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Holography, singularities, time ...

~ 25 yrs since AdS/CFT ’97 Maldacena; 98 Gubser,Klebanov,Polyakov; Witten.

Understand time-dependent phenomena in string theory and holography.
Big-Bang/Crunch singularities: curvatures, tidal forces divergent.

General relativity, notions of spacetime geometry break down.
Hope: holographic (or “stringy”) description — UV completion.

Entanglement: insightful holographic probe.
Classical RT/HRT & quantum extremal surface probes?

Ryu,Takayanagi; Hubeny,Rangamani, Takayanagi
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Prelude: singularities and string theory

Long history of studying singularities and their resolution in string theory.

Orbifolds (conical singularities): singular for point particles.
Strings — extra light winding modes — resolution modes of singularity.

Null singularities: e.g. singular plane waves, null Kasner singularities.

\\1 Strings become highly excited in the vicinity of singularity.

Spacelike Big-Bang/Crunch singularities: unclear.
Toy models of holographic cosmologies with Big-Bang/Crunch singularities:
bulk gravitational description breaks down. Dual field theory?

Resolvable singularities in string theory and holography?
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AdS cosmologies & duals;
classical extremal surfaces
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AdS Big-Crunch singularities, duals

Das, KN, Trivedi, Awad, Michelson, Nampuri, '06-08

2
isotropic AdSs Kasner: ds? = %(*dlﬁ2 +12/3da? + dr?), e¥ = 2/V3,

t = 0, spacelike Big-Crunch singularity: ¢3 ,, =¥ -0, weakly coupled CFT?
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Weak coupling analysis: interactions important. Gauge theory response — singular.

Null singularities (4% ,, = <¥(= 1)y better: weak coupling appears consistent.
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to thermalize on long timescales (i.e. black hole formation in the bulk).

Suggests non-generic initial conditions for Big-Crunch: dual CFT state nontrivial.

Further interesting insights by Engelhardt, Hertog, Horowitz '14-'16 and other groups.



AdS Big-Crunch singularities, duals

Das, KN, Trivedi, Awad, Michelson, Nampuri, '06-08

2
isotropic AdSs Kasner: ds? = %(*dt2 +12/3da? + dr?), e¥ = 2/V3,

t = 0, spacelike Big-Crunch singularity: ¢3 ,, =¥ -0, weakly coupled CFT?

Dual theory lives on isotropically Crunching space, with time-dep coupling.
Weak coupling analysis: interactions important. Gauge theory response — singular.

Null singularities (4% ,, = <¥(= 1)y better: weak coupling appears consistent.

Hindsight: Generic severe time-dependent deformations on vacuum state expected
to thermalize on long timescales (i.e. black hole formation in the bulk).
Suggests non-generic initial conditions for Big-Crunch: dual CFT state nontrivial.
Further interesting insights by Engelhardt, Hertog, Horowitz '14-'16 and other groups.
(Ap) [Possible caveats: subtle renormalization effects (with near singularity cutoff).]

AdS/CFT, time-dep deformations — ds?

Large family of such cosmologies: AdS-Kasner (anisotropic), -FRW, -BKL, null singularities etc

2
LB (Guudatdz? +dr?), © = w(t).
-
[Solutions to sugra if: Ry, = %a,ppa,,\y, 0w = 0: deformations constrained.]



Big-Crunches, extremal surfaces

Entanglement: useful holographic probe. Explore behaviour of higher dim

extremal surfaces with regard to Big-Crunch singularity e.g. AdS Kasner.
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Big-Crunches, extremal surfaces

Entanglement: useful holographic probe. Explore behaviour of higher dim

extremal surfaces with regard to Big-Crunch singularity e.g. AdS Kasner.

Strip shaped subsystem: codim-2 classical RT/HRT extremal surface (¢(r),z(r)).

»

Time dependence = surface dips into time direction also (besides radial).

t=0 singularity

anchoring
time slice t,
extremal surface

holographic dimension

boundary

< Cartoon of extremal surface (red)
anchored on boundary time slice ¢g.

(Manu,KN,Paul)
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Big-Crunches, extremal surfaces

Entanglement: useful holographic probe. Explore behaviour of higher dim
extremal surfaces with regard to Big-Crunch singularity e.g. AdS Kasner.

Strip shaped subsystem: codim-2 classical RT/HRT extremal surface (¢(r),z(r)).
Time dependence = surface dips into time direction also (besides radial).

t=0 singularity (Manu,KN,Paul)

< Cartoon of extremal surface (red) I::n

anchored on boundary time slice ¢g.

Geometry near turning point (t, r4) & maximin  ©

anchoring = [te = t(rs); t.p: (9p2)2 = oo and 4L = 0]
time slice tg &g

extremal surface

Extremization in semiclassical region

Holographlc dimension far from singularity (¢ = 0) is reliable —

boundary

Surface lies almost on ¢t ~ const slice & bends away from singularity (¢« > to)
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Big-Crunches, extremal surfaces

Entanglement: useful holographic probe. Explore behaviour of higher dim
extremal surfaces with regard to Big-Crunch singularity e.g. AdS Kasner.

Strip shaped subsystem: codim-2 classical RT/HRT extremal surface (¢(r),z(r)).
Time dependence = surface dips into time direction also (besides radial).

,,,,,, (=0 singularity (Manu,KN,Paul)

< Cartoon of extremal surface (red) I::n
anchored on boundary time slice ¢g.

Geometry near turning point (tx, rx) & maximin = ©
anchoring
time slice to

— [ty = t(rx); t.p.: (8,«z)2 — oo and g—; = 0]

extremal surface

Extremization in semiclassical region

Holographlc dimension far from singularity (¢ = 0) is reliable —
boundary

Surface lies almost on ¢t ~ const slice & bends away from singularity (¢« > to)

2
s 2 2 1 1—(8rt) . t
Area extrmz'n, x(r): (8px)2 = ¢ Lo0rt)” o width U~ ra, ¢ = —b—
) Br *(tz/di =5 —¢2 * i
t(r) extrmz’n eqn — t(r) ~ tg + X enr™, cp ~ L# = te >ty (rs < tg)
t
0
Extremization exhibits maximin structure (r-min and t-max).
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2-dim dilaton gravity & cosmologies
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Generic 2-dim dilaton gravity

near horizon

Nearly AdSs holography: extremal black holes/branes ——————— AdSs x X.

Compactify X ﬂ» JT gravity + matter: SJT = ﬁ fdzﬁf\/ —g (z)(R + 2)
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Generic 2-dim dilaton gravity

Nearly AdSs holography: extremal black holes/branes ——————— AdSs x X.
S

Compactify X i» JT gravity + matter:

near horizon

= ﬁ [ d?z/=g (R +2)

Generic 2-dim dilaton gravity <> 2-dim subsector of higher dim gravity
1673G2 fde\/ -9 (¢R - U(¢))

U(¢) general dilaton potential.

on My x X: compactify X

dilaton ¢ = higher dim transverse area;

S =

[Dimensional reduction ds%, = g,(f],) dztdz? + $2/di do2 ;  Weyl:
‘T

Juv =

p(di=1)/d; 42);
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Generic 2-dim dilaton gravity

Nearly AdSs holography: extremal black holes/branes ——————— AdSs x X.
S

Compactify X i» JT gravity + matter:

near horizon

= ﬁ [ d?z/=g (R +2)

Generic 2-dim dilaton gravity <> 2-dim subsector of higher dim gravity

on My x X: compactify X

S

= 52e; [ d*2/=g (4R — U(9))

dilaton ¢ = higher dim transverse area; U(¢) general dilaton potential.

(2)

[Dimensional reduction ds% = g3 dzHda¥ + #2/ i dagi § Weyl: gy = ¢(di=1)/d; 9&21/)]

“Effective holography”: subset of bulk observables & duals.

Generic 2-dim gravity akin to D > 4 gravity (not “near JT”).

[E.g.(Adei_'_Q reduction — U = 2A¢1/di ); observables reflect higher dim theory (holo EM tensor, corrn fns)}

Use 2-dim theory as diagnostic of full higher dim theory.

(adequate for some aspects incl entanglement). (UV-incomplete effective theory)
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2-dim gravity: Big-Crunch singularities

2-dim dilaton gravity: interesting playground for Big-Crunch/Bang?

e.g. higher dim cosmologies — dim’nal reduction.

S = 152y | Pav=g (4R ~ U(6, W) - 16(01)?)

(Bhattacharya, KN, Paul)

¢ is 2d dilaton. Extra scalar ¥ — nontrivial dynamics.

[dilaton coupling « [ \/—gD (8%)2 |
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2-dim gravity: Big-Crunch singularities

2-dim dilaton gravity: interesting playground for Big-Crunch/Bang?

e.g. higher dim cosmologies — dim’nal reduction.

S = ﬁ fdQ.’E\/*g <¢R — U((]S, \I/) — %(13(8\1/)2) (Bhattacharya, KN, Paul)

¢ is 2d dilaton. Extra scalar ¥ — nontrivial dynamics.

[dilaton coupling « [ \/—gD (8%)2 |

EOM: g,y V26 — VuVyo+ 2 (£ (09)2 4 U) - $0,90,% =0
R — g—g -L1v)? =0 ﬁaﬂ(‘/?g ok w) — Y =0. - conformal gauge e/,

Near Big-Crunch singularity:
: v
— “universal” subsector: ¢ ~t, ef ~t, eV ~tY a=
Rapid time variation — divergence. Time derivatives dominant = dilaton potential U disappears.

(070 + fore — $(#)2 ~ 0, —07¢~0, F+2()2~0, —8,(60,%) ~ 0]
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2-dim gravity: Big-Crunch singularities

Higher dim cosmology : — dt? 4 dr?) + ¢2/di a2 >

of
b = @7 (
2-dim fields ¢, g = e, U ¢ =tFrm, of =12 eV =P

[EOM — algebraic equations for exponents|
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2-dim gravity: Big-Crunch singularities

: ; . f .
Higher dim cosmology: as2, = m( — at? 4 ar?) + ¢2/dida? —

2-dim fields ¢, g = e, U ¢ =tFrm, of =12 eV =P

[EOM — algebraic equations for exponents|

2/d; 2
LA W S S
=

i’ ©

e.g. isotropic AdSgy, 12 Kasner: ds2 = %2(701# +dr?) +
p

— tRr% 2 _ t{di=D/di pdi+l 2 2 U _ \/2(di—1)/d;
= o= i 0 ds® = T(—dt + dr?), e¥ — V2(di—1)/d;
U =2A¢1/di A= —% d;(d;+1); R = AdS scale. Kasner scale ¢z suppressed, e.g. 2P (t/tK)Qp.

Various other families of cosmological solutions also exist.
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2-dim gravity: Big-Crunch singularities

Higher dim cosmology: as2, = (j(dziifl)/dz( —ae? + ar?) + ¢2/di ag? “
: k b o
2-dim fields ¢, g = e, U ¢ =tFrm, of =12 eV =P
[EOM — algebraic equations for exponents|

2

. . 2 2/d; g2
e.g. isotropic Adsdi+2 Kasner: ds2 = }j—'z(—dt2 + dr2) + t/riERdzl LY — o

d; (d;—1)/d; d;+1 — N
= o=tE1 ds? = Lo B (—di? 4 dr?), eV = V2T

U =2A¢1/di A= —% d;(d;+1); R = AdS scale. Kasner scale ¢z suppressed, e.g. 2P (t/tK)Qp.

Various other families of cosmological solutions also exist.

e Flat space: U = 0 <> reduction of “mostly isotropic” Kasner.
e Hyperscaling violating cosmologies: here 6 < 0.
U, @) = 240/ 45 7Y A= —L(d; +1—0)(d; —0), ~= —26 )
2% i 3d; (d; —0)(—0)

e Hyperscaling violating Lifshitz cosmologies: nontrivial z exponent.
More constrained, complicated.
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2-dim dilaton-gravity, Big-Crunches &
quantum extremal surfaces
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Quantum extremal surfaces

Exciting recent developments in black hole information paradox
Penington; Almheiri,Engelhardt,Marolf,Maxfield; Almheiri,Mahajan,Maldacena,Zhao; ... .

New insights from generalized entropy and quantum extremal surfaces.

2-dim CFT techniques — adapt Calabrese,Cardy formula for subleading

bulk matter contribution to entanglement entropy. Sgen = % + Spulk
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Quantum extremal surfaces

Exciting recent developments in black hole information paradox
Penington; Almheiri,Engelhardt,Marolf,Maxfield; Almheiri,Mahajan,Maldacena,Zhao; ... .

New insights from generalized entropy and quantum extremal surfaces.

2-dim CFT techniques — adapt Calabrese,Cardy formula for subleading

bulk matter contribution to entanglement entropy. Sgen = % + Spulk

Big-Bang/Crunch singularities?  expect large stringy/quantum gravity

effects: semiclassical approximations break down.
But perhaps studying simple toy models & quantum extremal surfaces as
probes will give insight into cosmological singularities.

We will mostly study closed universes: no horizons (no appreciable entropy),
bulk matter in ground state (reasonable far from singularity),

no entanglement with “elsewhere” (auxiliary universes).
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Quantum extremal surfaces

Sgen = Sci + Sbuitk = ﬁ + 5 log (A? ef}(m)) + o AaZ=2 - -

— extremize — QES (retaining only terms relevant for extremization)

[holographic boundary observer at (tq, 0)]

® Sgen pertains to 2-dim theory from dim. red’n of higher dim space.

e subsystems here are full space (higher dim transverse space compactified):
QES is point in 2d space — IR limit of higher dim RT/HRT.
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Quantum extremal surfaces

Sgen = Sci + Sbuitk = ﬁ + 5 log (A? ef‘(m)) + o AaZ=2 - -

— extremize — QES (retaining only terms relevant for extremization)
[holographic boundary observer at (tq, 0)]

® Sgen pertains to 2-dim theory from dim. red’n of higher dim space.

e subsystems here are full space (higher dim transverse space compactified):
QES is point in 2d space — IR limit of higher dim RT/HRT.

e 2d CFT matter in ground state: reasonable far from singularity.
o I Kk é : classical area term S. dominant but Sy, appreciable.

e If Spuir overpowers S.;, Bekenstein bound violated — islands.

Hartman,Jiang,Shagoulian
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Quantum extremal surfaces

Sgen:ﬁ—l—élog (A2 6f|(t,r))+ ce (A2 =02 (1 — 1))

Time-independent examples: everything is on const time slice (¢ = to above).

AdSg4,+2 reduction (earlier): ¢ = RYL - gs? = BOCEL 2 4 g2y

i A FT
. 2/.2 1
— ¢ RY | /gy — _br diR% _ codi=1y 1 _
Sgen = 3G T T 12 IOg((T/R)d,;H) = OrSgen = — 35 o P ( 2 ) =0
‘boundar; .
o Both terms negative: ¢ > 0 and d; > 1
= 7. — 00 — entire Poincare wedge
3, .0
&, (o = usual aas,, . entanglement wedge. (maximin)

[S°:5- ~ 0: AdS ground state]
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Quantum extremal surfaces

Sgen:ﬁ—l—élog (A2 6f|(t,r))+ ce (A2 =02 (1 — 1))

Time-independent examples: everything is on const time slice (¢ = to above).

AdSg4,+2 reduction (earlier): ¢ = RYL - gs? = BOCEL 2 4 g2y

i S A FT
. 2/.2 1
_ ¢r R% < /ey _ _¢r diR% ¢ o(di—1\ 1 _
Sgen = 3G @ T 13 IOg((T/R)dﬂrl) = OrSgen = =15 ToTT ~ 6 (95) 3+ =0
‘boundar; .
o Both terms negative: ¢ > 0 and d; > 1
= 7. — 00 — entire Poincare wedge
3, .0

&, (o = usual aas,, . entanglement wedge. (maximin)

[S°:5- ~ 0: AdS ground state]

Can be recast as Sgen ~ % + ﬁ d"dfl log ¢

= Shuik is subleading to classical area [¢ not too small]

— Bekenstein bound not violated — no islands.
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Quantum extremal surfaces: AdS Kasner
[Sgen = g5+ 15 los(a2 el 1)), a2=r2—(an?)

i/t t/tge)(di=D/di
iy, ds? = M (—di? - dr?)

AdSg4, 12 Kasner reduction: ¢ =

Observer in semiclassical region far from singularity:
mild time-dependence = not too different from AdS.

matter in ground state: reasonable far from singularity.



Quantum extremal surfaces: AdS Kasner
[Sgen = g5+ 15 los(a2 el 1)), a2=r2—(an?)

i/t t/tge)(di=D/di
iy, ds? = M (—di? - dr?)

AdSg4, 12 Kasner reduction: ¢ =

Observer in semiclassical region far from singularity: -
. . R te ~ to i.e. At small,
mild time-dependence = not too different from AdS.

Ty — 00 , tyx — 0O.

matter in ground state: reasonable far from singularity.



Quantum extremal surfaces: AdS Kasner

[Sgen =15 +15 loa(a2 el ), AZ=r2—(a0)?]

¢= Ml gs? = WO DI a2y

AdSg4, 12 Kasner reduction: /R (r/ R)&iFT

Observer in semiclassical region far from singularity:
mild time-dependence = not too different from AdS.

matter in ground state: reasonable far from singularity.

te ~ to i.e. At small,

Ty — 00 , tyx — 0O.

< d +1T *(At)2> _

Ge r2—(At)2
boundar
AdS Kasner il ct=tq _ br 1/# c di—1
region 6 A2 4G rdi/R4i 12 d;t
QES oz)selal)er
o, . . . .
:LU/A ’ QES driven to semiclassical region:
t=tg entanglement wedge excludes near singularity region.

time independent [maximin] [2d cosmology reasonable approx'n to higher dim|

far region




Quantum extremal surfaces: AdS Kasner

di=1 2 2
3¢y dit/tp  ditl ( aFTT (A —o0; c t=to _ or
Ge rdi+1/Rdi r TE—(At>2 ? 6 A2 4

ty ~ tg, T — 00, tx — 0O

QES — semiclassical region: entanglement wedge excludes near singularity region.

Regulate v — Re large, finite: (semicl. t~tg, A2 NRg)

boundary
r=0

AdS Kasner
region

2 bserver
QES o

t=ty

time independent
far region
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Quantum extremal surfaces: AdS Kasner

di—1 2 2
Sgr  dit/tr L di+1 ( T A0 0
ce Tai T pd Y (Tt anz )

ty ~ tg, T — 00, tx — 0O

QES — semiclassical region: entanglement wedge excludes near singularity region.

Regulate v — Re large, finite: (semicl. t~tg, A2 NRg)

boundary QES spacelike-separated = At > 0 (a2 >0 — ¢, > tg).
AdS Kasner r=0

region

QES lags behind observer (direction away from singularity).

- observer
o) WO AL 1 dil [l = 80Utk
,*/"'///4 R2 2K,

2d; to K. Gce Rgi/Rdi ] .
=ty
QES lag At increases (to L as observer evolves in time)
time independent
far region

Append time-independent region far from singularity: QES evolution confirms above picture.

Islands?
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AdS Kasner: searching for islands

’ QES — semiclassical region: entanglement wedge excludes near singularity region.

_ 2
Sop  dit/t M(d+17 il SR cltte _gp Mtk o di=1
Ge 4, F1/pd; ™ T _(a0)? ) 6 Az G i yrdi 12 4t

Spacelike-separated island-like region for ,/%—L < At - 1?  (large finite r QES solution
P P g I 7T S
£
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AdS Kasner: searching for islands

’ QES — semiclassical region: entanglement wedge excludes near singularity region.

d;—1 2 2
Bgr _dit/tr d3+1(d13+17 —(an ) =0
G& a1 pd; o 2 (anz ) =0

Spacelike-separated island-like region for /4

Analysing in detail expanding near this island boundary shows inconsistency:

no island-like solution emerging continuously from QES in semiclassical region.

Consistent with previous studies of closed universes with no horizons,

no entanglement with “elsewhere”, no flat non-gravitating bath regions.
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AdS Kasner: searching for islands

’ QES — semiclassical region: entanglement wedge excludes near singularity region.

dizl.2_ (Ap)2
3¢p _dit/tp d13+1(d3+1 ) —0: ct=tog _ ¢p _1/tg + < d;—1
Ge L d; 1 pd; - 2 (a2 =03 6 A2 T 4G d; pd; T 12 d;t

<At 17 (large finite ~ QES solution)

Analysing in detail expanding near this island boundary shows inconsistency:
no island-like solution emerging continuously from QES in semiclassical region.

Consistent with previous studies of closed universes with no horizons,

no entanglement with “elsewhere”, no flat non-gravitating bath regions.

More general 2-dim holographic cosmologies (incl hyperscaling violating Lifshitz asymptotics):
p=trm, ef =trb  a>0, m<0, b<O.

Qualitatively similar:

QES — semiclassical region: entanglement wedge excludes near singularity region.

Potential island-like QES solution shows inconsistency generically.
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Quantum extremal surfaces: Null Kasner
Null Kasner singularities: ds? = —dztdz™, ¢ =¢(z), ¥ =V(zT) @t =1tz
Higher dim null cosmology ds? = —¢=(di=1)/di gptaa— 4 ¢2/di dy? [no holography here]

Only =T -dependence = Holomorphic structure
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Quantum extremal surfaces: Null Kasner

Null Kasner singularities: ds? = —dztdz™, ¢ =¢(z), ¥ =V(zT) @t =1tz

Higher dim null cosmology ds? = —¢=(di=1)/di gptaa— 4 ¢2/di dy? [no holography here]

n\’
observer
(o]

Xt x5
®oro)

entanglement

Only =T -dependence = Holomorphic structure

QES

xExp

EOM —8% ¢ — (0, 9)2 =0 =

0<k<1, ¢=(—ah)h, ¥ =(—aH)FVEFIB | tco)

Sgen = %(ﬂ#)k + £ log(—AztAazT)

Spacelike-separated QES: A2 = —AzTAz™ > 0.

+ +_ .+, 2G Fyl—k o ot
AzT >0, ol =z5 + 5555 (—z) >z, )
(null-time max)

Az~ <0, =z — X ~ —oo (spatial regulator)
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Quantum extremal surfaces: Null Kasner
Null Kasner singularities: ds? = —dztdz™, ¢ =¢(z), ¥ =V(zT) @t =1tz
Higher dim null cosmology ds? = —¢=(di=1)/di gptaa— 4 ¢2/di dy?

[no holography here]

Only =T -dependence = Holomorphic structure

EOM —8% ¢ — (0, 9)2 =0 =

0<k<1, ¢=(—ah)h, ¥ =(—aH)FVEFIB | tco)

N
observer
(o]

Sgen = %@ff)k + £ log(—AztAazT)

) Spacelike-separated QES: A2 = —AzTAz™ > 0.
QES
——la Azt >0, a2t =af + 32kc¢l,:,. (—z)' R > af

(null-time max)

Az~ <0, =z — X ~ —oo (spatial regulator)

m0+, z:r not driven to semiclassical region. QES lies towards singularity.

Qualitatively different from AdS Kasner etc: 1 = 0 is a solution when :rg =0
— entanglement wedge can potentially include near singularity region.
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Quantum extremal surfaces: Null Kasner

Null Kasner singularities: ds? = —dztdz™, ¢ = ¢(zt), ¥ =U(x™t)

Higher dim null cosmology ds? = —¢=(di=1)/di gptaa— 4 ¢2/di dy?

[zt =t £ ]

[no holography here]

Only =T -dependence = Holomorphic structure

EOM —8% ¢ — (0, 9)2 =0 =

0<k<1, ¢=(—zT)F, e¥= (,z+)i\/m

(zt<0)

observer

Sgen = %@ff)k + £ log(—AztAazT)

o
) Spacelike-separated QES: A2 = —AzTAz™ > 0.
——la Azt >0, a2t =af + 32kc¢l,:,. (—z)' R > af )
(null-time max)
Az~ <0, =z — X ~ —oo (spatial regulator)

m0+, z:r not driven to semiclassical region.

QES lies towards singularity.

Qualitatively different from AdS Kasner etc: T = 0 is a solution when 1™ = 0

— entanglement wedge can potentially include near singularity region.

0 =

However on-shell generalized entropy appears singular generically:

thus near singularity region best regarded as unreliable.

Strings known to become highly excited in the vicinity of null singularities: perhaps consistent with above. Explore?
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Conclusions, questions

e AdS Kasner: classical RT/HRT surfaces anchored in reliable semiclassical region

bend away from singularity. Quantum extremal surfaces — semiclassical region.

e Null Kasner singularities: QES can reach singularity but on-shell generalized
entropy generically singular near singularity.
Appropriate non-ground state models for bulk matter entropy (“stringy entanglement”),
initial conditions in semiclassical region far from singularity: dual CF'T state?
Which Big-Crunch singularities are accessible via entanglement?

Black hole interior singularity? could be qualitatively different from Big-Bang/Crunch ...
e dS: timelike-separated QES generically (spacelike-separated QES with regulator: not late times)

Classically: dS future-past extremal surfaces — way to organize bulk entanglement.
Maybe de Sitter suggests new object, “temporal entanglement”?

19/25



Quantum extremal surfaces: de Sitter (poincare)

2 R%i 2 R4t 2 2
dSq;y0r ds? = By (—dr? +da? +ay}) — ¢ = sl ds?® = W(de + dz*)
i . _ ér _R% . 2 _pr(dit1)/2 2_ 2 2
Generalized entropy: sgen = 2% (77)‘% + & log (A W) A% = (Ax)2—(1—70)
: s c Az __ dior ¢ di+l ¢ T—T0 _
Extremization: |5 X3 =0, & = ‘r)d Tty 5 A = 0

L] Timelike—separated QES (d; =1 +> dSg, Chen,Gorbenko,Maldacena)

- 2 _(r_-y2. di¢r  R% cd+1 e 1 _
Axr = 07 A = (7’ TO) 3 4G (—7-)‘17‘,+1 + 2 (=) 3717 0

ate-time observe : — — di  3¢ry1/d,

Late-time observer 7g ~ 0: Az =0, 74 = 73(3777% 3or) /d;

Timelike-separated = A2 < 0 — generalized entropy acquires imaginary part.
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Quantum extremal surfaces: de Sitter (poincare)

> R 2_ Rt 2 4 g2
dSq, yo: ds? = Hy(—dar? 4 de® +ayd) — ¢ = i’ ds” = W(de +da®)
s R X 2 grdi+1)/2 2_ 2 2
Generalized entropy: Sgen = fer%log (a W> AT=(Ax)"=(r=0)
o e A didr 4 c ditl e T=70 _
Extremization: 3 A2 =0, 4G (C)ditT + 13 =) 3 AZ T

e Timelike-separated QES:

(d; =1 +> dSg, Chen,Gorbenko,Maldacena)

didr d d;+1
Az =0, A%2=—(1—19)%; 42 7<7f;d+1+ < (+ e 1

) 3 T—70
d 3pr\1/d;
* 1'(3—7&,i Gc ) /i

Late-time observer 79 ~ 0: Az =0,

Timelike-separated = A2 < 0 — generalized entropy acquires imaginary part

e Spacelike-separated QES: exist in certain regimes with regulator

2 2 d;¢ R%i cd+1
NR07 4GT( T)d +1 + (

c T=To

)~ 3 R2

* Late-times — no real solution

* Re — 00 => T — —o0.

FRW, scalar source p = wp! ds? = —dt? + a(t)?dz? — ¢ =ai, ds? =aditl(—dr? + da?)
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de Sitter: classical extremal surfaces

dS/CFT: dual CFT on boundary at future/past timelike infinity Z+

’01 Strominger; Witten. \IlglsH = ZCFT (Maldacena '02)

analytic continuation © — —iT, R 45 — —iRgg from Eucl AdS.

Bulk expectation values (¢rop/) ~ [ Do orpop | ¥|? — dual = two CFT copies.

de Sitter entropy = area of cosmological horizon. (GibbonsHawking)

de Sitter entropy as some sort of entanglement entropy?
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de Sitter: classical extremal surfaces

dS/CFT: dual CFT on boundary at future/past timelike infinity Z+

’01 Strominger; Witten. \P§ISH = ZCFT (Maldacena '02)

analytic continuation © — —iT, R 45 — —iRgg from Eucl AdS.

Bulk expectation values (¢rop/) ~ [ Do orpop | ¥|? — dual = two CFT copies.

de Sitter entropy = area of cosmological horizon. (GibbonsHawking)

de Sitter entropy as some sort of entanglement entropy?

One possible generalization of Ryu-Takayanagi to de Sitter space
= bulk analog of setting up entanglement entropy in dual CFT —
restrict to some boundary Eucl time slice — codim-2 RT/HRT

surfaces anchored at I1, dipping into holographic (time) direction.

No real It — It turning point, surfaces do not return to I*:end at I~7
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de Sitter: classical extremal surfaces

No real It — It turning point, surfaces do not return to I: end at I~?

Hartman-Maldacena rotated | Future-past surfaces stretching from It to I~

S . ) o din 2 P 2
Limiting surface, subregion — all I+ (Aw — oo0): SV ~ ET;’ gfin Lg4 Aw

Features: vanishing mutual information, “entanglement wedge”, subregion duality, ...

Suggest TFD-like entangled dual of two CFT copies at future boundary.

With ordinary spatial (AdS-like) boundary, a spacelike RT/HRT surface gives real

area. Then as the holographic boundary is rotated to timelike infinity, we acquire

a relative minus sign, suggesting complex areas for timelike extremal surfaces.

In this sense, future-past surfaces have overall ¢ which we are removing.

(a bit like calling the length of a timelike geodesic as time, rather than i-space ?)
So perhaps this is a new object, “temporal entanglement”?

[Also complex extremal surfaces: AdS RT analytic cont’n ('15, KN; Sato; Miyaji, Takayanagi)]
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Generic 2-dim dilaton gravity: dim. red’n

Equations of motion:
9uv V26— Ve + MU =0, r- U =0,

5 = torgy / 42ev=5 (9R ~ U(#) ‘

2
o curvature divergence: U ~ ¢™ — R ~ ¢~ 1 n<l, R singularity as ¢ — 0. Conformally AdSs.
e on-shell action divergence: UV divergence at large ¢ — S5 = ﬁ 1 d2z\/=g (¢O¢U —U).
[Distinct from JT gravity (U = —2¢): const curvature (R = —2); vanishing on-shell action.]

AdS/CFT experience: fixable - eintroduce black hole ecounterterms, holographic RG (stress tensor, correlators).
Suggests generic 2d gravity akin to D > 4 gravity — not “near JT”.

UV-incomplete effective theory = thermodynamic ensemble. Extra scalar: similar features.

e.g. AdsdiJrZ reduction: bulk action & Gibbons-Hawking boundary term — renormalized with counterterm

q 1
Sren = Toacg [/ 2eV=9 (9R — U(9) —2[dty= K —2[dtv=n¢ T &), (U=200%)

Varying renormalized action w.r.t. boundary metric 4 — holographic energy-momentum tensor

vacuum: T{,€™ = 0. Black hole -
Tren 2 6Spen _ (dit1)/2 (- VaTors —d (ﬁidﬁ;l) Tren 4
= A = e (V9T O — dy )t s e
V=3 &% 8mGa 167Gy ng+1

T{E™ is e-expansion: counterterms cancel divergences, pick finite pieces lim¢_,q.

Matches familiar higher dim § S97%V calculation, after reconciling redux+Weyl:
*ﬁ Jaditle =R (Kuy — Khyo)shHY — ﬁ S AtvV=7 Vg T Ord v SYI 4

o . 2 2 —iwT di—>2
Scalar probes with dilaton coupling: — [d“x\/g g (8¢Y)* — ¢ =e Yo (r) ——

s dw Ly 0, dw 0 0 (=22 .3 R diverg ia countert
_ Nf u‘d—iw_w Tx/:wL — f Ww—www (T + w +) emove divergence via counterterm —-

nonlocal term — (O(7)O (7)) ~ ﬁ Similar to higher dim calc’'n: 0+1 dim FT — O conf.dim. 1+ % .
T
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Holographic entanglement entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, S 4 = —trpy4 logp 4, with partial trace py4 = trgp.
/ - boundary
Ryu-Takayanagi: EE = “minsurf.
[~ black hole entropy] Area of codim-2 minimal surface in gravity dual. ) -
Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi). )
I Npr

Operationally: const time slice, boundary subsystem — bulk slice, codim-2 extremal surface

2 _ R2 4,2 2 2
Example: CFT, ground state = empty Ade+1, ds® = S5 (dr® — dt* 4 dzf) .
o i

Strip, width Az = [, infinitely long. Bulk surface x(r). Turning point rs.

-1 _
Vy_oR 2d—2
Sy = -4=2" ¢ ngl Vit (0r2)2 - (0p2)2 = % . L= drore.

4G
d—1
ViR T _d 2 R 1 3R
Sy = Je* — — Sy = log &+, =c [2d]
1Gat1 L N ray2d =2 2G3 €’ 2G3
d—1 'V, v, 3 2
R d— d—2 R 2 R 3/2
S~ et —caja=3) & ~ NP A, G~ N /2 [3d].

CFT thermal state (AdS black brane): minimal surface wraps horizon. {1 ~ N273v,1
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Big-Crunches, extremal surfaces

Va._—
Surface (t(r), (r)). Trng pt (ts, 7%), tx =t(rx). S = 4G€i;i+12 J[dr¢ \/d,(driifl)/di (1 — (8rt)2) + (8rx)2

ef _ 2
P A 7 T S VL PUCE VI Y. Ji- @0

2 2
— (Orz)® = A > > R
$2—A 4Gq, 12 Vo2 —a2
Time extrmzm — (1 — ¢/2)(a2¢ + r2—A2p2di) diry _ (2 —a2r2diya; e’
) i 3 t 3 =

’
+ t

— s
z |« = (Ora)x

2

td*i =t = ﬁ >0 — =0 = (-max (maximin)
P

1
o
8

bu = A =

r

t €1 = teeqn ~PPTOT, q2434/ (2 — A202di) —art? — (12 - AZr2diydee! =0

) _ 1.2 1.4 1 6 A2 8 10342 10
, t(r) = to 4+ To=r2 — . — —Lb3As
N‘f‘“e“c“ll‘ (M =to+ " as2e3 + 7776t3 " + 16063 T 160-5405
solve —
AdsS ; . 394342 12 . A% 14 7a* 16, 150114% a8
Sm ““nir‘ 160-540-252t7 160-4t3 160-72t7 160-540-1120t9
~to > 1
A 3~ 12 0146 20 845346 22 49333804946 24 1948 26
0 160-880 7 22302720 ¢ 3653185536000 t51 56320t

2
— r 1 1 1 91 19
- e =tot g5 (ﬁ + 160 T 1602 T Te0-880 T T60-352 +) = tx > to-
Surface lies almost on t ~ const slice & bends away from singularity (¢, > tg)

IR limit r. — oo more delicate: a4 —»o0 (A < 1/t3)

1,2 1 4 1 6 17 8 247 10
t(r) =t + T 72 — rd 4 6 — r P10
() 0T T2¢g 432 tg 7776 tg 1866240 tg 335923200 tg
rx — 00, tg — 0o, 3—051 =ty > tg
x



