '15-25] A natural generalization of Ryu-Takayanagi to de Sitter =
bulk analog of setting up entanglement entropy in dual Eucl CFT —
define some boundary Eucl time slice — codim-2 RT/HRT surfaces

anchored at /1, dipping into holographic (time) direction.

®

Fo

Extremization: surfaces anchored at future boundary I+ —

No real IT — It turning point (Lorentzian ds).

Surfaces do not return to I,  mterior boundary condns? Time contours?

Timelike, area o< overall + (relative to AdS spacelike surfaces). \)
No-boundary surfaces: Hartle-Hawking no-boundary dS. Complex area. \/

(top timelike f-p surface + real surface in hemisphere)

AdS — global/static dS surfaces: analytic continuation = space <> time rotation.




dS, future boundary, extremal surfaces

[KN '15-25] A natural generalization of Ryu-Takayanagi to de Sitter =
bulk analog of setting up entanglement entropy in dual Eucl CFT —
define some boundary Eucl time slice — codim-2 RT/HRT surfaces
anchored at /1, dipping into holographic (time) direction.

Extremization: surfaces anchored at future boundary I+ —
. : No real IT — It turning point (Lorentzian ds).

v Surfaces do not return to I,  mterior boundary condns? Time contours?

Future-past surfaces: stretch from I to 1™, entirely Lorentzian dS. O

Timelike, area o< overall + (relative to AdS spacelike surfaces). Q

No-boundary surfaces: Hartle-Hawking no-boundary dS. Complex area. \/

(top timelike f-p surface + real surface in hemisphere)

AdS — global/static dS surfaces: analytic continuation = space <> time rotation.

Areas: new object — Pseudo entropy or “Time entanglement”. [LM replica on
Doi,Harper,Mollabashi, Takayanagi, Taki; KN, '22 Wgs = ZCFT]

(EE-like structures, timelike separations)

A _ | F) (I - sansiti atri akata. Takavanaei. Taki. Tamaoka. Wei.’20)
TFU =Trpg <W) [entropy of reduced transition matrix (Nakata, Takayanagi, Taki, Tamaoka, Wei, 20)]



“Entanglement” in ghost theories: ghost-spins

KN’16; Jatkar,KN'17; Jatkar,Kolekar, KN'18

e Replica arguments (Calabrese, Cardy) generalized to ¢ = —2 ghost CFT's:
twist operator 2-pt fn — Re(S) < 0. Subtleties. L) = 10); (—Q|T(2)]0) = 0]
“Ghost-spin” — 2-state spin variable with indefinite norm. [ordinary spin:
L4 (tIM)=1=)]
T =dIn=1 rIH=d¢lH=0

Ii>5%(m>i\l>); (£l£) =744 = %1, (+]-) =(-|+)=0

Infinite ghost-spin chains, (nn)-intns — continuum limit — be-ghost CFT.
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“Entanglement” in ghost theories: ghost-spins

KN'16; Jatkar, KN'17; Jatkar,Kolekar, KN'18

e Replica arguments (Calabrese, Cardy) generalized to ¢ = —2 ghost CFT's:
twist operator 2-pt fn — Re(S) < 0. Subtleties. L) = 10); (—Q|T(2)]0) = 0]
“Ghost-spin” — 2-state spin variable with indefinite norm. [ordinary spin:
L4 (tIM)=1=)]
T =dIn=1 rIH=d¢lH=0

Ii>5%(m>i\l>); (£l£) =744 = %1, (+]-) =(-|+)=0

Infinite ghost-spin chains, (nn)-intns — continuum limit — be-ghost CFT.

o p=|Y) (¢ tlP—B) RDM 4, remaining ghost-spin — von Neumann entropy.

2 g5, SYliG) (Wlv) = vipvj PR = et T2 T T2 o et T2 =

RDM: (pA)'ik = .lewijwkl*; EE: Sy = —v;;(p4a log pA)U [new patterns]

e | —ve norm <> Im(Sy4) e +ve norm |¢) # +ve RDM, EE.

e Nontrivial adjoint = p ~ transition matrix — pseudo-entropies.

e 2 copies: entangle identical ghost-spins from each copy — +wve norm, RDM, EE

[y = T |4)[+) + %~ T |=)|—) = Positivity — correlated ghost-spins
Also true for 2 copies of general ghost-spin ensembles: |) = E|0n> Pon9n oy Yoy ) — Positivity.
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dS future-past extremal surfaces

2 -
. R .
ds (Poincare) : dS?H»l = 7‘12&(71172 + dw? + dw?) X/ | Bndry Eucl time w=const

) - i 2_2d-2
Sas = [ == V1-(0r)% — (0002 = {Eram, 1B2>0)

strip @ It — codim-2.

Sign diff. from AdS = ‘ No real It — IT “turning point”. KN '15: Sato '15

[Analytic cont’ns from AdS RT — complex areas|
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dS future-past extremal surfaces

) R2 p
dS (Poincare) : do3yy = S (~ar? 4 dw? 4 dad)

Bndry Eucl time w=const

2 _2d—2 N strip @ 1F 5 codim-2.
Sas < [ T,‘fil m — (9ra)2= B2202 g2

1+B2,2d—2

Sign diff. from AdS = ‘ No real IT — It “turning point”.

[Analytic cont’ns from AdS RT — complex areas|

KN "15; Sato '15

2 2 N
dS (static) ds? = — dE o 4+ (5 — D@ £ r2a0d ;. KNI

Bndry Eucl time slice, any S%—1 equatorial plane (OR t=const slice).

Future-past (timelike) surfaces connecting I+ to I~

2
Hartman-Maldacena (AdS bh) rotated. [area div —i 78'4 %]

Hp‘“-m’
T dS (global): ds3 = —dr? 412 cosh? Tan3.

o2

ds?

| a3
global 6 4=const

Fstaticly—const

[r=1lcosh T] ‘
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de Sitter no-boundary surfaces

[KN’22]; [dSg3: Hikida,Nishioka, Takayanagi, Taki]

Hartle-Hawking no-boundary proposal: Lorentzian dS evolves in time from a
no-boundary Euclidean initial configuration. Cut global dS in middle (7 = 0 slice),
join top half with hemisphere in bottom half given by Euclidean continuation

ds? =12dr% +12cos? 7 d02; T =ilrg, 0< T < I
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de Sitter no-boundary surfaces

[KN’22]; [dSg3: Hikida,Nishioka, Takayanagi, Taki]

Hartle-Hawking no-boundary proposal: Lorentzian dS evolves in time from a
no-boundary Euclidean initial configuration. Cut global dS in middle (7 = 0 slice),
join top half with hemisphere in bottom half given by Euclidean continuation
ds? =12dr% +12cos? 7 d02; T =ilrg, 0< T < I
S equatorial plane (i.e. s4=1) — (vertical) timelike f-p surface, 6 = z.
Join (7 = 0) spatial surface going around hemisphere.

IR bottom surface: ds? = 12dr2 +12 cos? 75 (d6? + sin? 0403 _,) g

Area = 1471 v JT% drpy (cos @2 = 117 Vgaa
1G4 sd=270 B COSTE 27 4Gg

Precisely half dS entropy: emerges differently from area of cosmological horizon

(static patch observers). [One hemisphere direction here is Euclidean continuation of time in future universe]
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de Sitter no-boundary surfaces

[KN’22]; [dSg3: Hikida,Nishioka, Takayanagi, Taki]

Hartle-Hawking no-boundary proposal: Lorentzian dS evolves in time from a
no-boundary Euclidean initial configuration. Cut global dS in middle (7 = 0 slice),
join top half with hemisphere in bottom half given by Euclidean continuation
ds? =12dr% +12cos? 7 d02; T =ilrg, 0< T < I
S equatorial plane (i.e. s4=1) — (vertical) timelike f-p surface, 6 = z.
Join (7 = 0) spatial surface going around hemisphere.

IR bottom surface: ds? = 12dr2 +12 cos? 75 (d6? + sin? 0403 _,) g

Area = 1471 v JT% drpy (cos @2 = 117 Vgaa
1G4 sd=270 B COSTE 27 4Gg

Precisely half dS entropy: emerges differently from area of cosmological horizon

(static patch observers). [One hemisphere direction here is Euclidean continuation of time in future universe]

Hkenco

Ow Stp = Snp — Sips Re(Snp) = %+ dS entropy.
O Suggests Snp = Was, Sfp =Vas,¥ig ttur).

2 2 2

[dS4] Spp = —i 78,4 B 5, =i 2%4 B 4 %
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dSs3, 2-dim CFT; timelike intervals

Future-past surfaces, entirely Lorentzian global dS3. [some $2 equatorial plane]

Area Sy, = 71'643 logt =2(5logl) with cgg, = 71'35%5 [2 copies].

No-boundary dS3 surface: area Snb:—i2(";3 log L + ﬁ = Slog L+ g(im.

Im(Sy,) = £log L for maximal (IR) interval in Eucl CFT on circle.

Re(Sny): deep interior Euclideanization <> “interior regularity”, Eucl CFT

[S,,5 is overall —i times EE for timelike interval in AdS3 with ¢ = SLAdS
n prem
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dSs3, 2-dim CFT; timelike intervals

Future-past surfaces, entirely Lorentzian global dS3. [some $2 equatorial plane]
= —1 Sé{és [2 copies].

Area Sy, = 71'643 logt =2(5logl) with cgg, =

log L + 403 = Slog L+ g(im.

No-boundary dS3 surface: area s,,;, =iy G
Im(Sy,) = §log L for maximal (IR) interval in Eucl CFT on circle.
): deep interior Euclideanization <> “interior regularity”, Eucl CFT

Re(Sns
[Spp is overall —i times EE for timelike interval in AdSg with ¢ = 25445
3
. . . . 2 . _ 2 )2
Ordinary unitary 2-dim CFTs: EE is s = £1log &7 = g10g —(A0F(Ax)7
E €
Ordinary spacelike intervals A2 >0 — s = Az
.
+ &Gm).

Entirely timelike interval, width At so A% < 0 5= &log At

[ Usual Eucl CFT replica — Wick-rotate to timelike interval }
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dS no-boundary surfaces, analytic cont’n

Analytic cont’n = space«>time rotation: AdS RT surface from r — oo (boundary)
tor =0 (andbacky —> IR dS RT/HRT surface from r — oo (future boundary) to
r = (Lorentzian dS) going around Eucl hemisphere (r =1 to r = 0) (& back to 171).

dS RT/HRT surfaces on bndry Eucl time slice [r=lcoshT]

2 i 2
r>1] ds2=——dr2 1,2q02 | I2EL, g2 _drt 2402

IS -1 14 1%
12 L2
2 i 2

r<i] ds2 = —dro 4.2g023 | A2, g2 o _drt 12402
12 g 142
12 2

d—1
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dS no-boundary surfaces, analytic cont’n

Analytic cont’n = space«>time rotation: AdS RT surface from r — oo (boundary)
tor =0 (andbacky —> IR dS RT/HRT surface from r — oo (future boundary) to
r = (Lorentzian dS) going around Eucl hemisphere (r =1 to r = 0) (& back to 171).

dS RT/HRT surfaces on bndry Eucl time slice [r=lcoshT]
2 ; 2
r>1] ds2=——4r2_ 1 ,2q02 | AL, g2 _drt 1 .2402
re 14+ L
12 2
i 2 1
[r<1] ds2 = - +r2a02 | A2l g2 o _drt 2402 ;
] - o
r2 1415
Ved— d—2 —i Vead— d—24,.
TR: max d—2 [Re r dr _L—o—il d—2 fé r dr | (Red—2 dr?
subregion 4CGq41 70 14 L AGat1 1 r2 o *(ﬁ —1)
g Ty -y 12
d—1 .
1 Vead— d—1 Rd—2
. seneric 1 sd—1 I c
(blue: generic 6c) AT FRE] 1G4 7 142 + ...
[dsy: 1rL2(Rc -1) - _m2 Re | 7TL2] [dS5: 25 tog Be 5 i L log Be | =l
412Gy, 2G4 1 24, 3 4G3 °® L 2G3 °8 1 7
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dS no-bndry surfaces, Lewkowycz-Maldacena

[KN'23]

Hartle-Hawking Wavefunction of the Universe: amplitude (transition matrix) for

creatlng universe (ﬁnal bHdI‘y COIldIlS) f(‘l‘OI}I} nothmg (satisfying HH no-boundary condn).
<

>1
Semiclassically W ;g ~ S(T ) B . Top Lorentzian (leal S(’">l)), pure phase.
. 2
Hemisphere: S ; M» Sg<l) = —/ VI (R —2A) ——> g"(l’,4 : =1I).

nbp
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dS no-bndry surfaces, Lewkowycz-Maldacena

[KN'23]

Hartle-Hawking Wavefunction of the Universe: amplitude (transition matrix) for

creatlng universe (ﬁnal bHdI‘y COIldIlS) fI‘OI‘I} nothmg (satisfying HH no-boundary condn).

Listr>1 sy r<l L
Semiclassically W ;g ~ e . Top Lorentzian (real s(r> ')), pure phase.
. 2
Hemisphere: S ; M» Sg<l) = —/ V3 (R — 2A) ——> ,"(l’,4 : =Z).

2

nbp

Lewkowycz-Maldacena: bulk AdS replica dual to boundary replica EE argument.

ZcrT = Zpulk = boundary entanglement entropy = bulk entanglement entropy.

n—1

Quotient: conical singularities smoothed by codim-2 cosmic brane (Dong). [1" =nli+Iyrane (= 50— 420 )]
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dS no-bndry surfaces, Lewkowycz-Maldacena

[KN'23]

Hartle-Hawking Wavefunction of the Universe: amplitude (transition matrix) for

creatlng universe (ﬁnal bHdI‘y COIldIlS) from ¢ nothmg (satisfying HH no-boundary condn).

1 (r<l)
Semiclassically W ;g ~ S(T> ) B Top Lorentzian (real S(’">’)) pure phase.
. . Eucl grav <1 2
Hemisphere: S ; —g> Sg< ) = _/ V3 (R Sa ,ﬂ'l _ %)_

nbp

Lewkowycz-Maldacena: bulk AdS replica dual to boundary replica EE argument.

ZcrT = Zpulk = boundary entanglement entropy = bulk entanglement entropy.

n—1

Quotient: conical singularities smoothed by codim-2 cosmic brane (Dong). [1" =nli+Iyrane (= 50— 420 )]

dS/CFT: Zcpr = VY4s = boundary replica via Zocpr — bulk replica on ¥ g

(single ket, not d.m.; non-hermitian) —> Pseudo—Entropy (entropy of transition matrix; complex).

das
. . i Sy
Analytic cont’n (semicl.): Z;?ds ~e In \I/%S ~ eiSn; Sy = .,}Efﬁu — ndp)log Uy = 4G
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dS no-bndry surfaces, Lewkowycz-Maldacena

[KN'23]

Hartle-Hawking Wavefunction of the Universe: amplitude (transition matrix) for

creatlng universe (ﬁnal bIldI‘y COIldIlS) f(‘l‘OI}I} nothmg (satisfying HH no-boundary condn).
<

>1
Semiclassically W ;g ~ 75(T ) B . Top Lorentzian (real S(’">l)),pure phase.
. s Eucl grav (r<l) 12
Hemisphere: S, ———— S = —/ VI (R —2A) ——> ;G4 : =Z).

nbp

Lewkowycz-Maldacena: bulk AdS replica dual to boundary replica EE argument.

ZcrT = Zpulk = boundary entanglement entropy = bulk entanglement entropy.

n—1

Quotient: conical singularities smoothed by codim-2 cosmic brane (Dong). [1" =nli+Iyrane (= 50— 420 )]

dS/CFT: Zcpr = VY4s = boundary replica via Zocpr — bulk replica on ¥ g

(single ket, not d.m.; non-hermitian) —> Pseudo—Entropy (entropy of transition matrix; complex).
sds

Analytic cont’n (semicl.): Z;?ds ~e In \I/%S ~ eiSn; Sy = .,}Efﬁu — ndp)log Uy = 4G

Cosmic brane not spacelike «+» Euclidean + timelike no-bndry dS extremal surface.
LM replica formulation: entropy = area of cosmic brane created from “nothing”.
Amplitude divergent if Lorentzian part (till I+) real. Here timelike part = pure phase
cancels in probability (finite: bounded real part from hemisphere, set by dS entropy).
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LM Replica geometries: dS;

Nanda,KN,Porey,Yadav

Extend boundary IT replica — explicit dS-like smooth bulk replica—n geometry

Zn) — Yy In—nly

Boundary Renyi entropy Sy, = ﬁ log( Zi) = ﬁ log(w—?) ~ =

Maximal subregion: S2? — cylinder conformal transfm

m‘ — smooth bulk replica geometry
00 HA —
@ 2

=

_ 2
ds *7ﬁ_;+(*7*)dt + r2d¢?
(n=2) 12 n2
N\ ot /[ Replica boundary condns ¢ = ¢ + 27wn at I,
[Buclidean part r < L: t — irp and 75 = [0, Z]]

2RL)

n — 1 limit — extremal surface area earlier.

Renyi entropy Sgb = 12'*'71" (4G5 + 2G5

Cosmic brane: consider above metric in boundary-quotiented variables ¢ = ¢ + 2.
Now r = 0 is singularity (North4+South poles). This is Schwarzschild dSs3 :

2 2
ds2:—(1—8G3E—;—2>dt2+18;ﬁ+7“2d¢2 8GsE=1- 1.

Cosmic brane (r = 0) timelike in Lorentzian region.
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Replica geometries: dS;

Nanda,KN,Porey, Yadav

Convenient to construct dSy replica in hyperbolic coords (d¢HZ = dx? + sinh? x dy2):
recall AdS hyperbolic black holes, replicas, Renyi entropies, HungMyers,Smolkin,Yale, 11.

b 2 2
Pure dSy4: ds? = — ;I(TT) +12f(r)d¢? + r2dH3 ,  f(r) = Ty 1 r=[il,0] U [0, Re] .
2 2
Bucl: r=ip, x=ip: ds? = 4=y 12(1 — L%)dqbQ + p2(de? + sin? ¢ dy?)

2l
17l7

Replica: ds? = — ;i(f) I f(r)dg® +r2dHE , f(r) =3 +1+ D, $=+2mn.

2,2
1“+r ) .
f(rn) =0: er =rp ozt Ty =igk (J1+3n2 +1) [n=1: rp =il and ¢1 = 0]

Regularity criterion: smooth Euclidean continuation r = ip (dS4 brane: Das,Das, KN, 13).

— —AdS type space. In dS variables — complex geometry, “ends” at complex horizon.

. _ i 2w An 2 2y _ 9,13
Boundary Renyi entropy Sn = 1= Toma,T (Th( ri +1%) — 2il ) .
imi . - — i = le iRc
n — 1 limit, extremal surface area: S; = 16, A = 3G ( 1<+ 1).
Note: the hyperboloid area A is complex, since dS4 in hyperbolic foliation is a nontrivial embedding in global dS4
(even for n = 1) [cosh Xmax ~ %] [Explicit dS4 embedding coords for hyperboloid surface in covering space]

Can be generalized to higher dim dS. Overall this is equivalent to analytic continuation from AdsS.

13/25



“Time-Entanglement” /Pseudo-entropy:
QM entanglement with timelike separations
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“Time-Entanglement”: reduced time evol” op
KN'22
dS surfaces anchored at IT do not return: extra data reqd in far past.

~ scattering amplitudes: final states from initial, = time evolution. [Witten '01, dS = past-future amplitudes]

— Entanglement-like structures from time evolution operator U (¢) after partial

trace over environment: ¢.e. “reduced transition amplitudes” and entropy.



“Time-Entanglement”: reduced time evol” op

KN'22
dS surfaces anchored at IT do not return: extra data reqd in far past.

~ scattering amplitudes: final states from initial, = time evolution. [Witten '01, dS = past-future amplitudes]
— Entanglement-like structures from time evolution operator U (¢) after partial
trace over environment: ¢.e. “reduced transition amplitudes” and entropy.
_ —iHt — _u() A _ — A A
Ut) =e " — pe(t) = 7,“&(” —  pp =trpps  — Sa = —tr(p; logp;)

[Resemble finite temp EE, but imaginary temp g = it|
54 Pseudo-entropy [entropy of reduced transition matrix (Nakata, Takayanagi, Taki, Tamaoka, Wei,20)].

[KN, Saini, 23]

7 Pseudo-entropy from
Time Evol'n N “Components” of time Evol'n op pl!) = pe| IY(I]:

t
tr —
operator py pt + projection onto initial state | I) B, ﬁLD’A

reduced transition matrix

A _ |
Teir = e (g

F)({I] )
[GEX8)

= ilid), lein 2=
Bx. plDA _ 2ll)A+0—0)c?|2) (2] [1D=E12enlin. lewl? =2,
t 2+ (1—w)el® 0=—(Egy—E11)t |




“Time-Entanglement”: reduced time evol” op

KN'22
dS surfaces anchored at IT do not return: extra data reqd in far past.

~ scattering amplitudes: final states from initial, = time evolution. [Witten '01, dS = past-future amplitudes]

— Entanglement-like structures from time evolution operator U (¢) after partial
trace over environment: ¢.e. “reduced transition amplitudes” and entropy.

U =e M = p() = oty o e

T U(D) =trgpt — Sa= —tr(pf logpf)

[Resemble finite temp EE, but imaginary temp g = it|

& Pseudo-entropy [entropy of reduced transition matrix (Nakata, Takayanagi, Taki, Tamaoka, Wei, 20)].

[KN, Saini, 23]

Pseudo-entropy from
Time Evol'n “Components” of time Evol'n op p‘t > = pt | I)(I]:

¢ | reduced transition matrix
pt + projection onto initial state | I) —» ‘I>‘A

A _ |F) (1]
T = 8 (wrEym)

= ilid), lein 2=
><] Ex. DA _ 20140 -2)e"12) (2| [ID=S0scilii), len)? =,
* P = 24 (1—z)eil

0=—(Ea2—Eq1)t }

operator py

T
® |¢s,) — f-p density matrix psp = |¥) (U] fp AN positive structures.

o Transition matrix operator T = ‘%(:‘Z;‘fifl;‘ = U(fr)rll(ﬁj?éﬁld)b‘f)(t)‘\ : (Nanda,KN,Porey,Yadav)

useful for operators localized to subregions, autocorrn fns etc (also Milekhin,Adamska,Preskill)




“Cosmological transition matrix”

Nanda,KN,Porey, Yadav

Drawing experience from QM, revert to cosmology — consider

’ “Cosmological transition matrix” from I~ to I*: Tys = W[IT]U*[I7]

Can now construct time-entanglement or pseudo-entropy quantities

in various cosmological contexts.

“Boundedness” since de Sitter entropy is finite. Consider W[I~] = ¥[I*] = WHH,

This amounts to gluing the past and future Euclidean hemispheres.

Replica = St,q = (1 — B BRF) logTys = Snup + S, xl2

Gy
Rr3 2 2
using dSy :  log ¥[IT, R.] = 2G4 + zg—Gz —4 4 612) Spp = % + 1‘2"&4 Be
Entirely Lorentzian dSs suggests W[I~] = W[ T]*

2
—  Sr,q = (1- Beon ) logTas = 25, = T +iZk fe

dS/CFT:>ZCFT:\I/dS — ’TdSEZCFT[I+]ZéFT[Ii] .

For Zopr[IT] = Zopr[I 7], this is positive: encodes dS entropy.

More generally, a single Zcpp copy encodes boundary Renyi entropies.
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Further aspects:
Slow-roll inflation, no-boundary surfaces
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No-boundary slow-roll extremal surfaces

soswami, KN, Yadav,’24
Inflation: brief period of exponential expansion phase in early universe.
[Standard Big-Bang Cosmology, horizon/flatness (antipodal points in causal contact in past; universe flattens out)]

Nearly de Sitter: dS small wiggles (slow-roll parameters €, n) =

driven by inflaton scalar field slowly rolling down its potential. \
Baumann,McAllister’14
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No-boundary slow-roll extremal surfaces

Goswami, KN, Yadav,’24

Inflation: brief period of exponential expansion phase in early universe.

[Standard Big-Bang Cosmology, horizon/flatness (antipodal points in causal contact in past; universe flattens out)]

Nearly de Sitter: dS small wiggles (slow-roll parameters €, n) ‘—:“ /
driven by inflaton scalar field slowly rolling down its potential. \
Baumann,McAllister’14

Inflationary perturbations to no-boundary global dS: preserve spherical symmetry.
No-boundary HH regularity at nbp for both inflaton and metric; no singularities.

ds® = —dt* + a(t)?dQ% = gaada® + a?dQ3.
Slow-roll inflation: guq = ﬁ (1 + 2¢ B~ (7"))

— V*/Q 2 i v/
<=z 3H? ~ V() 3HG ~ —V/(e).
~ 8—9r*4air? /r2—148i\/r2—1-6ir*\/r2—14+r0 (6 log (1—iy/r2—1) —143in) Lorentzis
B> (r) = 62T [Lorentzian|
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No-boundary slow-roll extremal surfaces

soswami, KN, Yadav,’24

Inflation: brief period of exponential expansion phase in early universe.

[Standard Big-Bang Cosmology, horizon/flatness (antipodal points in causal contact in past; universe flattens out)]

Nearly de Sitter: dS small wiggles (slow-roll parameters €, n) ‘—:“ /

driven by inflaton scalar field slowly rolling down its potential.
Baumann,McAllister’14

Inflationary perturbations to no-boundary global dS: preserve spherical symmetry.
No-boundary HH regularity at nbp for both inflaton and metric; no singularities.

ds® = —dt* + a(t)?dQ% = gaada® + a?dQ3.
Slow-roll inflation: guq = ﬁ (1 + 2¢ B~ (7"))

2
Vel 3mZ o v(e), 8HA~ —VI(4).

8—0rt44ir?\/r2 —148i\/r2—1—6ir*\/r2 — 140 (6 log (1—i\/r2 —1) —143in) (Loventian]

B> (r) = 6rd(r2—1)
r - Of(e x12 . 1+e B~ (r 1+e r
Area 5’57,<41+SST,>41 o6, Ssry ~ ‘2G14 (—l 1R°/Z b Tzi(l') rdr+ fol LheBc(r) Tﬁjr(;) Tdr)

Extra singular terms at complexification point » = 1 (poles in B(r) terms) (like Wavefn)

Define as complex-time-plane integral 4+ time-contour (avoid »=1). Normalize to leading ds.
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Slow-roll no-boundary extremal surfaces

—in/2
’ 1nbp g = xi? o Itef>(r) 4
T 2Gy
r=coshT 2=1r2-1 4 2,/1—r2
I _omi? o 4eBs(2)
: = z=1 z=0 2=00 = 20, le oy —2 Z .
=0 T=o =0 =1

S:%[l—ﬁ + e[(log4—%+iw)—(—2g\:}%ﬂ+%)} + VE(—i+1)

—

2-3inm _ 2-3in 1 7 ; 2-3im | 5
+ 6[ 6iv3 65 } tiVE Vot [(“”5‘/7“7 ivEelos vae) = ( 6ivs T 5)]]
Various cancellations as expected. Details of regulating semicircle contour unimportant.

2 2 . . )
Sery = ;Gl4 (—i%—&—l) + e% (—z%log% +z%% + log4—%+z7r>

e Divergent parts pure imaginary. Vindicates finite cosmic brane creation probability,
set by size of maximal hemisphere (= dS entropy + slow-roll corrections [< 0] ).

e No clean separation betw real/imaginary parts of area, slow-roll corrections mix all.

Finite terms in particular arise from entire surface, both timelike and hemisphere parts.
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Slow-roll no-boundary extremal surfaces

T=in/2

2 14e B~ (1)
nbp § = 1l f “TEE> ) dr
2G4 /C
r=coshT 2=1r2-1 4 2,/1—r2
— b .
"T A _ T(CLJZ Jo 1+eB>(2) 4
. = z=0 - = =
=0 = ) =1 = 2G4 2

5= gG’Z [1—f + e[(log4-g+m)-(—2gjg" +§)} + VE(—i+1)

—

6i\/5 65

- [59 < 258] Yoo o (e ) (3 )]

Various cancellations as expected. Details of regulating semicircle contour unimportant.

2 2 . . .
Sery = ;Gl4 (—i%—&—l) + e% (—z%log% +z%% + log4—%+z7r>

e Divergent parts pure imaginary. Vindicates finite cosmic brane creation probability,
set by size of maximal hemisphere (= dS entropy + slow-roll corrections [< 0] ).
e No clean separation betw real/imaginary parts of area, slow-roll corrections mix all.

Finite terms in particular arise from entire surface, both timelike and hemisphere parts.

Finite parts above (cosmic brane probability) match those in dSs Wavefunction:
2
il = % {1 +e <log4 -I+ i7r> - 7(r§ = Sre) +ie (rg(logrc - %) + Te (6logre — 11))}
(Maldacena 24) W ~ eilsra , obtained by evaluating on-shell action via ADM formulation.

e AdS BH: IR RT surface wraps horizon, S7*" ~ BH entropy <« action = partition fn
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Conclusions, questions

e dS future boundary: no It — It turning point. Surfaces do not return to I7T.

(a) Future-past surfaces, I «» 1. Timelike. (b) No-boundary surfaces, Real part (hemisphere) = %ds entropy.
Pseudo-entropy: AdS analytic cont’n = space « time rotation, Lewkowycz-Maldacena.
Explicit dS replica geometries for maximal subregions — boundary Renyi entropies.

? Complex dS-like geometries: rules for replicas, time-contours?
multiple extremal surfaces? KSW?

QM & Time-entanglement/Pseudo-entropy: EE-like structures, timelike separations:
(i) reduced time evolution operator <+ red. transition amplitudes,
(ii) positivity in future-past entangled states & density matrices.

“Cosmological transition matrix” using dS Wavefunction — dS entropy, future-past areas...

? Dual using two copies of ghost-like CFTs?

o Slow-roll inflation: no-boundary areas must be defined carefully via complex
time plane integrals with appropriate time contours avoiding potential poles.
Maximal cosmic brane creation probability (= dS,4 entropy + slow-roll corrections [< 0])
matches |Wavefunction|2. Dual CFT understanding? Time-contours, more general cosmologies?

? Pseudo-entropy meta-observables «» standard Big-Bang cosmology observers/observables?
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dS surfaces, subregion duality, geometrically

IR surface, t = const slice, maximal subregion — red surface;

Generic subregion, blue: tilted “great circle” in hemisphere, '
joining with tilted timelike surface in Lorentzian top half.

dS3 explicitly solvable; dSgy1, perturbatively analysed. e
Time-entanglement /Pseudo-entanglement

wedge: Max subregion, t = const slice: green :
bulk region bounded by (red) IR surface and

boundary subregion. (Violet complement region)

Including t-direction — top wedge (containing future of IR surface on vertical

t = const slice), bounded by It subregion = analytic continuation from AdS.
Space-time rotation from AdS EE wedge. (dS/CFT via relative entropy, modular flow etc?)

Multiple disjoint boundary subregions: red, violet, blue no-bndry dS

)
extremal surfaces. Complex areas so quite different from AdS EE. “‘5 .

Bulk subregions not disjoint: except for IR (maximal) subregions.

[Maybe other possibilities: subregion duality in Lorentzian dS via future-past surfaces..]
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dS surfaces, entropy relations/inequalities
asg: sl = 71253 log Be 14G log(sin? 0o0) + 75k
IR, 6o = & : sk = 7)(dl<)g +4(,

Two adjacent disjoint subregions A, B (2000 =%); AUB = (2000 =m).

“Mutual time-information” or “mutual pseudo—information”:

I4[A, B] = S[A] + S[B] — S[AU B] = 2G log +12G log2+4G

= Rely >0, ImI; <O0. (antipodal subreglonm, I; = 0)

=7

Tripartite time-information: 3 disjoint adjacent quadrant subregions A, B, C (2000 = %).
A U B, B U C maximal (IR) subregions. A U C, antipodal quadrants (extr. surf. = “inner” (= B) + * outer ).

4 2 4 4 4
sAfstscfs"/, sAstBcfs"/ Sac 75"/ +s§’/, sABcfs"/

I§[A,B,Cl = Ss + S+ Sc — Sap — Spc — Sac + Sasc =i2cl;3 log2 = ImI§>o.

SAB+SBC—SABC—SB:—i2é3 log2,} Re SSBY ,
SAB+SBC—SA—SC:—1‘2CL',3 log 2. Im SSBY ,

0,
Strong subadditivity:

IN IV

0

dS area/entropy relations special (relative to qubit system pseudo-entropies).
Note: AdS analytic continuation il - —L = MI >0, I3 <0, SSB“?>o0.
Consistent with AdS RT/HRT areas which are also special Hayden,Headrick,Maloney, 1.
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Qubits, pseudo-entropy inequalities

Pseudo-entropy p; = Tr‘(ﬂzﬂgilﬂ) = Trzsz({f()t\)ll>1§1<|“) [= time evoln op U (t) = e~ *H? with projection]

for TFD-type initial state |I) and its time-evolved final state |F') = U(¢)|I).

2-qubits: [I) = c11]11) + c02]22), |F) = c11e E11t|11) 4 cope~1F22%|22)
lle1112+leaz2l? =15 le1112 =25 6=—(Bgp - E11)t]
2 1
t

1 2 1 16
Pt =Trapt, p3 =Tr1ipe, Py =pp = W(zmuwuﬂw 12)¢21)

(1—z)et? (1—z)et?

2 1 x x
Sy =8S; = — — 1 - — - 1 -
t t T+ (1—2)ei® C oi(l—a)e®  z4(l—a)et® % at(1—xz)eid
Near t = 0: S}(t) ~ S}(0) + L skt =sg,
5E(0) = —zlogz — (1 — z)log(1 —x), £ 5H(0) = —iAEz(1 — ) log 12—

Mutual pseudo-information: I4[1,2] = S} + 57 — S ~ 259; Rel; >0, ImI; 20 ‘

3-qubits: |I) = c1111111) + c2221222) , |F) = cyy1e” *PLI1E[111) + cgope ™ 1F2227|222)

123 F) (I 1 123 1 i0 2 3 1
2 = s ph = Teag 123 = W(zmm + - 2)e2)2)). o7 =0f =},

12 _ 123 _ 1 _ 6 23 _ 13 _ 12
pi2 = Trg o} 77$+<lﬁ)ew(z\u><u\+<1 @)etf)22)(22]), pP3 = p}® = o}

i § i ion: 1t _ sl g2 3 _ 423 13 12 123 _
Tripartite pseudo-information: 1%[1,2,3] = s} + s7 + 57 — 572 — 53 - 52 + s{?3 =0

SSB: ssB! =5}2+523-5}22-52 =5}, ssBh=5/2+53-sl-5¥ =0
ReSSBY >0, ImSSBY 20 (z# %)

[Specific TFD states above; more general states?]
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“Time-Entanglement”, examples: 2-qubits etc

2-state system: H|k) = By lk), (k=1,2; (1]2) =0); |k)p = |k(t)) = e *Frt|p)p.

Pt = ﬁ(\l)(l\ +et912)(2]), 0=—(Ey—Eq)t; 2-spinanalogy: [1) = |++), [2) = |——)
Trp A 0 1 1 1 1
— p{ = entropy S% = —tr(pt log pt )= — 15ci® log 1500 Ti.—i0 log T

Real-valued, oscillating in time, periodicity ~ AE unbounded at t = %: min Se =log2at t=

AE

General 2-qubit Hamiltonian # = By1]11)(11] 4+ Ego22) (22| + Eqg(]12)(12] 4 [21)(21])

_ —iE;j (111) (11401 |22) (22| +e?92 (J12) (12| +[21) (21])) t=0, 15
P =N¢Xi e Fligy (gl = 0y aui0a [+=% 14]
Tr —
Lra, pf:ﬁ((l+el92)m<1|+( 101 4 ei02))2)2]) | 01 = —(Ba2—E11)t,
the "tz 02 = —(E12—Eq1)t.
Generically complex-valued von Neumann entropy. (mixed EE, imaginary temp 8 = it)
% Projection onto Thermofield-double initial states |1) = Sy 5 ¢;;141)
Tra |T),A 1 2 2_i6
=2 A e L (lenn 1210 (1] + [e2l2e?]2) (2 0=—(Egy—E11)t
t le11 2 Floag2et ( 11 22 ) [ 22 — F11)t]

= reduced transition matrix for |I) and |F) = Y c;;e *Fiit|ii) (— pseudo-entropy).

Max. entangled (Bell-pair) states [c11 |2 =|coa|? = % — S% (2-state above). Min S% = log2=EE(|I)).
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Future-past surfaces, f-p “entanglement”

dS future-past surfaces connecting I to I~.
( Hartman-Maldacena ( AdS bh) rotated) h
Suggests future-past entanglement (betw Ii). v

Recall eternal AdS bh dual to CFT, x CFTR in TFD state (Maldacena)

Speculation: (Lorentzian) dS4 dual to CFTF X CFTp in [KN ’17; also
F .P ’
thermofield-double entangled state thf’;,d> =S ¢in ot iyl ? Arias, Diaz,Sundell, 19]

Tracing fp-dm over past copy gives mixed state at I+,

2 copies of future-past entangled states & density matrices: positive entropy EE > 0.

Tr,
|[Yfp) — f-p density matrix ps, = [¥) pp (Y] sp =, positive structures.

Connectedness of fp-entangled states & timelike entanglement <+ emergence of time?

van Raamsdonk: space emerges from entanglement.
Factorized fp-states \«b;}))wg)): Trppg, — Pure.
Entangled fp-states: reduced transition matrix = time evolution operator.

[U(t) = Tra(lvfp) (w1 )] Time evol'n = f-p EE. Timelike ER=EPR?



