de Sitter Extremal Surfaces and Entanglement in Ghost Systems

K. Narayan Chennai Mathematical Institute

- de Sitter space, dS/CFT and extremal surfaces
- Entanglement entropy in some c = -2 ghost CFTs
- Entangled "ghost-spins" and spins

Based on arXiv:1501.03019, 1504.07430, 1602.06505 (KN), 1608.08351 (Dileep Jatkar, KN), and in progress.

Entanglement Entropy, Holography

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Quantum Field Theory: in general difficult to compute EE.

Corrl'ns strongest near interface \rightarrow leading scaling, *d*-dim area law $\mathcal{N}_{dof} \frac{V_{d-2}}{\epsilon^{d-2}}$.

 $[\epsilon = UV \text{ cutoff}]$ (Bombelli, Koul, Lee, Sorkin; Srednicki) [exceptions: 2d CFT, Fermi surfaces]

2-dim conformal field theory (single interval): $S_A = \frac{c}{3} \log \frac{l}{\epsilon}$ (c = central charge) (Holzhey,Larsen,Wilczek) ["replica": $tr\rho_A^n = \frac{Z_n}{(Z_1)^n}$, $S_A^{EE} = -\lim_{n \to 1} \partial_n tr\rho_A^n$ (Calabrese,Cardy)]

Ryu-Takayanagi: $EE = \frac{A_{min.surf.}}{4G}$ [motivated by black hole entropy] Codim-2 minimal surface in gravity dual. Substantial evidence by now (see recent Lewkowycz, Maldacena). Non-static situations: extremal surfaces. (Hubeny, Rangamani, Takayanagi)

EE a bulk surface probe [akin to correlation fns (geodesics), Wilson loops (bulk strings), ...]

Holographic Entanglement Entropy

Ryu-Takayanagi: $EE = \frac{A_{min.surf.}}{4G}$

(i) Define boundary spatial subsystem on const time slice,

(ii) corresponding const time slice in bulk, surface bounding subsystem,

(iii) extremize codim-2 surface area functional \rightarrow minimal area.

Example: CFT ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2}(dr^2 - dt^2 + dx_i^2)$. Strip, width $\Delta x = l$, infinitely long. Bulk surface x(r). Turning point r_* . $S_A \sim \frac{R^{d-1}}{G_{d+1}}(\frac{V_{d-2}}{\epsilon^{d-2}} - c_d \frac{V_{d-2}}{l^{d-2}})$, $\frac{R^3}{G_5} \sim N^2$ [4d], $\frac{R^2}{G_4} \sim N^{3/2}$ [3d]. $S_A = \frac{R}{2G_3} \log \frac{l}{\epsilon}$, $\frac{3R}{2G_3} = c$ [2d].

CFT thermal state (AdS black brane): minimal surface wraps horizon. $S^{fin} \sim N^2 T^3 V_{d-2} l$ Spherical extremal surfaces: subleading log-div. \rightarrow anomaly. Casini, Huerta, Myers derive EE.

$$\begin{bmatrix} S_A = \frac{1}{4G_{d+1}} \int_{-\infty}^{\infty} \prod_{i=1}^{d-2} \frac{Rdy_i}{r} \int \frac{R\sqrt{dr^2 + dx^2}}{r} = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \rightarrow \\ \frac{l}{2} = \int_0^{r_*} \frac{dr (r/r_*)^{d-1}}{\sqrt{1 - (r/r_*)^{2d-2}}}, \qquad S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2}{\sqrt{1 - (r/r_*)^{2d-2}}}. \end{bmatrix}$$

de Sitter space and dS/CFT

de Sitter space $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2)$. Fascinating for various reasons. dS/CFT: fluctuations about dS encoded in dual Euclidean non-unitary CFT on boundary at future timelike infinity \mathcal{I}^+ (Strominger; Witten).

(Maldacena '02) analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from Eucl $AdS \to Hartle-Hawking$ wavefunction of the universe $\Psi[\varphi] = Z_{CFT}$. Energy-momentum tensor $\langle TT \rangle$ 2-pt fn \to dual CFT central charge $\mathcal{C}_d \sim i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}}$, negative or imaginary. $\mathcal{C}_3 \sim -\frac{R_{dS}^2}{G_{d+1}}$ for dS_4 .

Anninos, Hartman, Strominger: Higher-spin dS_4 dual to Sp(N) ghost CFT_3, \ldots

 $\begin{bmatrix} \text{Bulk EAdS regularity conditions, deep interior} \rightarrow \text{Bunch-Davies initial conditions in deSitter,} \\ \varphi_k(\tau) \sim e^{ik\tau}, \text{ for large } |\tau|. \\ \begin{bmatrix} Z_{CFT} = \Psi[\varphi] \\ \sim e^{iS_{cl}[\varphi]} \end{bmatrix} \text{ (semiclassical).} \\ \begin{bmatrix} \text{Dual CFT: } \langle O_k O_{k'} \rangle \sim \frac{\delta^2 Z}{\delta \varphi_k^0 \varphi_{k'}^0} \end{bmatrix} \\ \begin{bmatrix} \text{Bulk expectation values } \langle f_1 f_2' \rangle \sim \int D\varphi f_1 f_2' |\Psi|^2. \end{bmatrix} \\ \\ \text{Wavefunction } \Psi[\varphi] \text{ not pure phase } \rightarrow \\ \end{bmatrix} \\ \begin{bmatrix} \text{complex saddle points contribute to observables.} \end{bmatrix}$

A speculative generalization of Ryu-Takayanagi to de Sitter space $\rightarrow dS$ (Poincare): $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2)$ Eucl time slice w = const, subregion at future timelike infinity \rightarrow codim-2 extremal surfaces in de Sitter space.

 \rightarrow bulk analog of setting up entanglement entropy in dual CFT: consider boundary Euclidean time slice, construct spatial subsystem, trace over complement.

- Exploring this \rightarrow complex extremal surfaces, negative area, dS_4 . Recall dS/CFT via $Z_{CFT} = \Psi_{dS}$: $dS_4 \rightarrow c < 0$.
- Replica in 2-dim toy ghost CFTs gives negative EE.
- "Ghost-spins", toy models for systems with negative norm states. Reduced density matrix after tracing over some ghost-spins has some negative eigenvalues → Re(EE) < 0.

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow \text{bulk: Eucl time slice } w = const$, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

Expectations based on dual CFT central charge being negative or pure imaginary suggest real surfaces will not work \longrightarrow

• Sign difference from $AdS \Rightarrow$ no <u>real</u> "turning point". $x(\tau)$ hyperboloid.

Join two half-extremal-surfaces with cusp \rightarrow minimize area \rightarrow null surface. Area vanishes.

Real codim-2 surfaces: featureless, no apparent relation to EE.

["outward bending" surfaces \rightarrow null, $S_{dS} = 0$] [surfaces $x(\tau) = const$: B = 0, max area] [Codim-1 surfaces: similar structure.]

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow \text{bulk: Eucl time slice } w = const$, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

Extremize $\rightarrow (\partial_{\tau} x)^2 = \frac{-A^2 \tau^{2d-2}}{1 - A^2 \tau^{2d-2}} \cdot [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}]$

$$\frac{dS_4/CFT_3}{x(\tau)} \approx \frac{dS_4}{CFT_3}: \text{ consider } A^2 > 0. \text{ Near } \tau \to 0: \quad \dot{x}^2 \sim -A^2 \tau^4 \text{ i.e.}$$

$$x(\tau) \sim \pm iA\tau^3 + x(0). \quad \text{This is spatial direction in Eucl CFT} \Rightarrow$$

$$x(\tau) \text{ real-valued } \Rightarrow \tau = iT \qquad \text{[can show width } \Delta x \text{ also real]}$$

 $x(\tau) \to \text{complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$ $(\frac{dx}{dT})^2 = \frac{A^2T^4}{1-A^2T^4}$. Note turning point: $T_* = \frac{1}{\sqrt{A}}$ (where $|\dot{x}|^2 \to \infty$).

Can now smoothly join half-extremal-surfaces at turning point.

Overall sign: match with dS_4/CFT_3 central charge, and conformal anomaly (sphere). Can generalize to dS_{d+1} extremal surfaces.

de Sitter extremal surfaces, dS/CFT

Complex extremal surfaces: compare dS_{d+1}/CFT_d central charges. [Strip width l real (CFT spatial direction) \Rightarrow path $\tau = iT \rightarrow$ extremal surface with turning point] dS_4 : area $S_{dS_4} = -\frac{R_{dS}^2}{4G_4}V_1 \int_{\epsilon}^{l} \frac{dT/T^2}{\sqrt{1-T^4/T_*^4}} \sim -\frac{R_{dS}^2}{G_4}V_1(\frac{1}{\epsilon} - c\frac{1}{l})$ dS_{d+1} , even d: area $S_{dS} = i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}}V_{d-2} \int_{\epsilon}^{T_*} \frac{dT/T^{d-1}}{\sqrt{1+(-1)^{d-1}(T/T_*)^{2d-2}}}$ $\sim i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}}V_{d-2}(\frac{1}{\epsilon^{d-2}} - c_d\frac{1}{l^{d-2}})$

 $= \text{ analytic continuation } r \to -i\tau, R \to -iR_{dS} \text{ from } AdS \text{ Ryu-Takayanagi.}$ $S_{AdS}[R, x(r), r] = \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\frac{dx}{dr})^2}, \qquad (x')^2 = \frac{A^2 r^{2d-2}}{1 - A^2 r^{2d-2}} \to$ $\dot{x}^2 = \frac{-(-1)^{d-1} A^2 \tau^{2d-2}}{1 - (-1)^{d-1} A^2 \tau^{2d-2}}, \qquad S_{dS} = -i \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{d\tau}{\tau^{d-1}} \frac{1}{\sqrt{1 - (-1)^{d-1} A^2 \tau^{2d-2}}}.$

- leading "area law" divergence C_d V_{d-2}/ϵ^{d-2} → central charges C_d = i^{1-d} R^{d-1}/G_{d+1} match dS/CFT using Z_{CFT} = Ψ.
 finite cutoff-independent parts ~ i^{1-d} R^{d-1}/G_{d+1} V_{d-2}/d-2.
- Spherical extremal surfaces: subleading log-div. Anomaly coeff exactly matches Ψ log-coeff.
- dS_4 black brane, CFT_3 at uniform energy density: S_{dS}^{fin} resembles extensive thermal entropy.

dS_4 surfaces, negative EE

 dS_4 [strip]: $S_A \sim -\frac{R_{dS}^2}{G_4} (\frac{V_1}{\epsilon} - \frac{V_1}{l}) < 0 \rightarrow \text{various odd features:}$

- Mutual information $I[A, B] = S[A] + S[B] S[A \cup B]$ negative definite for disjoint strip subregions A, B sufficiently nearby (vanishes beyond critical separation).
- Bigger subregion more ordered than smaller one.

Consider two strip subregions, width l_2 and $l_1 > l_2$ $(l_1, l_2 \ll V_1)$. Then $S(l_1) - S(l_2) = -\frac{R_{dS}^2}{G_4}(\frac{V_1}{l_2} - \frac{V_1}{l_1}) < 0$, *i.e.* $S(l_1) < S(l_2)$ [conventional unitary CFT: $S(l_1) > S(l_2)$, *i.e.* bigger subregion more disordered]

Entropic c-function c(l) increases: degrees of freedom integrated in?
 c(l) = ^{ld-1}/_{Vd-2} dS_A/dl. c(l) ≡ ^{l²}/_{V1} dS_A/dl = - <sup>R²_{dS}/_{G4} < 0 i.e. as l increases,
 S_A(l) decreases. Asymptotically dS₄ spaces, S_A < 0 ⇒ c'(l) > 0, i.e. c(l) increases with l.
</sup>

 $|\tau_*| \sim l$: increasing size $l \rightarrow$ going to larger $|\tau_*|$ (earlier times in past).

dS complex extremal surfaces area resembles EE in dual CFT: from $Z_{CFT} = \Psi$, note CFT is non-unitary (c < 0 for dS_4). Bulk EE uses bulk reduced density matrix (via $\Psi^*\Psi$) $\neq EE_{dS/CFT}$. (Maldacena, Pimentel)

Negative EE, 2-dim ghost CFTs, replica

Negative entanglement, 2-dim CFT

These complex dS extremal surfaces with dS/CFT in mind suggest negative EE in dual CFT₃ for dS_4 (negative central charge). Can EE < 0 at all arise from a (i) CFT or (ii) QM calculation?

2-dim ghost CFTs (c < 0) — toy models for studying EE (*e.g.* replica). Stress tensor $T(w) = (\partial_w z)^2 T(z) + \frac{c}{12} \{z, w\}$ under conformal transfmn

 $w \to z$, with Schwarzian derivative $\{z, w\} = \frac{2\partial_w^3 z \partial_w z - 3(\partial_w^2 z)^2}{2(\partial_w z)^2}$.

 $(w = x + it_E \text{ with } t_E \text{ Euclidean time})$

Subsystem A — single interval (betw x = u, v on slice $t_E = const$). Replica w-space $\rightarrow z$ -plane under conf transfmn $z = (\frac{w-u}{w-v})^{1/n}$. z-plane: $\langle T(z) \rangle_{\mathbb{C}} = 0 \rightarrow z$ -plane maps to SL(2, Z) inv vacuum. $\langle T(w) \rangle_{\mathcal{R}_n} = \frac{c}{12} \{z, w\} = \frac{\langle T(w) \Phi_n(u) \Phi_{-n}(v) \rangle}{\langle \Phi_n(u) \Phi_{-n}(v) \rangle} = \frac{\int D\varphi T(w) e^{-S}}{\int D\varphi e^{-S}} \Rightarrow$ Twist ops at w = u, v. Then $tr \rho_A^n \equiv \frac{Z_n}{Z_1^n}$ transforms as twist operator 2-pt function \rightarrow $S_A = -\lim_{n \to -1} \partial_n tr \rho_A^n \rightarrow \frac{c}{3} \log \frac{l}{\epsilon} \longrightarrow c < 0$ suggests $S_A < 0 \dots$?

• SL(2) vacuum $|0\rangle \neq$ ghost ground state $|\downarrow\rangle$ in general.

$$\begin{split} S &\sim \int d^2 z \ b \bar{\partial} c, \ (h_b, h_c) = (\lambda, 1 - \lambda), \ c = 1 - 3Q^2 < 0, \text{ Background Charge } Q = 1 - 2\lambda \\ b(z) &= \sum \frac{b_m}{z^{m+\lambda}}, \ c(z) = \sum \frac{c_m}{z^{m+1-\lambda}}; \ L_0 = \sum_{n>0} n(b_{-n}c_n + c_{-n}b_n) + \frac{\lambda(1-\lambda)}{2}. \\ \text{SL}(2, \mathbb{Z}) \text{ invariant vacuum } |0\rangle : \quad T(z)|0\rangle &= \sum_m \frac{L_m}{z^{m+2}}|0\rangle = regular \\ \Rightarrow \ L_{m\geq -1}|0\rangle &= 0, \ b_{m\geq 1-\lambda}|0\rangle = 0, \ c_{m\geq \lambda}|0\rangle = 0 \quad \text{whereas} \quad b_0|\downarrow\rangle = 0 \end{split}$$

• $j_0^{\dagger} = -(j_0 + Q)$ Charge asymmetry. U(1) charge symmetry $\delta b = -i\epsilon b, \ \delta c = i\epsilon c \rightarrow \text{ghost current } j(z) = -: bc:$ $j(z) = \sum_m \frac{j_m}{z^{m+1}}, \qquad [L_m, j_n] = -nj_{m+n} + \frac{1}{2}Qm(m+1)\delta_{m,-n}$ $[j_0, O_p] = pO_p, \ j_0|q\rangle = q|q\rangle \Rightarrow p\langle q'|O_p|q\rangle = \langle q'|[j_0, O_p]|q\rangle = (-q' - Q - q)\langle q'|O_p|q\rangle$ Corrn fn $\neq 0$ only if Bgnd Charge cancelled *i.e.* $p = -(q + q' + Q) \Rightarrow \langle -q - Q|q\rangle = 1$.

• $\lambda = 1$: SL(2) vacuum $|0\rangle = |\downarrow\rangle$ ghost ground state $\lambda = 1 \rightarrow (h_b, h_c) = (1, 0), \quad c = -2, \quad Q = -1.$ $b_{m \ge 0}|0\rangle = 0, \quad c_{m \ge 1}|0\rangle = 0, \quad \langle +1|0\rangle = \langle 0|c_0|0\rangle = 1 \quad \leftarrow \text{ zero mode insertion}$ $\langle b(z)c(w)\rangle_0 \equiv \langle 0|c_0 \sum_{m,n} \frac{b_m}{z^{m+1}} \frac{c_n}{w^n}|0\rangle = \langle 0|c_0 \sum_{m=0}^{\infty} \frac{w^m}{z^{m+1}} b_m c_{-m}|0\rangle = \frac{1}{z-w} \langle 0|c_0|0\rangle$ whereas $\langle 0|b(z)c(w)|0\rangle = \frac{1}{z-w} \langle 0|0\rangle = 0.$ Plethora of negative norm states

 $T(w) = (\partial_w z)^2 T(z) + \frac{c}{12} \{z, w\}, \text{ Schwarzian derivative } \{z, w\} = \frac{2\partial_w^3 z \partial_w z - 3(\partial_w^2 z)^2}{2(\partial_w z)^2}$ $(w = x + it_E, \text{Euclidean time } t_E)$

Subsystem A — single interval between x = u and x = v > u on fixed time slice $t_E = const$. Replica w-space $\rightarrow z$ -plane under conformal transformation $z = \left(\frac{w-u}{w-v}\right)^{1/n}$. z-plane: $\langle T(z) \rangle_{\mathbb{C}} = 0 \rightarrow z$ -plane corresponds to SL(2) vacuum. $\langle T(w) \rangle_{\mathcal{R}_n} = \frac{c}{12} \{z, w\} = \frac{c(1 - \frac{1}{n^2})}{24} \frac{(v-u)^2}{(w-u)^2(w-v)^2} = \frac{\langle T(w)\Phi_n(u)\Phi_{-n}(v) \rangle}{\langle \Phi_n(u)\Phi_{-n}(v) \rangle} = \frac{\int D\varphi T(w)e^{-S}}{\int D\varphi e^{-S}}$ Twist operators at $w = u, v \rightarrow tr \rho_A^n \equiv \frac{Z_n}{Z_1^n}$ transforms as twist op 2-pt fn $\rightarrow S_A$.

- Replica argument is useful for the ghost ground state only if it is the SL(2) vacuum: for c = -2, we have $|\downarrow\rangle = |0\rangle$ with $L_0 = 0$.
- Regularity condition ⟨T(z)⟩_C = 0 vacuous unless background charge incorporated, *i.e.* we require ⟨-Q| T(z) |0⟩ = 0 (else trivially zero due to zero modes). c = -2 → λ = 1, Q = -1.
 Replica formulation formally applies now: c < 0 ⇒ S_A < 0.

 $\mathbb{Z}_{N} \text{ bc-orbifold CFTs (Saleur, Kausch, Flohr, ... '90s) confirm negative confidints of twist ops } [l \equiv v - u]$ $tr\rho_{A}^{n} = \prod_{k=1}^{n-1} \langle 0 | \sigma_{k/N}^{-}(v) \sigma_{k/N}^{+}(u) | 0 \rangle = l^{\frac{1}{3}(n-1/n)} \rightarrow S_{A} = -\lim_{n \to 1} \partial_{n} tr\rho_{A}^{n} = -\frac{2}{3} \log \frac{l}{\epsilon}$ dS extremal surfaces and entanglement in ghost systems, K. Narayan, CMI - p.14/38

Consider *n*-sheeted replica boundary conditions (for b_k and likewise c_k)

$$\begin{split} b_k(e^{2\pi i}(w-u)) &= b_{k+1}(w-u), \ b_k(e^{2\pi i}(w-v)) = b_{k-1}(w-v), \ k = 1 \dots n. \\ [(b,c)_k \to (b,c)_{k+1} \text{ under } w - u \to e^{2\pi i}(w-u) \text{ and } (b,c)_k \to (b,c)_{k-1} \text{ around } w = v] \\ \text{Diagonalize:} \quad \tilde{b}_k &= \frac{1}{n} \sum_{l=1}^n e^{2\pi i lk/n} b_k, \quad \tilde{c}_k &= \frac{1}{n} \sum_{l=1}^n e^{-2\pi i lk/n} c_k. \\ \tilde{b}_k(e^{2\pi i}(w-u)) &= e^{-2\pi i k/n} \tilde{b}_k(w-u), \quad \tilde{c}_k(e^{2\pi i}(w-u)) = e^{2\pi i k/n} \tilde{c}_k(w-u). \end{split}$$

 $\mathbb{Z}_{N} \text{ orbifold of } bc\text{-ghost CFTs:} \quad (\text{Saleur, Kausch, Flohr, ... '90s})$ $b_{t}(e^{2\pi i}z) = e^{-2\pi i k/N} b_{t}(z), \quad c_{t}(e^{2\pi i}z) = e^{2\pi i k/N} c_{t}(z) \quad (k = 1, ..., N - 1)$ Using twist fields $\sigma_{k/N} \equiv \sigma_{k/N}^{+}$: $b_{t}(e^{2\pi i}z)\sigma_{k/N}(0) = e^{-2\pi i k/N} b_{t}(z)\sigma_{k/N}(0) \dots$ Anti-twist $\sigma_{k/N}^{-} \equiv \sigma_{1-k/N}^{+}$; Corrn fns are $e.g. \langle bc \rangle \equiv \langle 0 | \sigma_{k/N}^{-} b_{t}(z)c_{t}(w)\sigma_{k/N}^{+} | 0 \rangle$

Regularizing (point-splitting) \rightarrow conformal dimn and U(1) charge $\langle T(z) \rangle_{k/N} = \lim_{z \to w} \left(\langle -: b_t(z) \partial c_t(w) : \rangle + \frac{1}{(z-w)^2} \right) = -\frac{1}{2} \frac{k}{N} \left(1 - \frac{k}{N} \right) \frac{1}{z^2} \equiv \frac{h_{\sigma_{k/N}}}{z^2}$ $\langle j(z) \rangle_{k/N} = \lim_{z \to w} \left(\langle -: b^t(z) c^t(w) : \rangle + \frac{1}{z-w} \right) = \frac{k/N}{z}$

$$b_t(z) = \sum_{m \in \mathbb{Z}} \frac{b_{m+k/N}}{z^{m+1+k/N}}, \ c_t(z) = \sum_m \frac{c_{m-k/N}}{z^{m-k/N}}; \quad \{b_{m+k/N}, \ c_{n-k/N}\} = \delta_{m+n,0}$$
$$\langle 0|b_t(z)\partial c_t(w)|0\rangle_{k/N} = \frac{1}{z} \left(\frac{z}{w}\right)^{1-k/N} \frac{\frac{k}{N}z + (1-\frac{k}{N})w}{(z-w)^2}$$

dS extremal surfaces and entanglement in ghost systems, K. Narayan, CMI – p.15/38

Twist: $\sigma_{k/N}^+$ has dim $-\frac{1}{2}\frac{k}{N}(1-\frac{k}{N})$ $(h_{\sigma_{k/N}} < 0)$; U(1) charge is $\frac{k}{N}$

Anti-twist: $\sigma_{k/N}^{-} \equiv \sigma_{1-k/N}^{+}$ has dim $-\frac{1}{2}\frac{k}{N}(1-\frac{k}{N})$; U(1) charge is $1-\frac{k}{N}$

Nonvanishing twist field correlation functions also require total U(1)charge to cancel background charge when calculated in untwisted SL(2) vacuum: $\langle \sigma_{\lambda_1}^+ \sigma_{\lambda_2}^+ \dots \rangle \equiv \langle 0 | \sigma_{\lambda_1}^+ \sigma_{1-\lambda_2}^- \dots | 0 \rangle \neq 0 \implies \sum_i \lambda_i = 1$

Nonvanishing 2-point function has the form $\langle 0|\sigma_{\lambda}^{+}\sigma_{\lambda}^{-}|0\rangle \equiv \langle 0|\sigma_{\lambda}^{+}\sigma_{1-\lambda}^{+}|0\rangle \longrightarrow$ automatically contains an unpaired *c*-field cancelling background charge Q = -1.

 $\Rightarrow tr\rho_A^n = \prod_{k=1}^{n-1} \langle 0|\sigma_{k/N}^-(v)\sigma_{k/N}^+(u)|0\rangle = (v-u)^{-4\sum_{k=1}^{n-1}h_{\sigma_{k/N}}} = (v-u)^{\frac{1}{3}(n-1/n)}$

 \rightarrow Entanglement entropy $S_A = -\lim_{n \to 1} \partial_n tr \rho_A^n = -\frac{2}{3} \log \frac{l}{\epsilon}$ $[l \equiv v - u]$

Bosonized: $j(z) = i\partial\phi$ and $b(z) = e^{-\phi}$, $c(z) = e^{\phi}$, in untwisted c = -2 theory. In sector twisted by $\lambda = \frac{k}{N}$, twist fields are $\sigma_{\lambda} = e^{i\lambda\phi} = \sigma_{\lambda}^+$

Neighbourhood of each singularity does not contain zero modes (twisted sector): however $n \to 1$ limit is smooth requiring total U(1) charge to cancel background charge (for finite interval). $\sigma_{k/N}$ dim negative means long distance divergence in $\langle \sigma \sigma \rangle$ corrn fn \to suggests replica theory has some instability (vanishes in $n \to 1$ limit).

Logarithmic ghost CFTs, c = -2

bc-ghost CFTs are like the nonlogarithmic subsector of more general logarithmic CFTs. (Gurarie, Flohr, ..., '90s) L_0 not diagonalizable — generic conformal fields have logarithmic

partners (comprising ghost zero mode composites).

Example: anticommuting scalars $\chi, \bar{\chi} \to \text{complex ghost } S = \int d^2 z \partial \chi \bar{\partial} \bar{\chi} \text{ CFT}, c = -2$

(motivated by Anninos, Hartman, Strominger, higher-spin dS_4/CFT_3 , Sp(N) symplectic fermions)

Zero modes in $\chi \to \text{log-partner of identity op } (\xi_0 \overline{\xi_0})$. With single insertion: derivative ops $e.g. \partial \chi$ have no logs in corrn fns. Also no logarithms in twist op 2-pt fn. So single interval entanglement entropy has no subleading logarithms.

Multiple intervals: logs arise in twist op corrn fns.

Mutual information?

"Ghost-spins"

"Ghost-spins"

To abstract away from the various technical issues of ghost CFTs and subtleties of the replica formulation there: cook up simple quantum mechanical toy model of ghost-like systems with negative norm states \rightarrow reduced density matrix (RDM) after partial trace \rightarrow EE.

Recall ordinary spin: $\langle \uparrow | \uparrow \rangle = \langle \downarrow | \downarrow \rangle = 1$, $\langle \uparrow | \downarrow \rangle = \langle \downarrow | \uparrow \rangle = 0$ $|\psi\rangle = c_1 |\uparrow\rangle + c_2 |\downarrow\rangle \rightarrow \langle \psi |\psi\rangle = |c_1|^2 + |c_2|^2 > 0$

"Ghost-spin" \rightarrow 2-state spin variable with indefinite norm.

 $\langle \uparrow | \uparrow \rangle = \langle \downarrow | \downarrow \rangle = 0, \qquad \langle \uparrow | \downarrow \rangle = \langle \downarrow | \uparrow \rangle = 1$

 $\begin{aligned} |\psi\rangle &= c_1 |\uparrow\rangle + c_2 |\downarrow\rangle \quad \rightarrow \quad \langle \psi |\psi\rangle = c_1 c_2^* + c_2 c_1^* \neq 0. \quad e.g. |\uparrow\rangle - |\downarrow\rangle \text{ has norm } -2. \\ |\pm\rangle &\equiv \frac{1}{\sqrt{2}} \left(|\uparrow\rangle \pm |\downarrow\rangle\right); \quad \langle +|+\rangle = \gamma_{++} = 1, \ \langle -|-\rangle = \gamma_{--} = -1, \ \langle +|-\rangle = \langle -|+\rangle = 0 \end{aligned}$

Two ghost-spins: $|\psi\rangle = \sum \psi^{ij} |ij\rangle$, adjoint: $\langle \psi| = \sum \langle ij|\psi^{ij*},$ $\langle \psi|\psi\rangle = \langle k|i\rangle \langle l|j\rangle \psi^{ij} \psi^{kl*} \equiv \gamma_{ik}\gamma_{jl}\psi^{ij}\psi^{kl*} = \gamma_{ii}\gamma_{jj}|\psi^{ij}|^2.$

 $ho = |\psi\rangle\langle\psi| \rightarrow \text{trace over one ghost-spin} \rightarrow \text{reduced density matrix}$ for remaining ghost-spin $\rightarrow \text{ von Neumann entropy.}$

Even number of ghost-spins \rightarrow calculations, interpretation sensible.

Two ghost-spins

 $\begin{aligned} |\psi\rangle &= \sum \psi^{ij} |ij\rangle = \psi^{++} |++\rangle + \psi^{+-} |+-\rangle + \psi^{-+} |-+\rangle + \psi^{--} |--\rangle ,\\ \langle\psi|\psi\rangle &= \gamma_{ik}\gamma_{jl}\psi^{ij}\psi^{kl*} = |\psi^{++}|^2 + |\psi^{--}|^2 - |\psi^{+-}|^2 - |\psi^{-+}|^2 = \pm 1 \quad [\gamma_{\pm\pm} = \pm 1] \end{aligned}$

Trace over one ghost-spin $\rightarrow \rho_A$ for remaining ghost-spin \rightarrow von Neumann entropy S_A .

RDM:
$$\rho_A = tr_B \rho \equiv (\rho_A)^{ik} |i\rangle \langle k|$$
, $(\rho_A)^{ik} = \gamma_{jl} \psi^{ij} \psi^{kl^*} = \gamma_{jj} \psi^{ij} \psi^{kj^*}$
 $(\rho_A)^{++} = |\psi^{++}|^2 - |\psi^{+-}|^2$, $(\rho_A)^{+-} = \psi^{++} \psi^{-+*} - \psi^{+-} \psi^{--*}$,
 $(\rho_A)^{-+} = \psi^{-+} \psi^{++*} - \psi^{--} \psi^{+-*}$, $(\rho_A)^{--} = |\psi^{-+}|^2 - |\psi^{--}|^2$.
EE: $S_A = -\gamma_{ij} (\rho_A \log \rho_A)^{ij} = -\gamma_{++} (\rho_A \log \rho_A)^{++} - \gamma_{--} (\rho_A \log \rho_A)^{--}$

Define $\log \rho_A$ using expansion, using mixed-index RDM $(\rho_A)_i{}^k = \gamma_{ij} (\rho_A)^{jk}$.

Simple subfamily, diagonal
$$\rho_A$$
: $\rho_A^{+-} = 0 \rightarrow \psi^{-+*} = \psi^{+-}\psi^{--*}/\psi^{++} \rightarrow (|\psi^{++}|^2 - |\psi^{+-}|^2)(1 + \frac{|\psi^{--}|^2}{|\psi^{++}|^2}) = \pm 1, \quad (\rho_A)^{ik}|i\rangle\langle k| = \pm x|+\rangle\langle +|\mp (1-x)|-\rangle\langle -|.$
 $(\rho_A)_+^+ = \pm x, \quad (\rho_A)_-^- = \pm (1-x), \quad x = \frac{|\psi^{++}|^2}{|\psi^{++}|^2 + |\psi^{--}|^2}, \quad (0 < x < 1)$
 $(\log \rho_A)_+^+ = \log(\pm x)$ etc, and $S_A = -(\rho_A)_+^+(\log \rho_A)_+^+ - (\rho_A)_-^-(\log \rho_A)_-^- \rightarrow \langle \psi|\psi\rangle > 0: \quad S_A = -x \log x - (1-x) \log(1-x) > 0 \qquad +ve \text{ norm } \Rightarrow +ve \text{ EE.}$
 $\langle \psi|\psi\rangle < 0: \quad S_A = x \log(-x) + (1-x) \log(-(1-x)) = x \log x + (1-x) \log(1-x) + i\pi$
 $-ve \text{ norm } \Rightarrow \text{ some } \rho^A \text{ eigenvalues } -ve \Rightarrow -ve \text{ Re}(\text{EE}), \text{ const Im}(\text{EE})$

Spins and ghost-spins, disentangled

Spin metric +ve definite: $g_{ij} = \delta_{ij}$; Ghost-spins: $\gamma_{++} = 1$, $\gamma_{--} = -1$.

Observable of spin variables alone: $\langle \psi | O_s | \psi \rangle = tr_s(O_s \rho^s) \longrightarrow \rho^s = tr_{gs} \rho$

Disentangled spins and ghost-spins \Rightarrow product states \longrightarrow $|\psi\rangle = |\psi_s\rangle |\psi_{gs}\rangle, \quad \langle \psi |\psi\rangle = \langle \psi_s |\psi_s\rangle \langle \psi_{gs} |\psi_{gs}\rangle \langle \psi_s |\psi_s\rangle = g_{i_1j_1} \dots g_{i_nj_n} (\psi_s)^{i_1i_2} \dots (\psi_s)^{j_1j_2} \dots * > 0,$

 $\langle \psi_{gs} | \psi_{gs} \rangle = \gamma_{i_1 j_1} \dots \gamma_{i_n j_n} (\psi_{gs})^{i_1 i_2 \dots} (\psi_{gs})^{j_1 j_2 \dots *}$

RDM after tracing over all ghost-spins: $\rho_A^s = tr_{gs} (|\psi_s\rangle |\psi_{gs}\rangle \langle \psi_s | \langle \psi_{gs} |)$

 $(\rho_A^s)^{i_1...,k_1...} = \langle \psi_{gs} | \psi_{gs} \rangle \; (\psi_s)^{i_1...} (\psi_s)^{k_1...*}$

Normalize positive/negative norm states \rightarrow norm ± 1 respectively: $\langle \psi_{gs} | \psi_{gs} \rangle \geq 0 \Rightarrow \langle \psi | \psi \rangle = \langle \psi_s | \psi_s \rangle \langle \psi_{gs} | \psi_{gs} \rangle = \pm 1 \quad [\langle \psi_s | \psi_s \rangle > 0]$ $(\rho_A^s)^{i_1...,k_1...} = \pm \frac{1}{\langle \psi_s | \psi_s \rangle} (\psi_s)^{i_1...} (\psi_s)^{k_1...*} \Rightarrow tr \rho_A^s = \pm 1 \quad (\langle \psi | \psi \rangle \geq 0)$

+ve norm: ρ_A^s +ve definite, eigenvalues $0 < \lambda_i < 1$ with $\sum_i \lambda_i = 1 \Rightarrow$ $S_A = -\operatorname{tr}_s \rho_A^s \log \rho_A^s = -\sum_i \lambda_i \log \lambda_i > 0$ -ve norm: ρ_A^s negative definite, eigenvalues $-\lambda_i \Rightarrow$

 $S_A = -\operatorname{tr}_s \rho_A^s \log \rho_A^s = -\sum_i (-\lambda_i) \log(-\lambda_i) = \sum_i \lambda_i \log \lambda_i + i\pi$

Entangled ghost-spins & spins

Trace over ghost-spins \rightarrow RDM for spins \rightarrow in general, new EE patterns.

• One spin, two ghost-spins $\psi^{i,\alpha\beta}|i\rangle|\alpha\beta\rangle$: $(\rho_A)^{ik} = \gamma_{\alpha\sigma}\gamma_{\beta\rho}\psi^{i,\alpha\beta}(\psi^*)^{k,\sigma\rho}$

 $|\psi\rangle = \psi^{+,++}|+\rangle|++\rangle + \psi^{+,--}|+\rangle|--\rangle + \psi^{-,++}|-\rangle|++\rangle + \psi^{-,--}|-\rangle|--\rangle$

Correlated ghost-spins: $+ve \text{ norm} \Rightarrow +ve \text{ EE}$. Subspace always exists for even ghost-spins.

Also for Hilbert space component continuously connected to this subsector, but not in general. Physical requirement: +ve norm $\Rightarrow +ve$ EE \rightarrow Even number of ghost-spins: sensible.

- One spin, one ghost-spin $\psi^{i,\alpha}|i\rangle|\alpha\rangle$: $(\rho_A)^{ik} = \gamma_{\alpha\beta}\psi^{i,\alpha}(\psi^*)^{k,\beta}$ Simple entangled state: $|\psi\rangle = \psi^{+,+}|+\rangle|+\rangle + \psi^{-,-}|-\rangle|-\rangle \Rightarrow$ $(\rho_A)^{++} = |\psi^{+,+}|^2$, $(\rho_A)^{--} = -|\psi^{-,-}|^2$ $|\psi^{+,+}|^2 - |\psi^{-,-}|^2 = \pm 1$, $(\log \rho_A)^+_+ = \log(|\psi^{+,+}|^2)$, $(\log \rho_A)^-_- = \log(-|\psi^{-,-}|^2)$ EE: $S_A = -|\psi^{+,+}|^2 \log(|\psi^{+,+}|^2) + |\psi^{--}|^2 \log(|\psi^{-,-}|^2) + |\psi^{-,-}|^2(i\pi)$ $\longrightarrow +ve$ norm does not give +ve EE.
- Multiple ghost-spins: n odd as above $\rightarrow +ve$ norm does not give +ve EE. $|\psi\rangle = \psi^{++\cdots}|++\cdots\rangle + \psi^{--\cdots}|--\cdots\rangle, \quad \langle\psi|\psi\rangle = |\psi^{++\cdots}|^2 + (-1)^n|\psi^{--\cdots}|^2$ $(\rho_A)^+_+ = (\rho_A)^{++} = |\psi^{++\cdots}|^2, \quad (\rho_A)^-_- = -(\rho_A)^{--} = (-1)^n|\psi^{--\cdots}|^2$

Conclusions, questions

- Complex codim-2 extremal surfaces in de Sitter space (Poincare)

 → analytic continuation from Ryu-Takayanagi in AdS.

 Resembles EE for dual CFT via dS/CFT with Z_{CFT} = Ψ_{dS}.

 dS₄: negative area → EE < 0 ← negative central charge.
- Replica in some 2-dim c = -2 ghost CFTs gives EE < 0.
 Ghost-spins: toy QM models, negative norm states, Re(EE) < 0.
 Entangled ghost-spins & spins. Subsectors: +ve norm → +ve EE.

- Bulk EE (via $\Psi^*\Psi$) vs EE_{dS/CFT} above? EE as probe of dS/CFT?
- Lattice discretization of ghost-CFT ...
 Ghost-spin chains, ghost-spin glasses?
 Toy models for Sp(N) and dS₄: hints at emergence of time?
- Conceptual issues with Bell pairs of spins and ghost-spins etc ...?

Details

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad (\partial_{\tau}x)^2 = \frac{-A^2\tau^{2d-2}}{1 - A^2\tau^{2d-2}} \,. \qquad [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}]$$

$$\frac{dS_4/CFT_3}{x(\tau)} \approx \frac{dS_4}{CFT_3}: \text{ consider } A^2 > 0. \text{ Near } \tau \to 0: \quad \dot{x}^2 \sim -A^2 \tau^4 \text{ i.e.}$$

$$x(\tau) \sim \pm iA\tau^3 + x(0). \quad \text{This is spatial direction in Eucl CFT} \Rightarrow$$

$$x(\tau) \text{ real-valued } \Rightarrow \tau = iT \qquad \text{[can show width } \Delta x \text{ also real]}$$

 $x(\tau) \to \text{complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$ $(\frac{dx}{dT})^2 = \frac{A^2T^4}{1-A^2T^4}$. Note turning point: $T_* = \frac{1}{\sqrt{A}}$ (where $|\dot{x}|^2 \to \infty$).

Can now smoothly join half-extremal-surfaces at turning point.
$$[\tau_{UV} = i\epsilon, \ \tau_* \sim il]$$

$$\frac{\Delta x}{2} = \frac{l}{2} = \int_0^{\tau_*} d\tau \frac{iA\tau^2}{\sqrt{1 - A^2\tau^4}} = \int_0^{T_*} \frac{(T^2/T_*^2) dT}{\sqrt{1 - (T^4/T_*^4)}} \sim T_*$$

$$S_{dS_4} = -i\frac{R_{dS}^2}{4G_4}V_1 \int_{\tau_{UV}}^{\tau_*} \frac{d\tau}{\tau^2} \frac{1}{\sqrt{1 - \tau^4/\tau_*^4}} = -\frac{R_{dS}^2}{4G_4}V_1 \int_{\epsilon}^{l} \frac{dT/T^2}{\sqrt{1 - T^4/T_*^4}} \sim -\frac{R_{dS}^2}{G_4}V_1(\frac{1}{\epsilon} - c\frac{1}{l})$$
Or could give a protect with dG_{e_1}/GET control above and conformed ensurely (or here)

Overall sign \rightarrow match with dS_4/CFT_3 central charge, and conformal anomaly (sphere).

dS extremal surfaces and entanglement in ghost systems, K. Narayan, CMI – p.25/38

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad \left(\partial_{\tau}x\right)^2 = \frac{-A^2\tau^{2d-2}}{1 - A^2\tau^{2d-2}} \,. \qquad [A^2 < 0 \text{ is the earlier real solution}]$$

 $\frac{dS_{d+1}/CFT_d}{x(\tau) \sim \pm \sqrt{-A^2} \tau^d + x(0)}.$ This is spatial direction in Eucl CFT $\Rightarrow x(\tau) \text{ real-valued} \Rightarrow A^2 < 0, \ \tau = iT \qquad \text{[can show width } \Delta x \text{ also real]}$ $x(\tau) \rightarrow \text{ complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$

 $(\frac{dx}{dT})^2 = \frac{A^2 T^{2d-2}}{1+(-1)^{d-1} A^2 T^{2d-2}}$. Note turning point: $T_*^{2d-2} A^2 = 1$.

$$S_{dS} = -i \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int_{\tau_{UV}}^{\tau_*} \frac{d\tau}{\tau^{d-1}} \frac{2}{\sqrt{1+A^2\tau^{2d-2}}}$$

= $i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}} V_{d-2} \int_{\epsilon}^{T_*} \frac{dT/T^{d-1}}{\sqrt{1+(-1)^{d-1}A^2T^{2d-2}}} \sim i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}} V_{d-2} \left(\frac{1}{\epsilon^{d-2}} - c_d \frac{1}{l^{d-2}}\right)$

Spherical extremal surfaces, $dS/CFT_{(KN)}$ $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dr^2 + r^2 d\Omega_{d-2}^2) \rightarrow w = const$, sphere subregion. $0 \le r \le l$ $S_{dS} = \frac{R_{dS}^{d-1}\Omega_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} r^{d-2} \sqrt{(\frac{dr}{d\tau})^2 - 1}$, extremize: $r(\tau) = \sqrt{l^2 + \tau^2}$, $\dot{r} = \frac{\tau}{\sqrt{l^2 + \tau^2}}$

Real τ : outward-bending, $r(\tau) \ge l$. Timelike: $\dot{r} \le 1$. No "end" at finite τ . $\rightarrow \epsilon < |\tau| < \infty \rightarrow S_{dS}$ real, no finite cutoff-indep parts.

 $\tau = iT: \text{ now } 0 \leq r(\tau) < l \text{ and } \Delta r = l. \text{ Turning point } \tau_* = il.$ $S_{dS} = \frac{R_{dS}^{d-1}\Omega_{d-2}}{4G_{d+1}} \int_{i\epsilon}^{\tau_*} \frac{d\tau}{\tau^{d-1}} (-il)(l^2 + \tau^2)^{(d-3)/2} \rightarrow S_{dS_4} = -\frac{\pi R_{dS}^2}{2G_4}(\frac{l}{\epsilon} - 1)$ $\underline{d \text{ even: } \log \frac{l}{\epsilon} \text{ divergence. } \operatorname{Coeff} \rightarrow -i\frac{R_{dS}}{2G_3} [dS_3]; \quad -i\frac{\pi R_{dS}^3}{2G_5} [dS_5], \dots$ Free energy of CFT_d on sphere: log-div, related to conformal anomaly. $Casini, \text{Huerta, Myers: } -F_{CFT} = \log Z_{CFT} = a \log \epsilon + \dots, \text{ integ. trace anomaly } a = \int \langle T^k_k \rangle.$ $Z_{CFT} = e^{-F} = \Psi \sim e^{iS_{cl}} \text{ for auxiliary global } dS. \quad T_{ij} \sim \frac{2}{\sqrt{h}} \frac{\delta(-F_{CFT})}{\delta h^{ij}} \sim i\frac{2}{\sqrt{h}} \frac{\delta S}{\delta h^{ij}}$ $\rightarrow \text{ log-div coeff matches } \rightarrow \text{ equivalent to analytic continuation from } AdS.$

$$\begin{bmatrix} S_{CFT}^{EE} = -\lim_{n \to 1} \partial_n \frac{Z_n}{(Z_1)^n}; \text{ scale change } l \frac{\partial}{\partial l} S_{CFT}^{EE} \sim \int \langle T_\mu^\mu \rangle; \text{ here } S_{CFT}^{EE} = S_{dS} \end{bmatrix}$$

$$S_{cl} = \frac{2d \Omega_d R_{dS}^{d-1}}{16\pi G_{d+1}} \int \frac{dt}{R_{dS}} (\cosh \frac{t}{R_{dS}})^d \rightarrow \text{log-div } [ds^2 = -dt^2 + R_{dS}^2 (\cosh \frac{t}{R_{dS}})^2 d\Omega_d^2]$$

dS extremal surfaces and entanglement in ghost systems, K. Narayan, CMI – p.27/38

 $S = \frac{1}{2\pi} \int d^2 z \ b\bar{\partial}c, \quad (h_b, h_c) = (\lambda, 1 - \lambda) \longrightarrow b(z)c(w) \sim \frac{1}{z - w}$ $T(z) =: (\partial b)c : -\lambda\partial(: bc :) = \frac{1}{2} (: (\partial b)c : -: b\partial c :) + \frac{1}{2}Q\partial(: bc :) \longrightarrow$ Central charge $c = 1 - 3(2\lambda - 1)^2 = 1 - 3Q^2$;
Background charge $Q = 1 - 2\lambda$. $b(z) = \sum_{m \in \mathbb{Z}} \frac{b_m}{z^{m+\lambda}}, \quad c(z) = \sum_{m \in \mathbb{Z}} \frac{c_m}{z^{m+1-\lambda}}.$ $\{b_m, c_n\} = \delta_{m+n,0}, \quad \{b_m, b_n\} = 0, \quad \{c_m, c_n\} = 0 \text{ and Virasoro algebra with}$ $L_m = \sum_{n=-\infty}^{\infty} (m\lambda - n)b_n c_{m-n} \quad [m \neq 0]; \quad L_0 = \sum_{n>0} n(b_{-n}c_n + c_{-n}b_n) + \frac{\lambda(1-\lambda)}{2}.$

 $b_0 |\downarrow\rangle = 0, \quad c_0 |\downarrow\rangle = |\uparrow\rangle, \qquad b_0 |\uparrow\rangle = |\downarrow\rangle, \quad c_0 |\uparrow\rangle = 0.$

Conventional to take $|\downarrow\rangle$ as ghost ground state (b_0 is annihilation op).

SL(2,Z) invariant vacuum $|0\rangle$: $T(z)|0\rangle = \sum_{m} \frac{L_m}{z^{m+2}}|0\rangle = regular$ $\Rightarrow L_m|0\rangle = 0, \quad m \ge -1, \quad b_{m\ge 1-\lambda}|0\rangle = 0, \quad c_{m\ge \lambda}|0\rangle = 0.$ In general, SL(2) vacuum $|0\rangle \neq$ ghost ground state $|\downarrow\rangle$. $(L_0|\downarrow\rangle = \frac{\lambda(1-\lambda)}{2}|\downarrow\rangle)$ $|0\rangle = b_{-1}b_{-2}\dots b_{1-\lambda}|\downarrow\rangle = \prod_{1-\lambda\le m<0} b_m|\downarrow\rangle \qquad [\lambda \ne 1]$

U(1) charge symmetry $\delta b = -i\epsilon b$, $\delta c = i\epsilon c \rightarrow \text{ghost current } j(z) = -:bc:$

$$\begin{split} j(z)b(w) &\sim -\frac{1}{z-w}b(w), \ j(z)c(w) \sim \frac{1}{z-w}c(w) \quad [(\partial_z w)j'(w) = j(z) - \frac{Q}{2}\frac{\partial_z^2 w}{\partial_z w}] \\ j(z)j(w) &\sim \frac{1}{(z-w)^2}, \ T(z)j(w) \sim \frac{Q}{(z-w)^3} + \frac{1}{(z-w)^2}j(w) + \frac{1}{z-w}\partial j(w) \\ N_g &= \int_0^{2\pi} \frac{dw}{2\pi i} j^{cyl}(w) = \sum_{n=1}^{\infty} (c_{-n}b_n - b_{-n}c_n) + c_0b_0 - \frac{1}{2}. \ [w = \log z] \\ N_g^z &= \oint \frac{dz}{2\pi i}j(z) = N_g - \frac{Q}{2}; \ [N_g, b_m] = -b_m, \ [N_g, c_m] = c_m \\ N_g|\downarrow\rangle &= -\frac{1}{2}|\downarrow\rangle, \ N_g|\uparrow\rangle = \frac{1}{2}|\uparrow\rangle \ \Rightarrow \ N_g^z|\downarrow\rangle = -\frac{Q+1}{2}|\downarrow\rangle = (\lambda-1)|\downarrow\rangle. \\ |0\rangle &= \prod_{1-\lambda \leq m < 0} b_m|\downarrow\rangle \quad [\lambda \neq 1] \qquad N_g|0\rangle = \left(-\frac{1}{2} - (\lambda-1)\right)|0\rangle = \frac{Q}{2}|0\rangle; \ N_g^z|0\rangle = 0. \end{split}$$

$$j(z) = \sum_{m} \frac{j_m}{z^{m+1}}, \quad j_n^{\dagger} = -j_n \text{ for } n \neq 0 \text{ (with } j_n = -\sum_{m} b_m c_{n-m}) \longrightarrow$$
$$[L_m, j_n] = -nj_{m+n} + \frac{1}{2}Qm(m+1)\delta_{m,-n}$$
$$[L_1, j_{-1}] = j_0 + Q, \quad [L_1, j_{-1}]^{\dagger} = [L_{-1}, j_1] = -j_0 \implies$$
$$j_0^{\dagger} = -(j_0 + Q) \qquad \text{Charge asymmetry.}$$

With $[j_0, O_p] = pO_p$, and $j_0|q\rangle = q|q\rangle \Rightarrow$ $p\langle q'|O_p|q\rangle = \langle q'|[j_0, O_p]|q\rangle = (-q' - Q - q)\langle q'|O_p|q\rangle$ *i.e.* correlation function non-vanishing only if p = -(q + q' + Q). For p = 0, this gives $q' = -q - Q \Rightarrow \langle -q - Q|q\rangle = 1$.

 $\lambda = 1: \quad (h_b, h_c) = (1, 0), \quad c = -2, \quad Q = -1. \quad b(z) = \sum_m \frac{b_m}{z^{m+1}}, \quad c(z) = \sum_m \frac{c_m}{z^m}.$ $b_{m\geq 0}|0\rangle = 0, \quad c_{m\geq 1}|0\rangle = 0 \Rightarrow SL(2) \text{ vacuum } |0\rangle = |\downarrow\rangle \text{ ghost ground state}$ $L_{m\neq 0} = \sum_{n=-\infty}^{\infty} (m-n)b_n c_{m-n}; \quad L_0 = \sum_{n>0} n(b_{-n}c_n + c_{-n}b_n), \quad [L_0|\downarrow\rangle = 0]$ $N_g^z|\downarrow\rangle = N_g^z|0\rangle = 0, \quad c_0|0\rangle = |\uparrow\rangle \quad \longrightarrow \quad L_0 = 0, \quad N_g^z c_0|0\rangle = c_0|0\rangle.$ Smallest nonvanishing corm fn $\langle 0|c(z)|0\rangle = \langle 0|\sum_{m=0}^{\infty} \frac{c_m}{z^m}|0\rangle = \langle 0|c_0|0\rangle \equiv \langle +1|0\rangle;$ Adjoint of $|0\rangle: \quad \langle +1| = \langle 0|c_0, i.e. \quad \langle 0|^{\dagger} = \langle 0|c_0.$ $\langle b(z)c(w)\rangle_0 \equiv \langle 0|c_0. \sum_{m=0}^{\infty} \frac{b_m}{m+1} \frac{c_n}{z^m}|0\rangle = \langle 0|c_0. \sum_{m=0}^{\infty} \frac{w^m}{m+1} b_m c_{-m}|0\rangle$

$$z = \frac{1}{z} \frac{1}{1 - \frac{w}{z}} \langle 0|c_0|0\rangle = \frac{1}{z - w} \quad \text{whereas} \quad \langle 0|b(z)c(w)|0\rangle = \frac{1}{z - w} \langle 0|0\rangle = 0$$

Plethora of negative norm states, with L_0 non-negative (also zero norm states): $e.g.(b_{-1} - c_{-1})|0\rangle$ with norm

 $\langle 0|c_0(b_1 - c_1)(b_{-1} - c_{-1})|0\rangle = -\langle 0|c_0(\{b_1, c_{-1}\} + \{c_1, b_{-1}\})|0\rangle = -2\langle 0|c_0|0\rangle = -2$

Twist operator correlation functions in detail? Negative conf dims? Zero modes as $n \rightarrow 1$?

Consider *n*-sheeted replica boundary conditions $b_k(e^{2\pi i}(w-u)) = b_{k+1}(w-u), c_k(e^{2\pi i}(w-u)) = c_{k+1}(w-u),$ $b_k(e^{2\pi i}(w-v)) = b_{k-1}(w-v), c_k(e^{2\pi i}(w-v)) = c_{k-1}(w-v), k = 1, ..., n.$ $[(b,c)_k \to (b,c)_{k+1} \text{ under } w - u \to e^{2\pi i}(w-u) \text{ and } (b,c)_k \to (b,c)_{k-1} \text{ around } w = v]$ Diagonalize: $\tilde{b}_k = \frac{1}{n} \sum_{l=1}^n e^{2\pi i lk/n} b_k, \quad \tilde{c}_k = \frac{1}{n} \sum_{l=1}^n e^{-2\pi i lk/n} c_k.$ Twist around $w = u \to$ $\tilde{b}_k(e^{2\pi i}(w-u)) = e^{-2\pi i k/n} \tilde{b}_k(w-u), \quad \tilde{c}_k(e^{2\pi i}(w-u)) = e^{2\pi i k/n} \tilde{c}_k(w-u).$ (likewise anti-twist around $w = v) \longrightarrow$ standard orbifold boundary conditions.

 $Z_{N} \text{ orbifold of } bc\text{-ghost:}$ $b_{t}(e^{2\pi i}z) = e^{-2\pi i k/N} b_{t}(z), \ c_{t}(e^{2\pi i}z) = e^{2\pi i k/N} c_{t}(z) \quad (k = 1, ..., N - 1)$ $b_{t}(z) = \sum_{m \in \mathbb{Z}} \frac{b_{m+k/N}}{z^{m+1+k/N}}, \ c_{t}(z) = \sum_{m \in \mathbb{Z}} \frac{c_{m-k/N}}{z^{m-k/N}}; \ \{b_{m+k/N}, \ c_{n-k/N}\} = \delta_{m+n,0}$ Twist ground state $b_{m+k/N} |0\rangle_{k/N} = 0, \ c_{m-k/N} |0\rangle_{k/N} = 0, \ m > 0$

Twisted sector: no zero modes. Untwisted: zero modes exist.

Twist operator correlation functions in detail? Negative conf dims? Zero modes as $n \rightarrow 1$?

$$\mathbb{Z}_{N} \text{ orbifold:} \quad b_{t}(e^{2\pi i}z) = e^{-2\pi ik/N} b_{t}(z), \quad c_{t}(e^{2\pi i}z) = e^{2\pi ik/N} c_{t}(z) \quad (k = 1...N-1)$$

$$\langle b_{t}(z)c_{t}(w)\rangle_{k/N} = \sum_{m,n} \frac{\langle 0|b_{m+k/N} c_{n-k/N}|0\rangle_{k/N}}{z^{m+1+k/N}w^{n-k/N}} = \sum_{m=0}^{\infty} \frac{1}{z} \frac{w^{k/N}}{z^{k/N}} \left(\frac{w}{z}\right)^{m} = \left(\frac{z}{w}\right)^{-k/N} \frac{1}{z-w}$$

$$\langle b_{t}(z)\partial c_{t}(w)\rangle_{k/N} = \sum_{m,n} \frac{\langle b_{m+k/N} c_{n-k/N}\rangle}{z^{m+1+k/N}w^{n+1-k/N}} = \frac{1}{z} \left(\frac{z}{w}\right)^{1-k/N} \frac{\frac{k}{N}z + (1-\frac{k}{N})w}{(z-w)^{2}}$$

This can be recast in terms of twist fields
$$\sigma_{k/N}$$
.
 $b_t(e^{2\pi i}z)\sigma_{k/N}(0) = e^{-2\pi i k/N}b_t(z)\sigma_{k/N}(0),$
 $c_t(e^{2\pi i}z)\sigma_{k/N}(0) = e^{2\pi i k/N}c_t(z)\sigma_{k/N}(0) \quad (k = 1, ..., N - 1) \text{ equiv to OPEs}$
 $b_t(z)\sigma_{k/N}(0) \sim z^{-k/N}\tau_{k/N}, \quad \partial c_t(z)\sigma_{k/N}(0) \sim z^{-1+k/N}\tau'_{k/N}.$

Twist field $\sigma_{k/N} \equiv \sigma_{k/N}^+ \longrightarrow$ anti-twist field $\sigma_{k/N}^- \equiv \sigma_{1-k/N}^+$ (OPEs have $\frac{k}{N} \to 1 - \frac{k}{N}$) \to nonvanishing corrn fns. Then correlation functions are *e.g.* $\langle bc \rangle \equiv \langle 0 | \sigma_{k/N}^- b_t(z) c_t(w) \sigma_{k/N}^+ | 0 \rangle$ Regularizing (point-splitting) \longrightarrow $\langle T(z) \rangle_{k/N} = \lim_{z \to w} (\langle -: b_t(z) \partial c_t(w) : \rangle + \frac{1}{(z-w)^2}) = -\frac{1}{2} \frac{k}{N} (1 - \frac{k}{N}) \frac{1}{z^2} \equiv \frac{h \sigma_{k/N}}{z^2}$ U(1) charge: $\langle j(z) \rangle_{k/N} = \lim_{z \to w} (\langle -: b^t(z) c^t(w) : \rangle + \frac{1}{z-w}) = \frac{k/N}{z}$

Twist: $\sigma_{k/N}^+$ has dim $-\frac{1}{2}\frac{k}{N}(1-\frac{k}{N})$ $(h_{\sigma_{k/N}} < 0)$; U(1) charge is $\frac{k}{N}$

Anti-twist: $\sigma_{k/N}^{-} \equiv \sigma_{1-k/N}^{+}$ has dim $-\frac{1}{2}\frac{k}{N}(1-\frac{k}{N})$; U(1) charge is $1-\frac{k}{N}$

Nonvanishing twist field correlation functions also require total U(1)charge to cancel background charge when calculated in untwisted SL(2) vacuum: $\langle \sigma_{\lambda_1}^+ \sigma_{\lambda_2}^+ \dots \rangle \equiv \langle 0 | \sigma_{\lambda_1}^+ \sigma_{1-\lambda_2}^- \dots | 0 \rangle \neq 0 \implies \sum_i \lambda_i = 1$ Bosonized: $j(z) = i\partial\phi$ and $b(z) = e^{-\phi}$, $c(z) = e^{\phi}$, in untwisted c = -2 theory. In sector twisted by $\lambda = \frac{k}{N}$, twist fields are $\sigma_{\lambda} = e^{i\lambda\phi} = \sigma_{\lambda}^+$

Thus nonvanishing 2-point function has the form $\langle 0|\sigma_{\lambda}^{+}\sigma_{\lambda}^{-}|0\rangle \equiv \langle 0|\sigma_{\lambda}^{+}\sigma_{1-\lambda}^{+}|0\rangle \longrightarrow$ automatically contains an unpaired *c*-field e^{ϕ} cancelling background charge Q = -1.

$$\Rightarrow tr \rho_A^n = \prod_{k=1}^{n-1} \langle 0 | \sigma_{k/N}^-(v) \sigma_{k/N}^+(u) | 0 \rangle = (v-u)^{-4\sum_{k=1}^{n-1} h_{\sigma_{k/N}}} = (v-u)^{\frac{1}{3}(n-1/n)}$$

 \rightarrow Entanglement entropy $S_A = -\lim_{n \to 1} \partial_n tr \rho_A^n = -\frac{2}{3} \log \frac{l}{\epsilon}$ (with $l \equiv v - u$).

Neighbourhood of each singularity does not contain zero modes: however $n \to 1$ limit is smooth requiring total U(1) charge to cancel background charge (for finite interval). $\sigma_{k/N}$ dim negative means long distance divergence in $\langle \sigma \sigma \rangle$ corrn fn \to suggests replica theory has some instability (vanishes in $n \to 1$ limit).

One spin, two ghost-spins, entangled

$$\begin{split} |\psi\rangle &= \psi^{i,\alpha\beta} |i\rangle |\alpha\beta\rangle; \quad \langle\psi|\psi\rangle = g_{ij}\gamma_{\alpha\sigma}\gamma_{\beta\rho}\psi^{i,\alpha\beta}(\psi^{*})^{j,\sigma\rho} = |\psi^{+,++}|^{2} - |\psi^{+,+-}|^{2} \\ &- |\psi^{+,-+}|^{2} + |\psi^{+,--}|^{2} + |\psi^{-,++}|^{2} - |\psi^{-,+-}|^{2} - |\psi^{-,-+}|^{2} + |\psi^{-,--}|^{2} \\ \text{RDM:} \qquad (\rho_{A})^{ik} = \gamma_{\alpha\sigma}\gamma_{\beta\rho}\psi^{i,\alpha\beta}(\psi^{*})^{k,\sigma\rho} = \gamma_{\alpha\alpha}\gamma_{\beta\beta}\psi^{i,\alpha\beta}(\psi^{*})^{k,\alpha\beta} \end{split}$$

Physical requirement: after tracing over ghost-spins, RDM is for spins alone \longrightarrow Demand that +ve norm states \Rightarrow +ve EE.

• $|\psi\rangle = \psi^{+,++}|+\rangle|++\rangle + \psi^{+,--}|+\rangle|--\rangle + \psi^{-,++}|-\rangle|++\rangle + \psi^{-,--}|-\rangle|--\rangle$

Correlated ghost-spins: positive norm so manifestly positive EE.

One spin, two ghost-spins, entangled

• Subfamily of states

$$\begin{split} |\psi\rangle &= \psi^{+,++} |+\rangle |++\rangle + \psi^{+,+-} |+\rangle |+-\rangle + \psi^{-,-+} |-\rangle |-+\rangle + \psi^{-,--} |-\rangle |--\rangle \\ \text{RDM:} \quad (\rho_A)^{++} &= |\psi^{+,++}|^2 - |\psi^{+,+-}|^2, \quad (\rho_A)^{--} &= -|\psi^{-,-+}|^2 + |\psi^{-,--}|^2 \\ \text{Remaining spin} &\to + ve \text{ definite metric } \Rightarrow \\ S_A &= -g_{ij} (\rho_A \log \rho_A)^{ij} = -(\rho_A \log \rho_A)^{++} - (\rho_A \log \rho_A)^{--} \\ &\pm \text{ norm:} \quad \langle \psi |\psi \rangle = |\psi^{+,++}|^2 - |\psi^{+,+-}|^2 - |\psi^{-,-+}|^2 + |\psi^{-,--}|^2 = \pm 1 \end{split}$$

$$|\psi^{+,++}|^2 - |\psi^{+,+-}|^2 \equiv x, \quad \langle \psi | \psi \rangle = x + (\pm 1 - x);$$

(\rho_A)^{+,+} = x, \left(\rho_A)^{-,-} = \pm 1 - x, \quad S_A = -x \log x - (\pm 1 - x) \log(\pm 1 - x)

Positive norm: $x > 0 \Rightarrow 1 - x > 0$ so $S_A = -x \log x - (1 - x) \log(1 - x) > 0$. $x < 0 \Rightarrow (\rho_A)^{++} < 0, (\rho_A)^{--} > 0, S_A = |x| \log |x| - (1 + |x|) \log(1 + |x|) + i\pi |x|$. x > 0 is component of Hilbert space that is continuously connected to the correlated ghost-spin sector. Small deformations don't change positivity.

Negative norm: ρ_A negative definite if x < 0 and (-1 - x) < 0, so that $0 < |x| < 1 \Rightarrow$ $S_A = |x| \log |x| + (1 - |x|) \log(1 - |x|) + i\pi$ $x < -1 \Rightarrow (\rho_A)^{++} < 0, (\rho_A)^{--} > 0, S_A = |x| \log |x| - (|x| - 1) \log(|x| - 1) + i\pi |x|$ $x > 0 \Rightarrow (\rho_A)^{++} > 0, (\rho_A)^{--} < 0, S_A = -x \log x + (1 + x) \log(1 + x) + i\pi(1 + x)$ $(\rho_A)^{++} > 0, (\rho_A)^{--} > 0, x > 0, -1 - x > 0$: not possible.

One spin, two ghost-spins, entangled $|\psi\rangle = \psi^{i,\alpha\beta}|i\rangle|\alpha\beta\rangle; \quad \text{RDM:} \quad (\rho_A)^{ik} = \gamma_{\alpha\sigma}\gamma_{\beta\rho}\psi^{i,\alpha\beta}(\psi^*)^{k,\sigma\rho} = \gamma_{\alpha\alpha}\gamma_{\beta\beta}\psi^{i,\alpha\beta}(\psi^*)^{k,\alpha\beta}$ • $|\psi\rangle = \psi^{+,++}|+\rangle|++\rangle + \psi^{+,--}|+\rangle|--\rangle + \psi^{-,++}|-\rangle|++\rangle + \psi^{-,--}|-\rangle|--\rangle$ Correlated ghost-spins: +ve norm $\Rightarrow +ve$ EE. Subspace always exists for even ghost-spins. • In general, new entanglement patterns. After tracing over ghost-spins, RDM is for spins alone \rightarrow Physical requirement: +ve norm states \Rightarrow +ve EE. $e.g. \ |\psi\rangle = \psi^{+,++} |+\rangle |++\rangle + \psi^{+,+-} |+\rangle |+-\rangle + \psi^{-,-+} |-\rangle |-+\rangle + \psi^{-,--} |-\rangle |--\rangle$ RDM: $(\rho_A)^{++} = |\psi^{+,++}|^2 - |\psi^{+,+-}|^2$, $(\rho_A)^{--} = -|\psi^{-,-+}|^2 + |\psi^{-,--}|^2$ $\langle \psi | \psi \rangle = |\psi^{+,++}|^2 - |\psi^{+,+-}|^2 - |\psi^{-,-+}|^2 + |\psi^{-,--}|^2 = \pm 1$ + norm: $|\psi^{+,++}|^2 - |\psi^{+,+-}|^2 \equiv x, \quad \langle \psi | \psi \rangle = x + (\pm 1 - x);$ $(\rho_A)^{+,+} = x, \ (\rho_A)^{-,-} = \pm 1 - x, \qquad S_A = -x \log x - (\pm 1 - x) \log(\pm 1 - x)$ Positive norm: $0 < x < 1 \Rightarrow S_A = -x \log x - (1-x) \log(1-x) > 0.$ x > 0 is component of Hilbert space that is continuously connected to the correlated ghost-spin sector. Small deformations don't change positivity. Negative norm: ρ_A negative definite if x < 0, (-1 - x) < 0, *i.e.* $0 < |x| < 1 \Rightarrow$ $S_A = |x| \log |x| + (1 - |x|) \log(1 - |x|) + i\pi$

[Other ranges for x: +ve norm is not +ve EE and -ve norm is not -ve Re(EE)]

One spin, one ghost-spin, entangled

$$\begin{split} |\psi\rangle &= \psi^{i,\alpha} |i\rangle |\alpha\rangle, \quad \langle \psi |\psi\rangle = g_{ij} \gamma_{\alpha\beta} \psi^{i,\alpha} (\psi^*)^{j,\beta} = \sum_{i,\alpha} \gamma_{\alpha\alpha} \psi^{i,\alpha} (\psi^*)^{i,\alpha} \\ \text{RDM:} \quad (\rho_A)^{ik} = \gamma_{\alpha\beta} \psi^{i,\alpha} (\psi^*)^{k,\beta} = \gamma_{\alpha\alpha} \psi^{i,\alpha} (\psi^*)^{k,\alpha} \end{split}$$

Simple entangled state: $|\psi\rangle = \psi^{+,+}|+\rangle|+\rangle + \psi^{-,-}|-\rangle|-\rangle \Rightarrow$ $(\rho_A)^{++} = |\psi^{+,+}|^2, \quad (\rho_A)^{--} = -|\psi^{-,-}|^2$

 $\begin{aligned} |\psi^{+,+}|^2 - |\psi^{-,-}|^2 &= \pm 1, \ (\log \rho_A)^+_+ = \log(|\psi^{+,+}|^2), \ (\log \rho_A)^-_- &= \log(-|\psi^{-,-}|^2) \\ \text{EE:} \qquad S_A &= -|\psi^{+,+}|^2 \log \left(|\psi^{+,+}|^2\right) + |\psi^{--}|^2 \log \left(|\psi^{-,-}|^2\right) + |\psi^{-,-}|^2(i\pi) \end{aligned}$

Positive norm: $|\psi^{-,-}|^2 = |\psi^{+,+}|^2 - 1$

 $S_A = -x \log x + (x-1) \log(x-1) + (x-1)(i\pi), \quad x = |\psi^{+,+}|^2, \ 1 \le x < \infty$

Real part negative, altho +ve norm state.

Negative norm: $|\psi^{-,-}|^2 = |\psi^{+,+}|^2 + 1$

 $S_A = -x \log x + (x+1) \log(x+1) + (x+1)(i\pi), \quad x = |\psi^{+,+}|^2, \quad 0 \le x < \infty$

Real part positive, altho -ve norm state.

Also true for general entangled states.

Other contraction schemes for ρ_A can be studied: however this bug does not go away.

 ρ_A acquires negative eigenvalues also for multiple spins entangled with single ghost-spin \rightarrow +ve norm does not give +ve EE.

Multiple ghost-spins, entangled

3 ghost-spins: possible to find subsectors where +ve norm states have +ve EE. Structure has similarities to one spin and two ghost-spins entangled.

However there are weird entangled states: consider *n* ghost-spins — $|\psi\rangle = \psi^{++\cdots}|++\cdots\rangle + \psi^{--\cdots}|--\cdots\rangle, \quad \langle\psi|\psi\rangle = |\psi^{++\cdots}|^2 + (-1)^n |\psi^{--\cdots}|^2$ $(\rho_A)^+_+ = (\rho_A)^{++} = |\psi^{++\cdots}|^2, \quad (\rho_A)^-_- = -(\rho_A)^{--} = (-1)^n |\psi^{--\cdots}|^2,$ $S_A = -(\rho_A)^+_+ (\log \rho_A)^+_+ - (\rho_A)^-_- (\log \rho_A)^-_-$

n even: +ve norm so +ve EE.

$$n \text{ odd: } |\psi^{++\cdots}|^2 - |\psi^{--\cdots}|^2 = \pm 1 \quad [\pm \text{ norm}]$$

$$S_A = -|\psi^{++\cdots}|^2 \log (|\psi^{++\cdots}|^2) + |\psi^{--\cdots}|^2 \log (|\psi^{--\cdots}|^2) + |\psi^{--\cdots}|^2 (i\pi)$$
Similar to one spin and one ghost-spin entangled \rightarrow thus $+ve$ norm has $-ve$ Re(EE) and Im. part, while $-ve$ norm gives $Re(S_A) > 0$.

One spin entangled with *n* ghost-spins: $|\psi\rangle_{(1,n)} = \psi^{+,++\cdots}|+,++\cdots\rangle + \psi^{-,--\cdots}|-,--\cdots\rangle,$ $(1,n)\langle\psi|\psi\rangle_{(1,n)} = |\psi^{+,++\cdots}|^2 + (-1)^n|\psi^{-,--\cdots}|^2$ $(\rho_A)^+_+ = (\rho_A)^{++} = |\psi^{+,++\cdots}|^2, \ (\rho_A)^-_- = (\rho_A)^{--} = (-1)^n|\psi^{-,--\cdots}|^2$ $S_A = -(\rho_A)^+_+(\log \rho_A)^+_+ - (\rho_A)^-_-(\log \rho_A)^-_-$

n odd: +ve norm does not give +ve EE.

Even number of ghost-spins: sensible calculations and interpretation.