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Holography and asymptotics

25+ yrs since AdS/CFT ’97 Maldacena; ’98 Gubser,Klebanov,Polyakov; Witten.

Holography: quantum gravity in M ↔ dual without gravity on ∂M (’t Hooft, Susskind).

(Witten@Strings’98, ’01) Gauge/gravity duality and asymptotics —

Λ < 0: AdS → asymptotics at spatial infinity.

Dual: unitary Lorentzian CFT, includes time.

d dim
boundary

bulk spacetime

holographic dimension

(d+1) dim curved

Λ = 0: flat space → null infinity.

S-matrix, symmetries, Carroll/celestial . . .

Λ > 0: de Sitter space

Boundary at future/past timelike infinity I±.

Dual → Euclidean CFT . . . Time emergent.

[note: gravity dual of ordinary Euclidean CFT −→ Euclidean AdS]

Might regard de Sitter as toy model for cosmology.

+

horizonhorizon

past timelike infinity

time

−
I

I
future timelike infinity
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de Sitter space, entropy, dS/CFT

de Sitter entropy = area of cosmological horizon (Gibbons,Hawking).

Some sort of (holographic) entanglement? Ryu-Takayanagi generalizations?

+

horizonhorizon

past timelike infinity

time

−
I

I
future timelike infinity

dS/CFT : (’01 Strominger; Witten) future timelike infinity I+ as a natural

dS boundary. Euclidean non-unitary CFT dual. Time emergent.

[note: gravity dual of ordinary Eucl CFT→ Eucl AdS]

(Maldacena ’02) AdS, analytic continuation → ZCFT = ΨdS
Hartle-Hawking

Wavefunction of the Universe

Bulk expectation values 〈ϕkϕk′ 〉 ∼
∫
Dϕ ϕkϕk′ |Ψ|2 → dual ≡ two CFT copies.

Dual energy-momentum 〈TT 〉 2-pt fn → C negative/imaginary , ghost-CFT.

Anninos,Hartman,Strominger: higher-spin dS4 dual to Sp(N) ghost CFT3, . . .

dS4, Poincare: ds2=
R2
dS
τ2 (−dτ2+d~x2)

r → −iτ, RAdS → −iRdS .

} ΨdS [ϕ] ∼ eiScl[ϕ] ∼ e
−
∫
k R

2
dSk

3ϕ0
−kϕ

0
k+...

→ dual CFT: 〈OkOk′ 〉 ∼
δ2Z

δϕ0
k
δϕ0
k′
→ C3 ∼ −

R2
dS
G4

.

Global/static dS from global AdS: other analytic continuations.
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de Sitter space, extremal surfaces
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dS, future boundary, extremal surfaces

[KN ’15-’25] A natural generalization of Ryu-Takayanagi to de Sitter ≡
bulk analog of setting up entanglement entropy in dual Eucl CFT→
define some boundary Eucl time slice → codim-2 RT/HRT surfaces

anchored at I+, dipping into holographic (time) direction.

+

horizonhorizon

past timelike infinity

time

−
I

I
future timelike infinity

+

P

SN

F

?

I

I
−

Extremization: surfaces anchored at future boundary I+ →
No real I+ → I+ turning point (Lorentzian dS).

Surfaces do not return to I+. Interior boundary condns? Time contours?

−

F

N S

P

I
+

I

Future-past surfaces: stretch from I+ to I−, entirely Lorentzian dS.

Timelike, area ∝ overall ±i (relative to AdS spacelike surfaces).

No-boundary surfaces: Hartle-Hawking no-boundary dS. Complex area.

(top timelike f-p surface + real surface in hemisphere)

AdS → global/static dS surfaces: analytic continuation ≡ space↔ time rotation.

Areas: new object → Pseudo entropy or “Time entanglement”.

(EE-like structures, timelike separations) Doi,Harper,Mollabashi,Takayanagi,Taki; KN, ’22

[LM replica on

ΨdS =ZCFT ]

TA
F |I =TrB

( |F〉〈I|
Tr(|F〉〈I|)

)
[entropy of reduced transition matrix (Nakata,Takayanagi,Taki,Tamaoka,Wei,’20)]
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“Entanglement” in ghost theories: ghost-spins
KN’16; Jatkar,KN’17; Jatkar,Kolekar,KN’18

• Replica arguments (Calabrese, Cardy) generalized to c = −2 ghost CFTs:

twist operator 2-pt fn → Re(S) < 0. Subtleties. [|↓〉 = |0〉; 〈−Q|T (z)|0〉 = 0]

•
“Ghost-spin”→ 2-state spin variable with indefinite norm.

〈↑ | ↓〉 = 〈↓ | ↑〉 = 1, 〈↑ | ↑〉 = 〈↓ | ↓〉 = 0

[ ordinary spin:

〈↑|↑〉=1=〈↓|↓〉]

|±〉 ≡ 1√
2

(
|↑〉 ± |↓〉

)
; 〈±|±〉 = γ±± = ±1, 〈+|−〉 = 〈−|+〉 = 0

Infinite ghost-spin chains, 〈nn〉-intns → continuum limit → bc-ghost CFT.

• ρ = |ψ〉〈ψ| trB−−→ RDMA, remaining ghost-spin → von Neumann entropy.

2 g.s.,
∑
ψij |ij〉: 〈ψ|ψ〉 = γikγjlψ

ijψkl
∗

= |ψ++|2 + |ψ−−|2 − |ψ+−|2 − |ψ−+|2 = ±1

RDM: (ρA)ik = γjlψ
ijψkl

∗
; EE: SA = −γij(ρA log ρA)ij [new patterns]

• −ve norm ↔ Im(SA) • +ve norm |ψ〉 ; +ve RDM, EE.

• Nontrivial adjoint ⇒ ρ ∼ transition matrix → pseudo-entropies.

• 2 copies: entangle identical ghost-spins from each copy → +ve norm, RDM, EE

|ψ〉 = ψ++|+〉|+〉 + ψ−−|−〉|−〉 ⇒ Positivity −→ correlated ghost-spins

Also true for 2 copies of general ghost-spin ensembles: |ψ〉 =
∑
|σn〉 ψ

σn,σn |σn〉|σn〉 → Positivity.
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dS future-past extremal surfaces

dS (Poincare) : ds2d+1 =
R2
dS
τ2 (−dτ2 + dw2 + dx2

i )

SdS ∝
∫ dτ
τd−1

√
1−(∂τx)2 −→ (∂τx)2 = B2τ2d−2

1+B2τ2d−2
[B2>0]

+

P

SN

F

?

I

I
−

Bndry Eucl time w=const

strip @ I+ → codim-2.

Sign diff. from AdS ⇒ No real I+ → I+ “turning point”. KN ’15; Sato ’15

[Analytic cont’ns from AdS RT→ complex areas]

+

horizonhorizon

past timelike infinity

time

−
I

I
future timelike infinity dS (static) ds2 = − dr2

r2/l2−1
+ ( r

2

l2
− 1)dt2 + r2dΩ2

d−1. KN ’17

Bndry Eucl time slice, any Sd−1 equatorial plane (OR t=const slice).

Future-past (timelike) surfaces connecting I+ to I−
−

F

N S

P

I
+

I

Hartman-Maldacena (AdS bh) rotated. [area div −i πl
2

G4

Rc
l

]

dS (global): ds2d+1 = −dτ2 + l2 cosh2 τ
l
dΩ2
d.

ds2global

∣∣∣
θd=const

≡ ds2static

∣∣∣
t=const

[r= l cosh τ
l

]
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de Sitter no-boundary surfaces
[KN’22]; [dS3: Hikida,Nishioka,Takayanagi,Taki]

Hartle-Hawking no-boundary proposal: Lorentzian dS evolves in time from a

no-boundary Euclidean initial configuration. Cut global dS in middle (τ = 0 slice),

join top half with hemisphere in bottom half given by Euclidean continuation

ds2 = l2dτ2
E + l2 cos2 τE dΩ2

d ; τ = ilτE , 0 ≤ τE ≤
π
2

.

Sd equatorial plane (i.e. Sd−1) → (vertical) timelike f-p surface, θ = π
2

.

Join (τ = 0) spatial surface going around hemisphere.

IR bottom surface: ds2 = l2dτ2
E + l2 cos2 τE(dθ2 + sin2 θ dΩ2

d−2)
∣∣∣
θ=π

2

Area = ld−1

4Gd+1
V
Sd−2

∫π/2
0 dτE (cos τE)d−2 = 1

2

ld−1 V
Sd−1

4Gd+1

Precisely half dS entropy: emerges differently from area of cosmological horizon
(static patch observers). [One hemisphere direction here is Euclidean continuation of time in future universe]

Sfp = Snb − S∗nb, Re(Snb) = 1
2 · dS entropy.

Suggests Snb ≡ ΨdS , Sfp ≡ ΨdS ,Ψ
∗
dS (I+ ∪ I−).

[dS4] Sfp = −i πl
2

G4

Rc
l

; Snb = −i πl
2

2G4

Rc
l

+ πl2

2G4
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dS3, 2-dim CFT; timelike intervals

Future-past surfaces, entirely Lorentzian global dS3. [some S2 equatorial plane]

Area Sfp = −i l
G3

log l
ε ≡ 2( c3 log l

ε ) with cdS3
= −i 3ldS

2G
[2 copies].

No-boundary dS3 surface: area Snb=−i l
2G3

log l
ε

+ πl
4G3

≡ c
3

log l
ε

+ c
6

(iπ).

Im(Snb) ≡ c
3 log l

ε for maximal (IR) interval in Eucl CFT on circle.

Re(Snb): deep interior Euclideanization ↔ “interior regularity”, Eucl CFT

[Snb is overall −i times EE for timelike interval in AdS3 with c =
3lAdS
2G3

.]

Ordinary unitary 2-dim CFTs: EE is S = c
6

log ∆2

ε2
= c

6
log
−(∆t)2+(∆x)2

ε2
.

Ordinary spacelike intervals ∆2 > 0 → S = c
3

log ∆x
ε

.

Entirely timelike interval, width ∆t so ∆2 < 0: S = c
3

log ∆t
ε

+ c
6

(iπ).

[ Usual Eucl CFT replica→ Wick-rotate to timelike interval ]
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Ordinary spacelike intervals ∆2 > 0 → S = c
3

log ∆x
ε

.

Entirely timelike interval, width ∆t so ∆2 < 0: S = c
3

log ∆t
ε

+ c
6

(iπ).

[ Usual Eucl CFT replica→ Wick-rotate to timelike interval ]
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dS no-boundary surfaces, analytic cont’n

Analytic cont’n ≡ space↔time rotation: AdS RT surface from r →∞ (boundary)

to r = 0 (and back) −→ IR dS RT/HRT surface from r →∞ (future boundary) to

r = l (Lorentzian dS) going around Eucl hemisphere (r = l to r = 0) (& back to I+).

dS RT/HRT surfaces on bndry Eucl time slice [r= l cosh τ
l

]

[r>l] ds2 =− dr2

r2

l2
−1

+r2dΩ2
d−1

l→iL−−−−−→ ds2 = dr2

1+ r2

L2

+r2dΩ2
d−1

[r<l] ds2 = dr2

1− r2
l2

+r2dΩ2
d−1

l→iL−−−−−→ ds2 = dr2

1+ r2

L2

+r2dΩ2
d−1

IR: max
subregion

V
Sd−2

4Gd+1

∫Rc
0

rd−2dr√
1+ r2

L2

L→−il−−−−−−−→
V
Sd−2

4Gd+1

( ∫ l
0
rd−2dr√

1− r2
l2

+
∫Rc
l

rd−2
√√√√ dr2

−
( r2
l2
−1
)
)

(blue: genericθ∞) = 1
2

ld−1V
Sd−1

4Gd+1
− i# ld−1

4Gd+1

Rd−2
c
ld−2

+ . . .

[dS4: πL2

2G4

(
Rc
L
− 1

)
→ −i πl

2

2G4

Rc
l

+ πl2

2G4
] [dS3: 2L

4G3
log

Rc
L
→ −i l

2G3
log

Rc
l

+ πl
4G3

]
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dS no-bndry surfaces, Lewkowycz-Maldacena
[KN’23]

Hartle-Hawking Wavefunction of the Universe: amplitude (transition matrix) for

creating universe (final bndry condns) from “nothing” (satisfying HH no-boundary condn).

Semiclassically ΨdS ∼ eiS
(r>l)

e
S

(r<l)
E . Top Lorentzian (real S(r>l)), pure phase.

Hemisphere: iScl
Eucl grav
−−−−−−−−−→ S

(r<l)
E

= −
∫
nbp

√
g (R− 2Λ)

dS4−−−→ πl2

2G4
(nbp: τE = π

2
).

Lewkowycz-Maldacena: bulk AdS replica dual to boundary replica EE argument.

ZCFT = Zbulk ⇒ boundary entanglement entropy = bulk entanglement entropy.

Quotient: conical singularities smoothed by codim-2 cosmic brane (Dong). [In=nI1+Ibrane (≡ n−1
n

A
4G

)]

dS/CFT : ZCFT = ΨdS ⇒ boundary replica via ZCFT −→ bulk replica on ΨdS
(single ket, not d.m.; non-hermitian) −→ Pseudo-Entropy (entropy of transition matrix; complex).

Analytic cont’n (semicl.): ZAdSn ∼ e−In −→ ΨdSn ∼ eiSn ; St = lim
n→1

(1 − n∂n) log Ψn =
SdSt
4G

Cosmic brane not spacelike ↔ Euclidean + timelike no-bndry dS extremal surface.

LM replica formulation: entropy = area of cosmic brane created from “nothing”.

Amplitude divergent if Lorentzian part (till I+) real. Here timelike part = pure phase

cancels in probability (finite: bounded real part from hemisphere, set by dS entropy).
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LM Replica geometries: dS3
Nanda,KN,Porey,Yadav

Extend boundary I+ replica → explicit dS-like smooth bulk replica−n geometry

Boundary Renyi entropy Sn = 1
1−n log(Zn

Zn1
) = 1

1−n log( Ψn
Ψn1

) ∼ i In−nI1
1−n

Maximal subregion: S2 → cylinder conformal transfm

→ smooth bulk replica geometry

ds2 = − dr2

r2

l2
− 1
n2

+
(
r2

l2
− 1
n2

)
dt2 + r2dφ2

Replica boundary condns φ ≡ φ+ 2πn at I+.

[Euclidean part r < l
n

: t → iτE and τE = [0, π
2

]]

Renyi entropy Snbn = 1+n
2n

(
πl

4G3
+ il

2G3
log 2Rc

l

)
n→ 1 limit −→ extremal surface area earlier.

Cosmic brane: consider above metric in boundary-quotiented variables φ ≡ φ+ 2π.

Now r = 0 is singularity (North+South poles). This is Schwarzschild dS3 :

ds2 = −
(

1− 8G3E − r2

l2

)
dt2 + dr2

1−8G3E− r2

l2

+ r2dφ̃2 , 8G3E = 1− 1
n2 .

Cosmic brane (r = 0) timelike in Lorentzian region.
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Replica geometries: dS4
Nanda,KN,Porey,Yadav

Convenient to construct dS4 replica in hyperbolic coords (dH2
2 = dχ2 + sinh2 χ dψ2):

recall AdS hyperbolic black holes, replicas, Renyi entropies, Hung,Myers,Smolkin,Yale,’11.

Pure dS4: ds2 = − dr2

f(r)
+ l2f(r)dφ2 + r2dH2

2 , f(r) = r2

l2
+ 1 , r = [il, 0] ∪ [0, Rc] .

Eucl: r = iρ , χ = iϕ : ds2 =
dρ2

1− ρ
2

l2

+ l2
(
1 − ρ2

l2

)
dφ2 + ρ2(dϕ2 + sin2 ϕdψ2)

Replica: ds2 = − dr2

f(r)
+ l2f(r)dφ2 +r2dH2

2 , f(r) = r2

l2
+1+

c1
r , φ ≡ φ+2πn .

f(rh) = 0: c1 = rh
l2+r2h
l2

, rh = i l
3n

(

√
1 + 3n2 + 1) [n = 1: rh = il and c1 = 0]

Regularity criterion: smooth Euclidean continuation r = iρ (dS4 brane: Das,Das,KN,’13).

→ −AdS type space. In dS variables → complex geometry, “ends” at complex horizon.

Boundary Renyi entropy Sn = i
1−n

2πAn
16πG4l

(
rh(−r2

h + l2)− 2il3
)
.

n→ 1 limit, extremal surface area: S1 = − l2

4G4
A ≡ πl2

2G4

( iRc
l

+ 1
)
.

Note: the hyperboloid area A is complex, since dS4 in hyperbolic foliation is a nontrivial embedding in global dS4

(even for n = 1) [coshχmax ∼
Rc
il

]. [Explicit dS4 embedding coords for hyperboloid surface in covering space]

Can be generalized to higher dim dS. Overall this is equivalent to analytic continuation from AdS.
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“Time-Entanglement”/Pseudo-entropy:
QM entanglement with timelike separations
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“Time-Entanglement”: reduced time evoln op
KN’22

dS surfaces anchored at I+ do not return: extra data reqd in far past.

∼ scattering amplitudes: final states from initial, ≡ time evolution. [Witten ’01, dS≡ past-future amplitudes]

→ Entanglement-like structures from time evolution operator U(t) after partial

trace over environment: i.e. “reduced transition amplitudes” and entropy.

U(t) = e−iHt → ρt(t) ≡ U(t)
TrU(t)

→ ρAt = trB ρt → SA = −tr(ρAt log ρAt )

[Resemble finite temp EE, but imaginary temp β = it]

⇔ Pseudo-entropy [entropy of reduced transition matrix (Nakata,Takayanagi,Taki,Tamaoka,Wei,’20)].

[KN, Saini, ’23]

Time Evol’n

operator ρt
→ “Components” of time Evol’n op ρ|I〉t = ρt|I〉〈I|:

ρt + projection onto initial state |I〉
trB−−−→ ρ

|I〉,A
t

←
Pseudo-entropy from

reduced transition matrix

TA
F |I = TrB

( |F〉〈I|
Tr(|F〉〈I|)

)

Ex. ρ
|I〉,A
t =

x|1〉〈1|+(1−x)eiθ|2〉〈2|
x+(1−x)eiθ

[ |I〉=∑1,2 cii|ii〉, |c11|
2≡x,

θ=−(E22−E11)t ]

• |ψfp〉 → f-p density matrix ρfp ≡ |ψ〉fp〈ψ|fp
Trp−−−−→ positive structures.

• Transition matrix operator T ≡ |ψ(t)〉〈φ(t)|
Tr(|ψ〉〈φ|) =

U(t) |ψ〉〈φ| U(t)†
Tr(|ψ〉〈φ|) : (Nanda,KN,Porey,Yadav)

useful for operators localized to subregions, autocorrn fns etc (also Milekhin,Adamska,Preskill).
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“Cosmological transition matrix”
Nanda,KN,Porey,Yadav

Drawing experience from QM, revert to cosmology → consider

“Cosmological transition matrix” from I− to I+: TdS ≡ Ψ[I+] Ψ∗[I−]

Can now construct time-entanglement or pseudo-entropy quantities

in various cosmological contexts.

“Boundedness” since de Sitter entropy is finite. Consider Ψ[I−] = Ψ[I+] = ΨHHdS .

This amounts to gluing the past and future Euclidean hemispheres.

Replica ⇒ STdS =
(
1− Rc

3
∂Rc

)
logTdS = Snb + S∗

nb = πl2

G4

using dS4 : log Ψ[I+, Rc] = πl2

2G4
+ i

πR3
c

8G4
(− 4

l
+ 6l
R2
c

), Snb = πl2

2G4
+ i πl

2

2G4

Rc
l

Entirely Lorentzian dS4 suggests Ψ[I−] = Ψ[I+]∗

→ STdS =
(
1− Rc

3
∂Rc

)
logTdS = 2Snb = πl2

G4
+ iπl

2

G4

Rc
l

dS/CFT ⇒ ZCFT = ΨdS −→ TdS ≡ ZCFT [I+]Z∗
CFT [I−] .

For ZCFT [I+] = ZCFT [I−], this is positive: encodes dS entropy.

More generally, a single ZCFT copy encodes boundary Renyi entropies.
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Further aspects:
Slow-roll inflation, no-boundary surfaces
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No-boundary slow-roll extremal surfaces
Goswami,KN,Yadav,’24

Inflation: brief period of exponential expansion phase in early universe.

[Standard Big-Bang Cosmology, horizon/flatness (antipodal points in causal contact in past; universe flattens out)]

Nearly de Sitter: dS small wiggles (slow-roll parameters ε, η)

driven by inflaton scalar field slowly rolling down its potential.
Baumann,McAllister’14

Inflationary perturbations to no-boundary global dS: preserve spherical symmetry.

No-boundary HH regularity at nbp for both inflaton and metric; no singularities.

ds2 = −dt2 + a(t)2dΩ2
d = gaada

2 + a2dΩ2
d .

Slow-roll inflation: gaa = 1
1−r2

(
1 + 2ε β>(r)

)
ε ≡ V∗′2

2V 2
∗
, 3H2 ∼ V (φ), 3Hφ̇ ∼ −V ′(φ) .

β>(r) =
8−9r4+4ir2

√
r2−1+8i

√
r2−1−6ir4

√
r2−1+r6

(
6 log

(
1−i

√
r2−1

)
−1+3iπ

)
6r4(r2−1)

[Lorentzian]

Area Sr<1
sr4

+Sr>1
sr4

O(ε)−−−→ Ssr4 '
π l2

2G4

(
−i
∫Rc/l
1

1+ε β>(r)√
r2−1

r dr +
∫ 1
0

1+ε β<(r)√
1−r2

r dr

)
Extra singular terms at complexification point r = 1 (poles in β(r) terms) (like Wavefn)

Define as complex-time-plane integral + time-contour (avoid r=1). Normalize to leading dS.
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Baumann,McAllister’14

Inflationary perturbations to no-boundary global dS: preserve spherical symmetry.

No-boundary HH regularity at nbp for both inflaton and metric; no singularities.

ds2 = −dt2 + a(t)2dΩ2
d = gaada

2 + a2dΩ2
d .

Slow-roll inflation: gaa = 1
1−r2

(
1 + 2ε β>(r)

)
ε ≡ V∗′2

2V 2
∗
, 3H2 ∼ V (φ), 3Hφ̇ ∼ −V ′(φ) .

β>(r) =
8−9r4+4ir2

√
r2−1+8i

√
r2−1−6ir4

√
r2−1+r6

(
6 log

(
1−i

√
r2−1

)
−1+3iπ

)
6r4(r2−1)

[Lorentzian]

Area Sr<1
sr4

+Sr>1
sr4

O(ε)−−−→ Ssr4 '
π l2

2G4

(
−i
∫Rc/l
1

1+ε β>(r)√
r2−1

r dr +
∫ 1
0

1+ε β<(r)√
1−r2

r dr

)
Extra singular terms at complexification point r = 1 (poles in β(r) terms) (like Wavefn)

Define as complex-time-plane integral + time-contour (avoid r=1). Normalize to leading dS.
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Slow-roll no-boundary extremal surfaces

S = π l2

2G4

∫
C

1+ε β>(r)

2

√
1−r2

r dr

≡ π l2

2G4

∫
C

1+ε β>(z)

2
√
−z

dz .

−→
S = π l2

2G4

[
1 −
√
δ + ε

[(
log 4 − 7

6
+ iπ

)
−
(
− 2−3iπ

6
√
δ

+ 5
3

)]
+
√
δ(−i + 1)

+ ε

[
2−3iπ

6i
√
δ
− 2−3iπ

6
√
δ

]
+ 1

i
(
√
zc−

√
δ)+ ε

[(
1 + i 7

6
√
zc − i

√
zc log

√
zc

)
−
(

2−3iπ

6i
√
δ

+ 5
3

)] ]
Various cancellations as expected. Details of regulating semicircle contour unimportant.

Ssr4 = π l2

2G4

(
−iRc

l
+ 1
)

+ ε π l
2

2G4

(
−iRc

l
log Rc

l
+ i 7

6
Rc
l

+ log 4− 7
2

+ iπ
)

• Divergent parts pure imaginary. Vindicates finite cosmic brane creation probability,

set by size of maximal hemisphere (≡ dS entropy + slow-roll corrections [< 0] ).

• No clean separation betw real/imaginary parts of area, slow-roll corrections mix all.

Finite terms in particular arise from entire surface, both timelike and hemisphere parts.

Finite parts above (cosmic brane probability) match those in dS4 Wavefunction:

iIsr4 = π l2

2G4

[
1 + ε

(
log 4 − 7

2
+ iπ

)
− i

(
r3c −

3
2
rc

)
+ iε

(
r3c

(
log rc − 1

6

)
+
rc
4

(6 log rc − 11)
)]

(Maldacena ’24) Ψ ∼ eiIsr4 , obtained by evaluating on-shell action via ADM formulation.

• AdS BH: IR RT surface wraps horizon, Sfin ∼ BH entropy ← action ≡ partition fn
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Conclusions, questions

• dS future boundary: no I+ → I+ turning point. Surfaces do not return to I+.

(a) Future-past surfaces, I+ ↔ I− . Timelike. (b) No-boundary surfaces, Real part (hemisphere) = 1
2
dS entropy.

Pseudo-entropy: AdS analytic cont’n ≡ space↔ time rotation, Lewkowycz-Maldacena.

Explicit dS replica geometries for maximal subregions → boundary Renyi entropies.

? Complex dS-like geometries: rules for replicas, time-contours?

multiple extremal surfaces? KSW?

QM & Time-entanglement/Pseudo-entropy: EE-like structures, timelike separations:

(i) reduced time evolution operator ↔ red. transition amplitudes,

(ii) positivity in future-past entangled states & density matrices.

“Cosmological transition matrix” using dS Wavefunction → dS entropy, future-past areas...

? Dual using two copies of ghost-like CFTs?

• Slow-roll inflation: no-boundary areas must be defined carefully via complex

time plane integrals with appropriate time contours avoiding potential poles.

Maximal cosmic brane creation probability (= dS4 entropy + slow-roll corrections [< 0] )

matches |Wavefunction|2 . Dual CFT understanding? Time-contours, more general cosmologies?

? Pseudo-entropy meta-observables↔ standard Big-Bang cosmology observers/observables?
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dS surfaces, subregion duality, geometrically

IR surface, t = const slice, maximal subregion → red surface;

Generic subregion, blue: tilted “great circle” in hemisphere,

joining with tilted timelike surface in Lorentzian top half.

dS3 explicitly solvable; dSd+1, perturbatively analysed.

Time-entanglement/Pseudo-entanglement

wedge: Max subregion, t = const slice: green

bulk region bounded by (red) IR surface and

boundary subregion. (Violet complement region)

Including t-direction → top wedge (containing future of IR surface on vertical

t = const slice), bounded by I+ subregion ≡ analytic continuation from AdS.

Space-time rotation from AdS EE wedge. (dS/CFT via relative entropy, modular flow etc?)

Multiple disjoint boundary subregions: red, violet, blue no-bndry dS

extremal surfaces. Complex areas so quite different from AdS EE.

Bulk subregions not disjoint: except for IR (maximal) subregions.

[Maybe other possibilities: subregion duality in Lorentzian dS via future-past surfaces..]
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dS surfaces, entropy relations/inequalities
dS3 : S

θ∞
t = −i l

2G3
log

Rc
l
− i l

4G3
log(sin2 θ∞) + πl

4G3

IR, θ∞ = π
2

: SIRt = −i l
2G3

log
Rc
l

+ πl
4G3

Two adjacent disjoint subregions A,B (2θ∞= π
2

); A∪B ≡ (2θ∞=π).

“Mutual time-information” or “mutual pseudo-information”:

It[A,B] = S[A] + S[B] − S[A ∪ B] = −i l
2G3

log
Rc
l

+ i l
2G3

log 2 + πl
4G3

⇒ Re It ≥ 0 , Im It ≤ 0. (antipodal subregions, It = 0)

Tripartite time-information: 3 disjoint adjacent quadrant subregions A,B,C (2θ∞ = π
2

).

A ∪B, B ∪ C maximal (IR) subregions. A ∪ C, antipodal quadrants (extr. surf. = “inner” (≡B) + “outer”).

SA = SB = SC = S
π/4
t , SAB = SBC = S

π/2
t , SAC = S

π/4
t + S

π/4
t , SABC = S

π/4
t ;

It3[A,B,C] = SA + SB + SC − SAB − SBC − SAC + SABC = i l
2G3

log 2 ⇒ Im It3 ≥ 0.

Strong subadditivity:
SAB +SBC −SABC −SB = −i l

2G3
log 2,

SAB + SBC − SA − SC = −i l
2G3

log 2.

} ReSSBt1,2 ≥ 0,

ImSSBt1,2 ≤ 0

dS area/entropy relations special (relative to qubit system pseudo-entropies).

Note: AdS analytic continuation il→ −L ⇒ MI ≥ 0, I3 ≤ 0, SSB1,2 ≥ 0.

Consistent with AdS RT/HRT areas which are also special Hayden,Headrick,Maloney,’11.
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Qubits, pseudo-entropy inequalities

Pseudo-entropy ρt =
|F〉〈I|

Tr(|F〉〈I|) =
U(t)|I〉〈I|

Tr(U(t)|I〉〈I|) [= time evoln op U(t)=e−iHt with projection]

for TFD-type initial state |I〉 and its time-evolved final state |F 〉 = U(t)|I〉.

2-qubits: |I〉 = c11|11〉 + c22|22〉 , |F〉 = c11e
−iE11t|11〉 + c22e

−iE22t|22〉

[|c11|
2+|c22|

2 =1; |c11|
2≡x; θ=−(E22−E11)t]

ρ1t = Tr2 ρt, ρ2t = Tr1 ρt, ρ2t = ρ1t = 1
x+(1−x)eiθ

(
x|1〉〈1| + (1 − x)eiθ|2〉〈2|

)
,

S2
t = S1

t = − x
x+(1−x)eiθ

log x
x+(1−x)eiθ

− (1−x)eiθ

x+(1−x)eiθ
log

(1−x)eiθ

x+(1−x)eiθ

Near t = 0: S1
t (t) ∼ S1

t (0) + d
dt
S1
t (0) t ≡ S0 ,

S1
t (0) = −x log x − (1 − x) log(1 − x) , d

dt
S1
t (0) = −i∆E x(1 − x) log x

1−x

Mutual pseudo-information: It[1, 2] = S1
t + S2

t − St ∼ 2S0; ReIt > 0 , ImIt ≷ 0

3-qubits: |I〉 = c111|111〉 + c222|222〉 , |F〉 = c111e
−iE111t|111〉 + c222e

−iE222t|222〉

ρ123
t =

|F〉〈I|
Tr(|F〉〈I|) , ρ1t = Tr23 ρ

123
t = 1

x+(1−x)eiθ

(
x|1〉〈1| + (1 − x)eiθ|2〉〈2|

)
, ρ2t = ρ3t = ρ1t ,

ρ12
t = Tr3 ρ

123
t = 1

x+(1−x)eiθ

(
x|11〉〈11| + (1 − x)eiθ|22〉〈22|

)
, ρ23

t = ρ13
t = ρ12

t

Tripartite pseudo-information: It3[1, 2, 3] = S1
t + S2

t + S3
t − S

23
t − S

13
t − S

12
t + S123

t = 0

SSB: SSBt1 = S12
t +S23

t −S
123
t −S2

t = S1
t ; SSBt2 = S12

t +S23
t −S

1
t −S

3
t = 0

ReSSBt1 > 0 , ImSSBt1 ≷ 0 (x 6= 1
2

)

[Specific TFD states above; more general states?]
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“Time-Entanglement”, examples: 2-qubits etc

2-state system: H|k〉 = Ek|k〉, (k = 1, 2; 〈1|2〉 = 0); |k〉F ≡ |k(t)〉 = e−iEkt|k〉P .

ρt = 1
1+eiθ

(
|1〉〈1| + eiθ|2〉〈2|

)
, θ=−(E2−E1)t; 2-spin analogy: |1〉 ≡ |++〉, |2〉 ≡ |−−〉

TrB−−−−→ ρAt → entropy SθA = −tr
(
ρAt log ρAt ) = − 1

1+eiθ
log 1

1+eiθ
− 1

1+e−iθ
log 1

1+e−iθ

Real-valued, oscillating in time, periodicity∼ 1
∆E

; unbounded at t= (2n+1)π
∆E

; min SθA=log 2 at t= 2nπ
∆E

.

General 2-qubit Hamiltonian H = E11|11〉〈11| + E22|22〉〈22| + E12
(
|12〉〈12| + |21〉〈21|

)
ρt = Nt

∑
i,j e
−iEijt |ij〉〈ij| =

(
|11〉〈11|+eiθ1 |22〉〈22|+eiθ2 (|12〉〈12|+|21〉〈21|)

)
1+eiθ1+2eiθ2

[ t=0−−−→1
4
1̂]

Tr2−−−−→ ρAt = 1

1+eiθ1+2eiθ2

((
1 + eiθ2

)
|1〉〈1| +

(
eiθ1 + eiθ2

)
|2〉〈2|

)
θ1 = −(E22−E11)t,

θ2 = −(E12−E11)t.

Generically complex-valued von Neumann entropy. (mixed EE, imaginary temp β = it)

ρt|I〉〈I|
Tr(ρt|I〉〈I|)

: Projection onto Thermofield-double initial states |I〉 =
∑

1,2 cii|ii〉

Tr2−−−−→ ρ
|I〉,A
t = 1

|c11|2+|c22|2eiθ
(
|c11|

2|1〉〈1| + |c22|
2eiθ|2〉〈2|

)
[θ=−(E22−E11)t]

≡ reduced transition matrix for |I〉 and |F〉 =
∑
ciie
−iEiit|ii〉 (→ pseudo-entropy).

Max. entangled (Bell-pair) states |c11|
2 = |c22|

2 = 1
2
→ SθA (2-state above). Min SθA= log 2 = EE(|I〉).
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Future-past surfaces, f-p “entanglement”

dS future-past surfaces connecting I+ to I−.

( Hartman-Maldacena ( AdS bh) rotated)

Suggests future-past entanglement (betw I±).
−

F

N S

P

I
+

I

Recall eternal AdS bh dual to CFTL×CFTR in TFD state (Maldacena)

Speculation: (Lorentzian) dS4 dual to CFTF × CFTP in

thermofield-double entangled state |ψtfd
fp
〉 =

∑
ψ
iFn ,i

P
n |iFn 〉|i

P
n 〉 ?

[KN ’17; also

Arias,Diaz,Sundell,’19]

Tracing fp-dm over past copy gives mixed state at I+ .

2 copies of future-past entangled states & density matrices: positive entropy EE > 0.

|ψfp〉 → f-p density matrix ρfp ≡ |ψ〉fp〈ψ|fp
Trp−−−−→ positive structures.

Connectedness of fp-entangled states & timelike entanglement ↔ emergence of time?

van Raamsdonk: space emerges from entanglement.

Factorized fp-states |ψ(1)
f
〉|ψ(2)

P
〉: TrP ρfp → pure.

Entangled fp-states: reduced transition matrix ≡ time evolution operator.

[U(t) = Tr2(|ψfp〉〈ψI |)] Time evol’n ≡ f-p EE. Timelike ER=EPR?
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