Hyperscaling violation and entanglement entropy in gauge/string theory

K. Narayan
Chennai Mathematical Institute

• Introduction, summary
• Lightcone SYM, string theory, AdS plane waves
• AdS plane waves, hyperscaling violation, entanglement entropy

Introduction

Interesting to explore holography with reduced symmetries.
Generalizations of AdS/CFT to nonrelativistic systems
 \rightarrow holographic condensed matter, . . .
[Son; Balasubramanian, McGreevy; Adams et al; Herzog et al; Maldacena et al; . . .]
 \rightarrow Phases of gauge/string theory with non-relativistic symmetries.
Introduction

Generalizations of AdS/CFT to nonrelativistic systems

→ holographic condensed matter, . . .

[Son; Balasubramanian, McGreevy; Adams et al; Herzog et al; Maldacena et al; . . .]

→ Phases of gauge/string theory with non-relativistic symmetries.

Sometimes qualitative features of some of these phases from the gravity/string descriptions can be distilled to give interesting, perhaps unexpected insights for gauge theories.
Introduction

Nonrelativistic AdS/CFT → holographic condensed matter . . .

→ Phases of gauge/string theory with non-relativistic symmetries.
Sometimes qualitative features of some of these phases from the gravity/string descriptions can be distilled to give interesting, perhaps unexpected insights for gauge theories.

In the present context: entanglement entropy in various 3- and 4-dim quantum field theories exhibits a leading divergence called the area law.

Ryu-Takayanagi bulk prescription for EE using gravity dual.

• Gravity systems with hyperscaling violation exhibiting area law deviations can be realized in string theory in terms of strongly coupled CFTs with uniform lightcone momentum density T_{++}.

• Lightcone super Yang-Mills conformal field theories with $T_{++} \rightarrow$ logarithmic violation of area law for holographic entanglement entropy.

• Stronger area law deviations in some strongly coupled 3-dim CFTs.
Non-relativistic AdS/CFT

4-dim $\mathcal{N}=4$ superconformal Yang-Mills theory
dual to IIB string theory on $AdS_5 \times S^5$.

$$[ds^2 = \frac{R^2}{r^2}(-2 dx^+ dx^- + dx_i^2 + dr^2) + R^2 d\Omega_5^2, \quad R^4 \sim g_{YM}^2 N \alpha'\alpha'^2]$$

Large N limit \rightarrow classical gravity description useful.

A fairly traditional way that gives non-relativistic quantum field theory is to use lightcone variables ($x^- \equiv$ time), and study the system with nonzero lightcone momentum $[e.g. \quad p_\mu p^\mu = 0 \rightarrow p_- = \frac{1}{2p_+}p_i^2].$

For instance, x^+-DLCQ of relativistic $\mathcal{N}=4$ SYM \rightarrow

$z = 2$ nonrelativistic (Galilean) 2+1-dim system.

DLCQ x^+ of AdS_5 in lightcone coordinates — nonrelativistic, Schrodinger (Galilean) symmetries $[\text{Goldberger, Barbon et al, Maldacena et al}].$
Holography and Lifshitz scaling

Lifshitz: \(t, x_i \)-translations, \(x_i \)-rotations, scaling \(t \rightarrow \lambda^z t, x_i \rightarrow \lambda x_i \)

\([z: \text{dynamical exponent}]. \text{ (smaller than Galilean symmetries: e.g. boosts broken)}\)

Landau-Ginzburg action (free \(z = 2 \) Lifshitz): \(S = \int d^3 x ((\partial_t \varphi)^2 - \kappa (\nabla^2 \varphi)^2) \).

Lifshitz spacetime: \(ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \). Kachru, Liu, Mulligan

\([z = 1: \text{AdS}]\)

Solution to 4-dim gravity with \(\Lambda < 0 \) and massive gauge field \(A \sim \frac{dt}{r^z} \)

(or alternatively gauge field + 2-form: dualize to get \(A \)-mass) Taylor

[More general Lifshitz-attractor solutions in Einstein-Maxwell-scalar theories Trivedi et al]

[Focus on zero temperature solutions] String realizations?

Hyperscaling violation and entanglement entropy in gauge/string theory, K. Narayan, CMI – p.6/24
Lifshitz scaling in string theory

Lifshitz: t, x_i-translations, x_i-rotations, scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$

$[z$: dynamical exponent]. (smaller than Galilean symmetries: e.g. boosts broken)

Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. Kachru, Liu, Mulligan

String construction for $z = 2$ Lifshitz [Balasubramanian, KN]:

relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+ - \text{DLCK}} z = 2$ non-rel (Galilean) 2+1-dim system.

Gauge coupling $g_{YM}^2(x^+) = e^{\Phi(x^+)}$ varying in lightlike x^+-direction \to breaks x^+-shift reducing to 2+1-dim Lifshitz symmetries.

Bulk: $AdS + g_{++} \sim r^0 \xrightarrow{x^+-\text{dim.redn.}} z = 2$ Lifshitz.

Kaluza-Klein x^+-reduction of non-normalizable null deformations of $AdS_5 \times S^5$: g_{++} sourced by lightlike scalar (dilaton $\Phi(x^+)$) $[x^- \equiv \text{time}].$

$[ds_5^2 = \frac{R^2}{r^2}[-2dx^+ dx^- + dx_i^2 + dr^2] + \# r^0 (dx^+)^2 \to ds_4^2 = -\frac{(dx^-)^2}{r^4} + \frac{dx_i^2 + dr^2}{r^2}]$

More general: g_{++} sourced by axion-dilaton, fluxes [Donos, Gauntlett; et al].
SYM, $T_{++} \neq 0$: AdS plane waves

[Relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+\text{DLCQ}} z = 2$ non-rel (Galilean) 2+1-dim system. Lightcone $AdS_5 \xrightarrow{x^+\text{DLCQ}} z = 2$ non-rel Schrodinger (Galilean) symmetries].

Consider $\mathcal{N}=4$ SYM with uniform lightcone momentum density T_{++}. At large N, we expect the gravity dual to this excited state to be some normalizable deformation of $AdS_5 \times S^5$, with g_{++} nonzero.
SYM, $T_{++} \neq 0$: AdS plane waves

[Relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel (Galilean) 2+1-dim system. Lightcone $AdS_5 \xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel Schrodinger (Galilean) symmetries].

Consider $\mathcal{N}=4$ SYM with uniform lightcone momentum density T_{++}. At large N, we expect the gravity dual to this excited state to be some normalizable deformation of $AdS_5 \times S^5$, with g_{++} nonzero.

Can identify this precisely: AdS_5 plane wave $[AdS + g_{++}]$,

$$ ds^2 = \frac{R^2}{r^2} \left[-2dx^+dx^- + dx_i^2 + dr^2 \right] + R^2 Qr^2(dx^+)^2 + R^2 d\Omega_5^2 $$

Holographic boundary stress tensor using AdS/CFT rules gives

$$ T_{++} = \frac{2Q}{8\pi G_5} \rightarrow \text{uniform lightcone momentum density.} $$
SYM, $T_{++} \neq 0$: AdS plane waves

AdS$_5$ plane wave: $ds^2 = \frac{R^2}{r^2}[-2dx^+dx^- + dx_i^2 + dr^2] + R^2 Qr^2(dx^+)^2 + R^2 d\Omega_5^2$

- AdS analogs of plane-waves: $AdS + g_{++}$. Supersymmetric. Likely α'-exact string backgrounds due to lightlike nature.

- Nonzero (boundary) lightcone momentum density T_{++}: null energy condition $\Rightarrow T_{++} \geq 0$.

- Can be realized as “zero temperature”, highly boosted double scaling limit of boosted AdS Schwarzschild black branes (Singh).

 Simple excited pure states in $\mathcal{N}=4$ SYM CFT (on D3-branes):
 double scaling limit of SYM thermal state.

- Generalize to AdS$_D$ plane wave (e.g. states in M2-, M5- CFTs):
 $ds^2 = \frac{R^2}{r^2}[-2dx^+dx^- + dx_i^2 + dr^2] + R^2 Qr^{D-3}(dx^+)^2 + R^2 d\Omega_5^2$

 Bulk x^+-dimensional reduction?
AdS plane waves: \(x^+ \)-dim. redn.

\[
\begin{align*}
 ds^2 &= \frac{R^2}{r^2} \left[-2dx^+ dx^- + dx_i^2 + dr^2 \right] + R^2 Q r^2 (dx^+)^2 + R^2 d\Omega_5^2 \\
 AdS \text{ plane wave: } Q &\sim \text{lightcone-momentum density } T_{++} \quad [R^4 \sim g^2_{YM} N \alpha'^2].
\end{align*}
\]

Dimensionally reduce 10-dim metric on \(S^5 \) and on \(x^+ \)-circle:

4-dim Einstein metric \((x^- \equiv t)\):

\[
 ds^2_E = \frac{R^3 \sqrt{Q}}{r} \left(-\frac{dt^2}{Q r^4} + dx_i^2 + dr^2 \right),
\]

Electric gauge field \(A = -\frac{dt}{Q r^4} \), scalar \(e^\phi \sim r \). Nontrivial IR scales \(R, Q \).
Hyperscaling violation

\[ds^2 = \frac{R^2}{r^2} [-2dx^+dx^- + dx_i^2 + dr^2] + R^2Qr^2(dx^+)^2 + R^2d\Omega_5^2 \]

AdS plane wave: \(Q \sim \) lightcone-momentum density \(T_{++} \) \([R^4 \sim g^2_{YM} N \alpha'^2] \).

Dimensionally reduce 10-dim metric on \(S^5 \) and on \(x^+ \)-circle:

4-dim Einstein metric \((x^- \equiv t)\): \(ds^2_E = \frac{R^3\sqrt{Q}}{r} \left(-\frac{dt^2}{Qr^4} + dx_i^2 + dr^2 \right) \),

Electric gauge field \(A = -\frac{dt}{Qr^4} \), scalar \(e^\phi \sim r \). Nontrivial IR scales \(R, Q \).

\[ds^2 = r^{2\theta/d}(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2+dr^2}{r^2}) \]. \(d = \) “boundary” spatial dim \((x_i)\).

\(\theta = \) hyperscaling violation exponent.

Conformal to Lifshitz (dynamical exponent \(z \)).

Arise in effective gravity+vector+scalar theories (Trivedi et al, Kiritsis et al)

Thermodynamics reflects effective space dim \((d - \theta)\) \([e.g. S \sim T^{(d-\theta)/z}] \).

Above: \(d = 2, \ z = 3, \ \theta = 1 \) \((d_{eff} = d - \theta = 1) \).
Hyperscaling violation

\[
ds^2 = \frac{R^2}{r^2} \left[-2dx^+dx^- + dx_i^2 + dr^2 \right] + R^2 Q r^{D-3}(dx^+)^2
\]

AdS \(D\) plane wave, \(D = d + 3\), \(Q\) lightcone-momentum density, \((D - 1)\)-dim.

Dim’nal redn: \(ds^2_E = \frac{R^2(R^2 Q)^{1/(D-3)}}{r^2} \left(- \frac{dt^2}{Q r^{D-1}} + dx_i^2 + dr^2 \right)\).

“boundary” spatial dimension \(d = D - 3\), \(z = \frac{d}{2} + 2\), \(\theta = \frac{d}{2}\).

In particular, for the conformal branes of M-theory:

* \(M2\)-brane stacks \(\rightarrow\) *AdS* \(4\) deformations, \(d = 1\), \(z = \frac{5}{2}\), \(\theta = \frac{1}{2}\).

* \(M5\)-brane stacks \(\rightarrow\) *AdS* \(7\) deformations, \(d = 4\), \(z = 4\), \(\theta = 2\).

[General dim’nal reduction: \(\int d^D x \sqrt{-g^{(D)}} (R^{(D)} - 2\Lambda) = \int dx^+ d^{D-1} x \sqrt{-g^{(D-1)}} (R^{(D-1)} - \# \Lambda e^{-2\phi/(D-3)} - \# (\partial \phi)^2 - \# e^{2(D-2)\phi/(D-3)} F_{\mu \nu}^2)\)

(recall effective gravity+vector+scalar theories, *e.g.* Trivedi et al, Kiritsis et al, Takayanagi et al)]
Hyperscaling violation, holog. EE

Entanglement entropy for subsystem A, $S_A = -tr\rho_A \log \rho_A$,
partial trace over A-complement, $\rho_A = tr_B \rho$.

• Ryu-Takayanagi bulk prescription:
find bulk surface bounding A with minimal area.

Holographic entanglement entropy S_A for subsystem A
\propto area of bulk minimal surface bounding A.

E.g.: SYM CFT ground state, strip with width l, bndry area L^2:
ordinary time-t slice in bulk AdS_5 \rightarrow $S_A \sim \frac{R^3}{G_5} \left(\frac{L^2}{\epsilon^2} - \# \frac{L^2}{l^2} \right)$,
with leading divergence reflecting area law (Bombelli et al; Srednicki, ...)
$[\epsilon = SYM$ UV cutoff$]$, and finite part.

• Hyperscaling violating bulk metrics $ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^2 z} + \frac{dx_i^2 + dr^2}{r^2} \right)$
with $\theta = d - 1$ \rightarrow logarithmic violation of area law.

Gravitational dual of hidden Fermi surfaces? Takayanagi et al, Sachdev et al
AdS plane waves, holog. EE

- Ryu-Takayanagi bulk prescription: holographic entanglement entropy S_E for subsystem A
 \(\propto \text{area of bulk minimal surface bounding } A \).

- Hyperscaling violating bulk metrics
 \(ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^2z} + \frac{dx_i^2 + dr^2}{r^2} \right) \)
 with \(\theta = d - 1 \) \(\rightarrow \) logarithmic violation of area law.

- As we have seen, AdS plane waves give microscopic (top-down) descriptions for some of these: e.g.
 \(ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Q r^2 (dx^+)^2 + R^2 d\Omega_5^2, \)

 \(\text{AdS}_5 \text{ plane wave: } \frac{x^+ - \text{dim.redn.}}{\frac{1}{2}} \rightarrow d = 2, \ z = 3, \ \theta = 1 \)

- Concrete gauge/string example: $\mathcal{N}=4$ SYM in pure excited state
 with uniform lightcone momentum density $T_{++} \rightarrow$
 logarithmic behaviour (rather than area law) of entanglement entropy holographically.
AdS plane waves, holog. EE

\(AdS_5 \) plane wave: \(ds^2 = \frac{R^2}{r^2} [-2dx^+dx^- + dx_i^2 + dr^2] + R^2 Q r^2 (dx^+)^2 + R^2 d\Omega_5^2 \).

- \(AdS_5 \) plane wave \(\xrightarrow{x^+\text{-dim. redn.}} \) hyperscaling violation \(ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right) \)

with \(d = 2, \ z = 3, \ \theta = 1 \).

4-dim \(\mathcal{N}=4 \) SYM CFT in these pure excited states (\(T_{++} \sim Q \)) exhibits logarithmic behaviour of holog. entanglement entropy (not area law).

Holographic EE \(S_E = \text{area of bulk minimal surface bounding A} \).
Subsystem A = strip in \(x_i \)-plane, width \(l \) (possibly wrapping \(x^+ \)-direction), lying on const-\(x^- \) slice (\(\equiv \) constant time-\(t \) slice (4-dim)).

Logarithmic behaviour of EE: \(S_A = \frac{R^3 \sqrt{Q}}{2G_5} L + L \log \frac{l}{\epsilon} \).

[This uses only 5-d spacetime: also applies to various \(\mathcal{N}=1 \) SYM CFTs.]

Explore further . . . Weak coupling field theory?
AdS plane waves, holo. EE

AdS_5 plane wave: \[ds^2 = \frac{R^2}{r^2}[-2dx^+dx^- + dx_i^2 + dr^2] + R^2Qr^2(dx^+)^2 \]

[EE for subsystem A, $S_A = -tr \rho_A \log \rho_A$, partial trace over A-complement, $\rho_A = tr_B \rho$.]

Want to de-mystify entanglement entropy in null slicing:

consider spacelike subsystems ($\Delta x^+ > 0 > \Delta x^-$, strip, width l).

Non-static spacetime: use covariant HEE (Hubeny, Rangamani, Takayanagi).

HEE \sim area of bulk extremal surface bounding A

(stationary point of area functional; if several surfaces exist, choose minimal area).

Two choices for subsystem depending on energy flux T_{++} direction:

![Diagram showing two cases for subsystems A and B]

(spacelike subsystem: leading divergence is area law $\sim \frac{V_2}{\epsilon^2}$.).
\(AdS\) plane waves, holo. EE

\(AdS_5\) plane wave:
\[
ds^2 = \frac{R^2}{r^2}[-2dx^+dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2
\]

Simple excited pure states in \(\mathcal{N}=4\) SYM CFT: \(T_{++} = \text{const.}\)

Case A: width direction is \(x_i\).

Finite piece \(V_2 \sqrt{Q} \log(lQ^{1/4})\), grows with size.

Smaller than \(\sim l\) (thermal entropy),

larger than \(\sim l^{-2}\) (CFT ground state).

Strip along energy flux: (heuristically) size increases, entanglement increases.

Case B: width along \(x_3\) (and flux).

Phase transition: \(S_A \sim \text{constant}\) (saturated) beyond \(l_c \sim Q^{-1/4}\)

(no connected surface, \(\Delta x^+ > 0 > \Delta x^-\); disconnected surfaces for large \(l\)).

Strip orthogonal to energy flux: correlation length \(\sim Q^{-1/4}\).

Large \(l\): entanglement saturation.

Hyperscaling violation and entanglement entropy in gauge/string theory. K. Narayan, CMI – p.18/24
AdS plane waves, holo. EE

\(\text{AdS}_5 \) plane wave: \(ds^2 = \frac{R^2}{r^2}[-2dx^+dx^- + dx_i^2 + dr^2] + R^2Qr^2(dx^+)^2 \)

To understand phase transition better, consider regulated \(\text{AdS}_5 \) plane wave: boosted black D3-brane (Singh).

\[
ds^2 = \frac{1}{r^2} \left[-2dx^+dx^- + Qr^4 \left(dx^+ + \frac{r_0^4}{2Q} dx^- \right)^2 + dx_i^2 \right] + \frac{dr^2}{r^2(1-r_0^4 r^4)}.
\]

Boost \(\lambda^2 = \frac{2Q}{r_0^4} \): as \(r_0 \to 0 \), \(Q = \text{fixed} \), recover \(\text{AdS}_5 \) plane wave.

For small \(r_0 \), the scale \(Q \) dominates, so phase transition persists (no connected extremal surface for large size with spacelike subsystem).

Connected extremal surface for Case B can be found by scaling towards horizon, and towards double zero of surface equation (which gives large size) [becomes disconnected surface in \(\text{AdS} \) plane wave limit].
Hyperscaling violation cont’d

\[ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Q r^{D-3} (dx^+)^2 \]

AdS\(_D\) plane wave, \(D = d + 3 \), \(Q \) lightcone-momentum density, \((D-1)\)-dim.

Dim’nal redn:
\[ds^2_E = \frac{R^2 (R^2 Q)^{1/(D-3)}}{r} (- \frac{dt^2}{Q r^{D-1}} + dx_i^2 + dr^2) . \]

“boundary” spatial dimension \(d = D - 3 \), \(z = \frac{d}{2} + 2 \), \(\theta = \frac{d}{2} \).

In particular, for the conformal branes of M-theory:

\(M2 \)-brane stacks \(\rightarrow \) AdS\(_4\) deformations, \(d = 1 \), \(z = \frac{5}{2} \), \(\theta = \frac{1}{2} \).

\(M5 \)-brane stacks \(\rightarrow \) AdS\(_7\) deformations, \(d = 4 \), \(z = 4 \), \(\theta = 2 \).

[General dim’nal reduction:
\[\int d^D x \sqrt{-g^{(D)}} (R^{(D)} - 2\Lambda) = \]
\[\int dx^+ d^{D-1} x \sqrt{-g^{(D-1)}} (R^{(D-1)} - \# \Lambda e^{-2\phi/(D-3)} - \# (\partial \phi)^2 - \# e^{2(D-2)\phi/(D-3)} F_{\mu\nu}^2) \]
(_recall effective gravity+vector+scalar theories, \text{e.g. Trivedi et al, Kiritsis et al, Takayanagi et al)\]

\textbf{M2-brane CFT: super 3-dim Chern-Simons theory with matter.}

\textbf{Deviations from area law stronger than logarithmic.}

\textbf{Entanglement (finite piece) grows with subsystem size as} \(L_+ \sqrt{Ql} \).
Hyperscaling violation

(Recall Dp-brane phases, Itzhaki, Maldacena, Sonnenschein, Yankielowicz)

Conformal M-theory brane stack $ds^2 = ds^2_{AdS \times S} + g_{++} (dx^+)^2$,
for g_{++} (non-)normalizable deformations, gives rise in appropriate
IIA string/sugra phase to hyperscaling violation and new z, θ with

$$ds^2_E = r^{2/\theta/d} (\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2})$$

$$\left[ds^2_{M-th} \rightarrow 10-d ds^2_{st} + \text{dilaton } \Phi \rightarrow ds^2_E \rightarrow \text{dim.redn.}^{\text{sphere}S} \rightarrow \right.$$
null-deformed solution, non-compact $x^+ \rightarrow \text{dim.redn.}^{x^+} \longrightarrow z, \theta$.

Note: 10-d solutions can be checked independently in IIA supergravity.

Dp-branes $\rightarrow d = p, \ z = 1, \ \theta \neq 0$. (Dong, Harrison, Kachru, Torroba, Wang)

M2 \rightarrow D2 null non-normalizable: $d = 1, \ z = \frac{7}{3}, \ \theta = 0$.

M2 \rightarrow D2 null normalizable: $d = 1, \ z = 3, \ \theta = \frac{2}{3}$.

M5 \rightarrow D4 null non-normalizable: $d = 3, \ z = 2, \ \theta = -1$.

M5 \rightarrow D4 null normalizable: $d = 3, \ z = 4, \ \theta = \frac{1}{3}$.

Note: some of these (with $d = 1$) have $d - 1 \leq \theta \leq d$ \rightarrow
Violation of area law of entanglement entropy. Field theory duals nontrivial: explore?
Hyperscaling violation

(Following D_p-brane phase structure of Itzhaki, Maldacena, Sonnenschein, Yankielowicz): These solutions are of the form of null-deformed D_p-brane systems, with rich phase structure. \(z, \theta \)-values flow.

Null-deformed D2-brane phases: flow from DLCQ_{x+} of 2+1-dim perturbative SYM (UV) regime \(\rightarrow \) IIA supergravity region with null-deformed D2-solution (valid in some intermediate regime where \(x^+ \)-circle large relative to 11-th circle) \(\rightarrow \) 11-dim \(AdS_4 \) null-deformed M2-brane IR phase (dual to DLCQ of null-defmn of Chern-Simons ABJM-like theory).

Null-deformed D4-brane phases: flow from \(AdS_7 \) null-deformed M5-brane UV phase (dual to null-deformation of (2, 0) M5-theory) \(\rightarrow \) intermediate IIA supergravity region with null-deformed D4-solution \(\rightarrow \) DLCQ_{x+} of 4+1-dim perturbative SYM IR phase.
AdS null defmns + inhomogeneities

Most general family of (static) AdS plane waves:

\[ds^2 = \frac{1}{r^2} (-2dx^+dx^- + dx_i^2) + g_{++}[r, x_i](dx^+)^2 + \frac{dr^2}{r^2} + d\Omega_5^2 \]

- AdS analogs of plane-waves: AdS + g_{++}. Supersymmetric. Likely \(\alpha'\)-exact string backgrounds due to lightlike nature.

- Restricting to normalizable modes (near boundary), these are general lightcone states in SYM with inhomogeneities: nonzero lightcone momentum density \(T_{++}\) varying spatially (frozen in lightcone time).

- Static normalizable backgrounds: generically, \(g_{++}\) vanishes at specific locii in the interior, even if positive definite near boundary (i.e. \(T_{++} \geq 0\)). Effectively a horizon: time-like Killing vector \(\partial_- \rightarrow \text{null}\).

- On \(x^+\)-dimensional reduction, this means string modes winding around \(x^+\)-circle become light in the vicinity of \(g_{++} = 0\) locii. New stringy physics beyond the gravity approximation: new operators in SYM with low anomalous dimensions.

Similar inhomogenous solutions exist for asymptotically Lifshitz solutions too.
Conclusions, open questions

- AdS plane waves \rightarrow dim’nal redux
 \rightarrow Lifshitz scaling, hyperscaling violation.
Dual to 4-d SYM CFT (or more exotic 3d CFT) excited state with T_{++}.
- Some of these lead to logarithmic (or stronger) deviations of entanglement entropy holographically relative to area law.
- AdS plane waves: simple excited pure states. Entanglement entropy can be studied explicitly for strip-shaped subsystems, results depend on strip direction w.r.t. energy flux. For strip orthogonal to flux, phase transition.
More general AdS null deformations with inhomogeneities.

Entanglement entropy area law deviations from field theory?
What are these materials?

… …