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Holography, singularities, time . . .

∼ 25 yrs since AdS/CFT ’97 Maldacena; ’98 Gubser,Klebanov,Polyakov; Witten.

Understand time-dependent phenomena in string theory and holography.

Big-Bang/Crunch singularities: curvatures, tidal forces divergent.

General relativity, notions of spacetime geometry break down.

Hope: holographic (or “stringy”) description → UV completion.

Entanglement: insightful holographic probe.

Classical RT/HRT & quantum extremal surface probes?

Ryu,Takayanagi; Hubeny,Rangamani,Takayanagi
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Prelude: singularities and string theory

Long history of studying singularities and their resolution in string theory.

Orbifolds (conical singularities): singular for point particles.

Strings → extra light winding modes → resolution modes of singularity.

Null singularities: e.g. singular plane waves, null Kasner singularities.

:
:

:
:

:

Strings become highly excited in the vicinity of singularity.

::::: Spacelike Big-Bang/Crunch singularities: unclear.

Toy models of holographic cosmologies with Big-Bang/Crunch singularities:

bulk gravitational description breaks down. Dual field theory?

Resolvable singularities in string theory and holography?
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AdS cosmologies & duals;
classical extremal surfaces
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AdS Big-Crunch singularities, duals
Das, KN, Trivedi, Awad, Michelson, Nampuri, ’06-’08

e.g.
isotropic AdS5 Kasner: ds2 =

R2
AdS
r2

(−dt2 + t2/3dx2
i + dr2), eΨ = t2/

√
3.

t = 0, spacelike Big-Crunch singularity: g2
YM =eΨ(t)→0, weakly coupled CFT?

Dual theory lives on isotropically Crunching space, with time-dep coupling.

Weak coupling analysis: interactions important. Gauge theory response → singular.

Null singularities (g2
YM = eΨ(x+)) better: weak coupling appears consistent.

Hindsight: Generic severe time-dependent deformations on vacuum state expected

to thermalize on long timescales (i.e. black hole formation in the bulk).

Suggests non-generic initial conditions for Big-Crunch: dual CFT state nontrivial.

Further interesting insights by Engelhardt, Hertog, Horowitz ’14-’16 and other groups.

(Ãµ) [Possible caveats: subtle renormalization effects (with near singularity cutoff).]

Large family of such cosmologies: AdS-Kasner (anisotropic), -FRW, -BKL, null singularities etc

AdS/CFT , time-dep deformations → ds2 = R2

r2
(g̃µνdx

µdxν + dr2), Ψ = Ψ(t).

[Solutions to sugra if: R̃µν = 1
2
∂µΨ∂νΨ, �̃Ψ = 0: deformations constrained.]
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Big-Crunches, extremal surfaces

Entanglement: useful holographic probe. Explore behaviour of higher dim

extremal surfaces with regard to Big-Crunch singularity e.g. AdS Kasner. RT

Strip shaped subsystem: codim-2 classical RT/HRT extremal surface (t(r), x(r)).

Time dependence ⇒ surface dips into time direction also (besides radial).

(Manu,KN,Paul)

t

t=0  singularity

extremal surface

holographic dimension
boundary

time slice 0

anchoring

t

← Cartoon of extremal surface (red)

anchored on boundary time slice t0.

Geometry near turning point (t∗, r∗) & maximin

→ [t∗ = t(r∗); t.p.: (∂rx)2 → ∞ and dt
dx

= 0]

t
r

x

t

t=0

0

Extremization in semiclassical region

far from singularity (t = 0) is reliable →

Surface lies almost on t ∼ const slice & bends away from singularity (t∗ > t0)

Area extrmz’n, x(r): (∂rx)2 = φ2
∗
( 1

t2/di

) 1−(∂rt)
2

φ2−φ2
∗

; width l ∼ r∗ , φ = t

rdi
;

t(r) extrmz’n eqn → t(r) ∼ t0 +
∑
cnr

n, cn ∼ 1

t
#
0

→ t∗ > t0 (r∗ . t0)

Extremization exhibits maximin structure (r-min and t-max). t(r)
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2-dim dilaton gravity & cosmologies
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Generic 2-dim dilaton gravity

Nearly AdS2 holography: extremal black holes/branes
near horizon−−−−−−−−−−−→ AdS2 ×X.

Compactify X
IR−−−→ JT gravity + matter: SJT = 1

16πG2

∫
d2x
√
−g φ(R+ 2)

Generic 2-dim dilaton gravity ↔ 2-dim subsector of higher dim gravity

on M2 ×X: compactify X S = 1
16πG2

∫
d2x
√
−g
(
φR− U(φ)

)
dilaton φ = higher dim transverse area; U(φ) general dilaton potential.

[Dimensional reduction ds2D = g
(2)
µν dx

µdxν + φ2/didσ2
di

; Weyl: gµν = φ(di−1)/dig
(2)
µν ]

“Effective holography”: subset of bulk observables & duals.

Generic 2-dim gravity akin to D ≥ 4 gravity (not “near JT”).

[e.g.(AdSdi+2 reduction → U = 2Λφ1/di ); observables reflect higher dim theory (holo EM tensor, corrn fns)]

Use 2-dim theory as diagnostic of full higher dim theory.

(adequate for some aspects incl entanglement). (UV-incomplete effective theory)

2dg
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2-dim gravity: Big-Crunch singularities

2-dim dilaton gravity: interesting playground for Big-Crunch/Bang?

e.g. higher dim cosmologies → dim’nal reduction.

S = 1
16πG2

∫
d2x
√
−g
(
φR− U(φ,Ψ)− 1

2
φ(∂Ψ)2

)
(Bhattacharya,KN,Paul)

φ is 2d dilaton. Extra scalar Ψ → nontrivial dynamics.
[dilaton coupling ←

∫ √
−gD(∂Ψ)2 ]

EOM: gµν∇2φ −∇µ∇νφ +
gµν

2

(φ
2

(∂Ψ)2 + U
)
− φ

2
∂µΨ∂νΨ = 0 ;

R− ∂U
∂φ
− 1

2
(∂Ψ)2 = 0; 1√

−g ∂µ(
√
−g φ∂µΨ) − ∂U

∂Ψ
= 0. → conformal gauge ef ηµν

Near Big-Crunch singularity:

→ “universal” subsector: φ ∼ t, ef ∼ ta, eΨ ∼ tα; a = α2

2

Rapid time variation → divergence. Time derivatives dominant ⇒ dilaton potential U disappears.

[−∂2
t φ + ḟ∂tφ −

φ
2

(Ψ̇)2 ∼ 0, −∂2
t φ ∼ 0, f̈ + 1

2
(Ψ̇)2 ∼ 0, −∂t(φ∂tΨ) ∼ 0.]
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t φ + ḟ∂tφ −

φ
2

(Ψ̇)2 ∼ 0, −∂2
t φ ∼ 0, f̈ + 1

2
(Ψ̇)2 ∼ 0, −∂t(φ∂tΨ) ∼ 0.]

9 / 25



2-dim gravity: Big-Crunch singularities

Higher dim cosmology : ds2D = ef

φ(di−1)/di

(
− dt2 + dr2

)
+ φ2/didx2

i ↔

2-dim fields φ, gµν = efηµν , Ψ : φ = tkrm, ef = tarb, eΨ = tαrβ

[EOM→ algebraic equations for exponents]

e.g. isotropic AdSdi+2 Kasner: ds2 = R2

r2
(−dt2 + dr2) + t2/di R2

r2
dx2
i , eΨ = tα ,

→ φ = t Rdi

rdi
, ds2 = t(di−1)/di Rdi+1

rdi+1 (−dt2 + dr2), eΨ = t
√

2(di−1)/di .

U = 2Λφ1/di , Λ=− 1
2
di(di+1); R =AdS scale. Kasner scale tK suppressed, e.g. t2p → (t/tK )2p.

Various other families of cosmological solutions also exist.

• Flat space: U = 0 ↔ reduction of “mostly isotropic” Kasner.

• Hyperscaling violating cosmologies: here θ < 0.

U(φ,Ψ) = 2Λφ1/di eγΨ, Λ = − 1
2

(di + 1 − θ)(di − θ), γ = −2θ√
2di(di−θ)(−θ)

.

• Hyperscaling violating Lifshitz cosmologies: nontrivial z exponent.

More constrained, complicated.
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2-dim dilaton-gravity, Big-Crunches &

quantum extremal surfaces
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Quantum extremal surfaces

Exciting recent developments in black hole information paradox

Penington; Almheiri,Engelhardt,Marolf,Maxfield; Almheiri,Mahajan,Maldacena,Zhao; . . . .

New insights from generalized entropy and quantum extremal surfaces.

2-dim CFT techniques → adapt Calabrese,Cardy formula for subleading

bulk matter contribution to entanglement entropy. Sgen = φ
4G2

+ Sbulk

Big-Bang/Crunch singularities? expect large stringy/quantum gravity

effects: semiclassical approximations break down.

But perhaps studying simple toy models & quantum extremal surfaces as

probes will give insight into cosmological singularities.

We will mostly study closed universes: no horizons (no appreciable entropy),

bulk matter in ground state (reasonable far from singularity),

no entanglement with “elsewhere” (auxiliary universes).
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Quantum extremal surfaces

Sgen = Scl + Sbulk = φ
4G2

+ c
12

log
(
∆2 ef

∣∣
(t,r)

)
+ . . . (∆2 = r2 − (t − t0)2)

→ extremize → QES. (retaining only terms relevant for extremization)

[holographic boundary observer at (t0, 0)]

• Sgen pertains to 2-dim theory from dim. red’n of higher dim space.

• subsystems here are full space (higher dim transverse space compactified):

QES is point in 2d space → IR limit of higher dim RT/HRT.

• 2d CFT matter in ground state: reasonable far from singularity.

• 1� c� 1
G

: classical area term Scl dominant but Sbulk appreciable.

• If Sbulk overpowers Scl, Bekenstein bound violated → islands.
Hartman,Jiang,Shagoulian
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Quantum extremal surfaces

Sgen = φ
4G2

+ c
12

log
(
∆2 ef

∣∣
(t,r)

)
+ . . . (∆2 = r2 − (t − t0)2)

Time-independent examples: everything is on const time slice (t = t0 above).

AdSdi+2 reduction (earlier): φ = Rdi

rdi
, ds2 = Rdi+1

rdi+1 (−dt2 + dr2)

Sgen = φr
4G

Rdi

rdi
+ c

12
log
( r2/ε2UV

(r/R)di+1

)
⇒ ∂rSgen = − φr

4G
diR

di

rdi+1 − c
6

( di−1
2

)
1
r

= 0

Both terms negative: c > 0 and di > 1

⇒ r∗ →∞ → entire Poincare wedge

≡ usual AdSdi+2 entanglement wedge. (maximin)

[So.s. ∼ 0: AdS ground state]

Can be recast as Sgen ∼ φ
4G

+ c
12

di−1
di

log φ

⇒ Sbulk is subleading to classical area [φ not too small]

→ Bekenstein bound not violated → no islands.
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Quantum extremal surfaces: AdS Kasner

[Sgen=
φ

4G
+ c

12
log(∆2 ef |(t,r)), ∆2 =r2−(∆t)2]

AdSdi+2 Kasner reduction: φ =
t/tK

(r/R)di
, ds2 =

(t/tK)(di−1)/di

(r/R)di+1 (−dt2 + dr2)

Observer in semiclassical region far from singularity:

mild time-dependence ⇒ not too different from AdS.

matter in ground state: reasonable far from singularity.

t∗ ∼ t0 i.e. ∆t small,

r∗ →∞ , t∗ →∞.

AdS Kasner

*

QES (t  ,0)0

r=0
boundary

observer

t=t K

singularity t=0

far region
time independent

region

*
(t  ,r )

3φr
Gc

di t/tK
rdi+1/Rdi

+ di+1
r

( di−1
di+1

r2−(∆t)2

r2−(∆t)2

)
= 0 ;

c
6
t−t0
∆2 = φr

4G
1/tK
rdi/Rdi

+ c
12

di−1
di t

.

QES driven to semiclassical region:

entanglement wedge excludes near singularity region.

[maximin] [2d cosmology reasonable approx’n to higher dim]
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Quantum extremal surfaces: AdS Kasner

3φr
Gc

di t/tK

rdi+1/Rdi
+
di+1
r

( di−1
di+1

r2−(∆t)2

r2−(∆t)2

)
= 0 ; c

6
t−t0
∆2 =

φr
4G

1/tK

rdi/Rdi
+ c

12
di−1
di t

.

t∗ ∼ t0, r∗ → ∞, t∗ → ∞

QES → semiclassical region: entanglement wedge excludes near singularity region.

Regulate r∗ → Rc large, finite: (semicl. t∼t0, ∆2∼R2
c)

AdS Kasner

*

QES (t  ,0)0

r=0
boundary

observer

t=t K

singularity t=0

far region
time independent

region

*
(t  ,r )

QES spacelike-separated⇒∆t > 0 (∆2 > 0 → t∗ > t0).

QES lags behind observer (direction away from singularity).

∆t
R2
c
∼ 1

2Kc
+ di−1

2di t0
[ 1
Kc

= 3φr
Gc

1/tK

R
di
c /Rdi

] .

QES lag ∆t increases (t0 ↓ as observer evolves in time)

Append time-independent region far from singularity: QES evolution confirms above picture.

Islands?
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AdS Kasner: searching for islands

QES → semiclassical region: entanglement wedge excludes near singularity region.

3φr
Gc

di t/tK

rdi+1/Rdi
+
di+1
r

( di−1
di+1

r2−(∆t)2

r2−(∆t)2

)
= 0 ; c

6
t−t0
∆2 =

φr
4G

1/tK

rdi/Rdi
+ c

12
di−1
di t

.

Spacelike-separated island-like region for
√
di−1
di+1

. ∆t
r
< 1 ? (large finite r QES solution)

Analysing in detail expanding near this island boundary shows inconsistency:

no island-like solution emerging continuously from QES in semiclassical region.

Consistent with previous studies of closed universes with no horizons,

no entanglement with “elsewhere”, no flat non-gravitating bath regions.

More general 2-dim holographic cosmologies (incl hyperscaling violating Lifshitz asymptotics):

φ = trm , ef = tarb , a > 0, m < 0, b < 0.

Qualitatively similar:

QES → semiclassical region: entanglement wedge excludes near singularity region.

Potential island-like QES solution shows inconsistency generically.
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Quantum extremal surfaces: Null Kasner
Null Kasner singularities: ds2 = −dx+dx−, φ = φ(x+), Ψ = Ψ(x+) [x± = t± r]

Higher dim null cosmology ds2 = −φ−(di−1)/didx+dx− + φ2/didy2
i [no holography here]

Only x+-dependence ⇒ Holomorphic structure

0

+ −
*

singularity

x  =0
+

QES

(x  ,x  )
*

x+x−

observer
O

(x   ,x   )+ −
0

entanglement
wedge

EOM −∂2
+φ −

φ
2

(∂+Ψ)2 = 0 ⇒

0 < k ≤ 1 , φ = (−x+)k , eΨ = (−x+)±
√

2k(1−k)
(x+<0)

Sgen =
φr
4G

(−x+)k + c
6

log(−∆x+∆x−)

Spacelike-separated QES: ∆2 = −∆x+∆x− > 0.

∆x+> 0, x+
∗ = x+

0 + 2Gc
3kφr

(−x+
∗ )1−k > x+

0

∆x−< 0, x−∗ → X−c ∼ −∞ (spatial regulator)
(null-time max)

x
+
0 , x

+
∗ not driven to semiclassical region. QES lies towards singularity.

Qualitatively different from AdS Kasner etc: x+ = 0 is a solution when x+
0 = 0

→ entanglement wedge can potentially include near singularity region.

However on-shell generalized entropy appears singular generically:

thus near singularity region best regarded as unreliable.

Strings known to become highly excited in the vicinity of null singularities: perhaps consistent with above. Explore?
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Conclusions, questions

• AdS Kasner: classical RT/HRT surfaces anchored in reliable semiclassical region

bend away from singularity. Quantum extremal surfaces → semiclassical region.

• Null Kasner singularities: QES can reach singularity but on-shell generalized

entropy generically singular near singularity.

Appropriate non-ground state models for bulk matter entropy (“stringy entanglement”),

initial conditions in semiclassical region far from singularity: dual CFT state?

Which Big-Crunch singularities are accessible via entanglement?

Black hole interior singularity? could be qualitatively different from Big-Bang/Crunch . . .

• dS: timelike-separated QES generically (spacelike-separated QES with regulator: not late times)

Classically: dS future-past extremal surfaces – way to organize bulk entanglement.

Maybe de Sitter suggests new object, “temporal entanglement”?
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Quantum extremal surfaces: de Sitter (Poincare)

dSdi+2: ds2 = R2

τ2 (−dτ2 + dx2 + dy2
i ) → φ = Rdi

(−τ)di
, ds2 = Rdi+1

(−τ)di+1 (−dτ2 + dx2)

Generalized entropy: Sgen =
φr
4G

Rdi

(−τ)di
+ c

6
log

(
∆2 R(di+1)/2

(−τ)(di+1)/2

)
, ∆2 =(∆x)2−(τ−τ0)2

Extremization: c
3

∆x
∆2 = 0 , diφr

4G
Rdi

(−τ)di+1 + c
12

di+1
(−τ)

− c
3
τ−τ0
∆2 = 0

• Timelike-separated QES: (di=1 ↔ dS2, Chen,Gorbenko,Maldacena)

∆x = 0 , ∆2 = −(τ − τ0)2 ; diφr
4G

Rdi

(−τ)di+1 + c
12

di+1
(−τ)

+ c
3

1
τ−τ0

= 0

Late-time observer τ0 ∼ 0: ∆x = 0 , τ∗ = −R
( di
3−di

3φr
Gc

)1/di
Timelike-separated ⇒ ∆2 < 0 → generalized entropy acquires imaginary part.

• Spacelike-separated QES: exist in certain regimes with regulator.

∆2 ∼ R2
c ,

diφr
4G

Rdi

(−τ)di+1 + c
12

di+1
(−τ)

∼ c
3
τ−τ0
R2
c

.

∗ Rc → ∞ ⇒ τ → −∞. ∗ Late-times → no real solution.

FRW, scalar source p = wρ: ds2 = −dt2 + a(t)2dx2
i → φ = adi , ds2 = adi+1(−dτ2 + dx2)
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∗ Rc → ∞ ⇒ τ → −∞. ∗ Late-times → no real solution.

FRW, scalar source p = wρ: ds2 = −dt2 + a(t)2dx2
i → φ = adi , ds2 = adi+1(−dτ2 + dx2)
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de Sitter: classical extremal surfaces

dS/CFT : dual CFT on boundary at future/past timelike infinity I±

’01 Strominger; Witten. ΨHHdS = ZCFT (Maldacena ’02)

analytic continuation r → −iτ, RAdS → −iRdS from Eucl AdS.

+

horizonhorizon

past timelike infinity

time

−
I

I
future timelike infinity

Bulk expectation values 〈ϕkϕk′ 〉 ∼
∫
Dϕ ϕkϕk′ |Ψ|2 → dual ≡ two CFT copies.

de Sitter entropy = area of cosmological horizon. (Gibbons,Hawking)

de Sitter entropy as some sort of entanglement entropy?

One possible generalization of Ryu-Takayanagi to de Sitter space

≡ bulk analog of setting up entanglement entropy in dual CFT →
restrict to some boundary Eucl time slice → codim-2 RT/HRT

surfaces anchored at I+, dipping into holographic (time) direction.

+

P

SN

F

?

I

I
−

No real I+ → I+ turning point, surfaces do not return to I+: end at I−?
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de Sitter: classical extremal surfaces

No real I+ → I+ turning point, surfaces do not return to I+: end at I−?

Hartman-Maldacena rotated Future-past surfaces stretching from I+ to I−

Limiting surface, subregion→ all I± (∆w → ∞): Sdiv ∼ πl2

G4
l
εc

, Sfin ∼ πl2

G4
∆w

Features: vanishing mutual information, “entanglement wedge”, subregion duality, . . .
−

F

N S

P

I
+

I

Suggest TFD-like entangled dual of two CFT copies at future boundary.

With ordinary spatial (AdS-like) boundary, a spacelike RT/HRT surface gives real

area. Then as the holographic boundary is rotated to timelike infinity, we acquire

a relative minus sign, suggesting complex areas for timelike extremal surfaces.

In this sense, future-past surfaces have overall i which we are removing.

(a bit like calling the length of a timelike geodesic as time, rather than i·space ?)

So perhaps this is a new object, “temporal entanglement”?

[Also complex extremal surfaces: AdS RT analytic cont’n (’15, KN; Sato; Miyaji,Takayanagi)]
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Generic 2-dim dilaton gravity: dim. red’n
S = 1

16πG2

∫
d2x
√
−g

(
φR− U(φ)

) Equations of motion:

gµν∇2φ −∇µ∇νφ +
gµν

2
U = 0, R− ∂U

∂φ
= 0.

• curvature divergence: U ∼ φn → R ∼ φn−1 n<1−−−−→ IR singularity asφ → 0. Conformally AdS2 .

• on-shell action divergence: UV divergence at largeφ — So.s. = 1
16πG2

∫
d2x
√
−g

(
φ∂φU − U

)
.

[Distinct from JT gravity (U = −2φ): const curvature (R = −2); vanishing on-shell action.]

AdS/CFT experience: fixable - •introduce black hole •counterterms, holographic RG (stress tensor, correlators).

Suggests generic 2d gravity akin to D ≥ 4 gravity → not “near JT”.

UV-incomplete effective theory ≡ thermodynamic ensemble. Extra scalar: similar features. Back

e.g. AdSdi+2 reduction: bulk action & Gibbons-Hawking boundary term→ renormalized with counterterm

Sren = 1
16πG2

[ ∫
d2x
√
−g

(
φR− U(φ)

)
− 2

∫
dt
√
−γ φK − 2

∫
dt
√
−γ φ

di+1
2di di

]
; (U=2Λφ

1
di )

Varying renormalized action w.r.t. boundary metric γ̂ → holographic energy-momentum tensor

Trentt = − 2√
−γ̂

δSren
δγ̂tt

= ε(di+1)/2

8πG2

(
−
√
grr∂rφ − diφ

di+1
2di

)
γtt

vacuum: Trentt =0. Black hole -

Trentt =
di

16πG2 r
di+1
0

Trentt is ε-expansion: counterterms cancel divergences, pick finite pieces limε→0 .

Matches familiar higher dim δSgrav calculation, after reconciling redux+Weyl:

− 1
16πGD

∫
ddi+1x

√
−h (Kµν −Khµν )δhµν → 1

16πG2

∫
dt
√
−γ

√
grr∂rφ γtt δγ

tt + . . .

Scalar probes with dilaton coupling: −
∫
d2x
√
g φB(∂ψ)2 → ψ = e−iωτψω(r)

di→2
−−−−−−→

−S ∼
∫
dω 1

εdi
ψ−ω∂rψω

∣∣∣
ε
→

∫
dω ψ0

−ωψ
0
ω

(−ω2

ε
+ω3 + . . .

)
. Remove divergence via counterterm→

nonlocal term → 〈O(τ)O(τ′)〉 ∼ 1
(∆τ)4

. Similar to higher dim calc’n: 0+1 dim FT → O conf.dim. 1+
di
2

.
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Holographic entanglement entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.
EE for spatial subsystem A, SA = −trρA log ρA, with partial trace ρA = trBρ.

Ryu-Takayanagi: EE =
Amin.surf.

4G

[∼ black hole entropy] Area of codim-2 minimal surface in gravity dual.

Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi).

 

subsystem A

boundary

minimal surface bounding A 

AdS bulk direction

Operationally: const time slice, boundary subsystem → bulk slice, codim-2 extremal surface

Example: CFTd ground state = empty AdSd+1, ds2 = R2

r2
(dr2 − dt2 + dx2

i ) .
Strip, width ∆x = l, infinitely long. Bulk surface x(r). Turning point r∗.

SA =
Vd−2R

d−1

4Gd+1

∫ dr
rd−1

√
1 + (∂rx)2 → (∂rx)2 =

(r/r∗)2d−2

1−(r/r∗)2d−2
, l

2
=
∫ r∗
0 dr∂rx.

SA =
Vd−2R

d−1

4Gd+1

∫ r∗
ε

dr
rd−1

2√
1−(r/r∗)2d−2

−→ SA = R
2G3

log l
ε

, 3R
2G3

= c [2d].

SA ∼
Rd−1

Gd+1
(
Vd−2

εd−2
− cd

Vd−2

ld−2
) , R3

G5
∼ N2 [4d], R2

G4
∼ N3/2 [3d].

CFT thermal state (AdS black brane): minimal surface wraps horizon. Sfin ∼ N2T3V2l

Back
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Big-Crunches, extremal surfaces
Surface (t(r), x(r)). Trng pt (t∗, r∗), t∗=t(r∗). S =

Vdi−1
4Gdi+2

∫
dr φ

√
ef

φ(di+1)/di

(
1 − (∂rt)2

)
+ (∂rx)2

−→ (∂rx)2 = A2

ef

φ(di+1)/di

(
1−(∂rt)

2)
φ2−A2 , S =

Vdi−1
4Gdi+2

∫
dr

ef/2 φ(3−1/di)/2√
φ2−A2

√
1 − (∂rt)2

Time extrmz’n → (1 − t′2)
(
d2
i t
′ +

r(t2−A2r2di )

t3
− dir

t

)
− (t2−A2r2di )dirt

′′

t3
= 0

φ∗ = A =
t∗
r
di∗
→ t′∗ =

r∗
di t∗

> 0 → dr
dx

∣∣∣
∗

= 0, dt
dx

∣∣∣
∗

=
t′∗

(∂rx)∗
= 0 ⇒ t-max (maximin)

t′ � 1 → t-eqn
approx
−−−−−−→ d2

i t
3t′ + r(t2 − A2r2di ) − dirt

2 − (t2 − A2r2di )dirt
′′ = 0

Numerically
solve −→
AdS5 Kasner:

A∼ t0
r3∗
& 1
t20

t(r) = t0 + 1
12t0

r2 − 1
432t30

r4 + 1
7776t50

r6 + A2

160t30

r8 − 103A2

160·540t50

r10

+ 3943A2

160·540·252t70

r12 + A4

160·4t50
r14 − 7A4

160·72t70

r16 + 15011A4

160·540·1120t90

r18

+ 91A6

160·880 t70

r20 + 8453A6

22302720 t90

r22 + 493338049A6

3653185536000 t11
0

r24 + 19A8

56320t90

r26 + . . .

→ t∗ = t0 +
r2∗
t0

(
1
12

+ 1
160

+ 1
160·4 + 91

160·880
+ 19

160·352
+ . . .

)
→ t∗ > t0.

Surface lies almost on t ∼ const slice & bends away from singularity (t∗ & t0)

IR limit r∗ → ∞ more delicate: A → 0 (A . 1/t20)

t(r) = t0 + 1
12 t0

r2 − 1
432 t30

r4 + 1
7776 t50

r6 − 17
1866240 t70

r8 + 247
335923200 t90

r10 + . . .

r∗ → ∞, t0 → ∞,
t0
r∗
. 1 ⇒ t∗ > t0

Back
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