Aspects of Nonrelativistic Holography: Entanglement, Viscosity and AdS₂

K. Narayan Chennai Mathematical Institute

- Holography, nonrelativistic theories, string realizations
- Entanglement entropy and shear viscosity
- AdS_2 holography from redux, renormalization group flows and c-functions

Based on work in part with Koushik Balasubramanian, Kedar Kolekar, Debangshu Mukherjee, Tadashi Takayanagi, Sandip Trivedi

AdS/CFT and holography

21yrs since AdS/CFT '97 Maldacena; '98 Gubser, Klebanov, Polyakov; Witten.

Holography: quantum gravity in $\mathcal{M} \leftrightarrow$ dual without gravity on $\partial \mathcal{M}$ ('t Hooft, Susskind).

N D3-branes, near horizon \rightarrow IIB strings on $AdS_5 \times S^5$ \longleftrightarrow 4-dim max susy Yang-Mills (CFT) (Maldacena) \rightarrow best known AdS_{d+1}/CFT_d example. Large $N \rightarrow$ gravity approximation

Holographic handle on strongly coupled gauge theory (CFT) physics. Over the years, many explorations and generalizations of AdS/CFT \rightarrow geometric handle on physical observables in field theory.

 $[AdS = \text{anti de Sitter space}] \qquad [CFT \text{ conformal symmetry} = \text{bulk } AdS \text{ isometry group.}]$ $[\text{ Dictionary:} \quad Z_{CFT} = Z_{string} \simeq e^{-S_{sugra}} \qquad (\text{Gubser,Klebanov,Polyakov; Witten})]$ $[AdS \text{ black brane} \xrightarrow{\text{dual to}} \text{ CFT thermal state}]$

Nonrelativistic Holography

Holography with reduced symmetries. Nonrelativistic (condmat-like) phases of gauge theories \leftrightarrow new phases of black holes/branes.

Lifshitz spacetime: $ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru, Liu, Mulligan; Taylor) scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$ [dynamical exponent $z \ (z \ge 1)$] t, x_i -translations, x_i -rotations [smaller than Schrodinger symm *e.g.* Galilean boosts] [gravity, $\Lambda < 0$, massive gauge field]

Nonrelativistic Holography

Holography with reduced symmetries. Nonrelativistic (condmat-like) phases of gauge theories \leftrightarrow new phases of black holes/branes.

Lifshitz spacetime: $ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru,Liu,Mulligan; Taylor) scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$ [dynamical exponent $z \ (z \ge 1)$] t, x_i -translations, x_i -rotations [smaller than Schrodinger symm *e.g.* Galilean boosts] [gravity, $\Lambda < 0$, massive gauge field]

More general gravity phases: $ds^2 = r^{2\theta/d_i} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right).$

 θ = hyperscaling violation exponent; d_i = boundary spatial dim (x_i) .

• Conformally Lifshitz. Effective Einstein-Maxwell-Dilaton theories (Trivedi et al; Kiritsis et al, ...) $S \sim T^{(d_i - \theta)/z}$. Thermodynamics ~ space dim $d_{eff} = d_i - \theta$: actual space is d_i -dim.

Nonrelativistic Holography

Holography with reduced symmetries. Nonrelativistic (condmat-like) phases of gauge theories \leftrightarrow new phases of black holes/branes.

Lifshitz spacetime: $ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru, Liu, Mulligan; Taylor) scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$ [dynamical exponent $z \ (z \ge 1)$] t, x_i -translations, x_i -rotations [smaller than Schrodinger symm *e.g.* Galilean boosts] [gravity, $\Lambda < 0$, massive gauge field]

More general gravity phases: $ds^2 = r^{2\theta/d_i} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right).$

 θ = hyperscaling violation exponent; d_i = boundary spatial dim (x_i) .

- Conformally Lifshitz. Effective Einstein-Maxwell-Dilaton theories (Trivedi et al; Kiritsis et al, ...) $S \sim T^{(d_i - \theta)/z}$. Thermodynamics ~ space dim $d_{eff} = d_i - \theta$: actual space is d_i -dim.
- θ = d_i − 1: entanglement entropy ~ log l, logarithmic behaviour. Gravity duals of Fermi surfaces? (Ogawa,Takayanagi,Ugajin; Huijse,Sachdev,Swingle)
 d_i − 1 ≤ θ < d_i: EE area law violations. (Dong,Harrison,Kachru,Torroba,Wang)

[Energy conditions: $(d_i - \theta)(d_i(z - 1) - \theta) \ge 0, \quad (z - 1)(d_i + z - \theta) \ge 0.]$

Lif/hvLif, gauge/string realizations

UV completion. Narrow gravity parameter space. Identify recognizable CFT deformations/regimes.

- z = 2 Lifshitz: AdS nonnormalizable defmns, x^+ redn (Balasubramanian, KN; Donos, Gauntlett..) $g_{++} \sim r^0$ sourced by lightlike matter, e.g. $g_{++} \sim (\partial_+ c_0)^2$, axion $c_0 = Kx^+$: $(x^- \equiv t)$ $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + K^2 R^2 (dx^+)^2 \longrightarrow ds^2 = -\frac{dt^2}{r^4} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2}$
- Hyperscaling violation: nonconformal branes (Dong,Harrison,Kachru,Torroba,Wang) $ds_{st}^{2} = \frac{r^{(7-p)/2}}{R_{p}^{(7-p)/2}} dx_{\parallel}^{2} + \frac{R_{p}^{(7-p)/2}}{r^{(7-p)/2}} (dr^{2} + r^{2} d\Omega_{8-p}^{2}), \qquad e^{\Phi} = g_{s} \left(\frac{R_{p}^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}.$ $g_{YM}^{2} \sim g_{s} \alpha'^{(p-3)/2}, \quad R_{p}^{7-p} \sim g_{YM}^{2} N \alpha'^{5-p}$ Dp-branes $\longrightarrow S^{8-p}$ redux $\longrightarrow d_{i} = p, \ z = 1, \ \theta = p - \frac{9-p}{5-p}.$
- Hyperscaling violation: AdS_{d+1} plane waves (KN), (Singh) [Normalizable g_{++}] $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{d-2} (dx^+)^2 \longrightarrow$ $ds^2 = r^{\frac{2\theta}{d_i}} \left(-\frac{dt^2}{r^{2z}} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2} \right), \quad z = \frac{d-2}{2} + 2, \quad \theta = \frac{d-2}{2}, \quad d_i = d-2.$ Anisotropic CFT excited state, energy-momentum density $T_{++} = Q$.

 AdS_5 plane wave: d = 4, $d_i = 2$, $\theta = 1$, z = 3. Logarithmic behaviour of EE.

Nonrelativistic gauge/gravity duality and entanglement entropy

Nonrelativistic Holography: entanglement, viscosity and AdS_2 , K. Narayan, CMI – p.7/32

Holographic Entanglement Entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Ryu-Takayanagi: $EE = \frac{A_{min.surf.}}{4G}$

[\sim black hole entropy] Area of codim-2 minimal surface in gravity dual.

Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi).

Operationally: const time slice, boundary subsystem \rightarrow bulk slice, codim-2 extremal surface

Holographic Entanglement Entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Ryu-Takayanagi:
$$EE = \frac{A_{min.surf.}}{4G}$$

[\sim black hole entropy] Area of codim-2 minimal surface in gravity dual.

Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi).

Operationally: const time slice, boundary subsystem \rightarrow bulk slice, codim-2 extremal surface

Example: CFT_d ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2}(dr^2 - dt^2 + dx_i^2)$.

Strip, width $\Delta x = l$, infinitely long. Bulk surface x(r). Turning point r_* .

$$S_A = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \to (\partial_r x)^2 = \frac{(r/r_*)^{2d-2}}{1 - (r/r_*)^{2d-2}}, \quad \frac{l}{2} = \int_0^{r_*} dr \partial_r x$$

Holographic Entanglement Entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Ryu-Takayanagi:
$$EE = \frac{A_{min.surf.}}{4G}$$

[\sim black hole entropy] Area of codim-2 minimal surface in gravity dual.

Non-static situations: extremal surfaces (Hubeny, Rangamani, Takayanagi).

Operationally: const time slice, boundary subsystem \rightarrow bulk slice, codim-2 extremal surface

Example: CFT_d ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2}(dr^2 - dt^2 + dx_i^2)$. Strip, width $\Delta x = l$, infinitely long. Bulk surface x(r). Turning point r_* .

$$S_A = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \to (\partial_r x)^2 = \frac{(r/r_*)^{2d-2}}{1 - (r/r_*)^{2d-2}}, \quad \frac{l}{2} = \int_0^{r_*} dr \partial_r x.$$

$$S_{A} = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_{*}} \frac{dr}{r^{d-1}} \frac{2}{\sqrt{1 - (r/r_{*})^{2d-2}}} \longrightarrow S_{A} = \frac{R}{2G_{3}} \log \frac{l}{\epsilon} , \quad \frac{3R}{2G_{3}} = c \quad [2d].$$

$$S_{A} \sim \frac{R^{d-1}}{G_{d+1}} \left(\frac{V_{d-2}}{\epsilon^{d-2}} - c_{d} \frac{V_{d-2}}{l^{d-2}}\right) , \qquad \frac{R^{3}}{G_{5}} \sim N^{2} \quad [4d], \quad \frac{R^{2}}{G_{4}} \sim N^{3/2} \quad [3d].$$

CFT thermal state (AdS black brane): minimal surface wraps horizon. $S^{fin} \sim N^2 T^3 V_2 l$

Entanglement, AdS plane waves $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{d-2} (dx^+)^2$, dual to CFT state, $T_{++} \sim Q$ EE, spacelike strips (width l, $\Delta x^+ > 0 > \Delta x^-$). (KN, Takayanagi, Trivedi)

Non-static spacetime \rightarrow extremal surfaces. Spacelike subsystem, UV cutoff ϵ : leading divergence is area law $\sim \frac{V_{d-2}}{\epsilon^{d-2}}$

Case A: width direction x_i . Strip along energy flux.Case B: Strip \perp flux.Finite cutoff-independent part of EE: size-dependent measurePhase transition (no connectedof entanglement $S^{fin} \sim N^2 \sqrt{Q} V_2 \log(lQ^{1/4})$ [d=4].surface if $\Delta x^+ > 0 > \Delta x^-$).[ground st] $-N^2 \frac{V_2}{l^2} < S^{fin} < N^2 T^3 V_2 l$ [thermal entr] S_A saturated for $l \gtrsim Q^{-1/4}$.

Boosted black branes (Maldacena, Martelli, Tachikawa): large boost λ , low temperature r_0 limit (Singh) $ds^2 = \frac{R^2}{r^2} \left(-2dx^+ dx^- + \frac{r_0^4 r^4}{2} (\lambda dx^+ + \lambda^{-1} dx^-)^2 + \sum_i dx_i^2 \right) + \frac{R^2 dr^2}{r^2 (1 - r_0^4 r^4)} .$ regulated AdS_5 plane wave $\left(Q = \frac{\lambda^2 r_0^4}{2}\right)$ CFT thermal state, highly boosted: anisotropic.

Mutual Information

MI (disjoint subsystems A & B): $I[A, B] = S[A] + S[B] - S[A \cup B]$. $I[A, B] \ge 0$. Cutoff-dependent divergences cancel. Gives bound for correlation fns. Holographic mutual information: find extremal surface for $A \cup B$. Subsystems far, two disjoint minimal surfaces: MI = 0. Subsystems nearby, connected surface has lower area. Ryu-Takayanagi \Rightarrow MI disentangling transition (Headrick). [This is large N: expect softer subleading decay for MI.] Similar disentanglement for thermal states (Fischler,Kundu,Kundu): $\frac{x_c}{l} \sim 0$ (for $x, l \gg \frac{1}{T}$).

(Mukherjee, KN) MI for AdS plane wave excited states \rightarrow critical separation $\frac{x_c}{l}$ between subsystems smaller than in ground state. Mutual information disentangling occurs faster. Suggests energy density disorders system.

Nonrelativistic holography and shear viscosity

The viscosity bound

Strongly coupled theories with Einstein gravity duals obey the

viscosity bound, $\frac{\eta}{s} \ge \frac{1}{4\pi}$. (Kovtun, Son, Starinets) [RHIC, QGP \rightarrow ideal fluid ...] Nonrelativistic theories?

The viscosity bound

Strongly coupled theories with Einstein gravity duals obey the viscosity bound, $\frac{\eta}{s} \geq \frac{1}{4\pi}$. (Kovtun,Son,Starinets) [RHIC, QGP \rightarrow ideal fluid ...] Nonrelativistic theories?

• Membrane paradigm: black brane near horizon ~ fluctuating membrane; shear perturbations $h_{xy}, h_{ty}, a_y \rightarrow$ appropriate currents satisfying Fick's law $j^x = -\mathcal{D}\partial_x j^t$ & conservation $\partial_t j^t + \partial_x j^x = 0$; recast Einstein eqns for shear perturbations on this "stretched horizon" as diffusion eqn $\partial_t j^t = \mathcal{D}\partial_x^2 j^t$ via self-consistent approximations \rightarrow shear diffusion constant \mathcal{D} . (Kolekar, Mukherjee, KN)

• Quasinormal modes: diffusive solutions to linearized perturbation equations, ingoing at horizon, vanishing at boundary $\rightarrow \omega = -i\mathcal{D}q^2$, diffusion eqn in momentum space. (Mukherjee, KN) Kubo formula: $\eta = \lim_{\omega \to 0} \frac{G_{xy,xy}(\omega,q=0)}{i\omega}$ with $G_{xy,xy} = \langle T_y^x T_y^x \rangle$.

Black brane horizon area \rightarrow entropy density *s*.

The viscosity bound

Finite temperature 4-dim hvLif black brane: temperature $T = \frac{d_i + z - \theta}{4\pi} r_0^z$ $ds^2 = r^{2\theta/d_i} \left(-\frac{f(r)}{r^{2z}} dt^2 + \frac{dr^2}{f(r)r^2} + \sum_{d_i} \frac{dx_i^2}{r^2} \right), \quad f(r) = 1 - (r_0 r)^{d_i + z - \theta}$

 $z < d_i + 2 - \theta$: viscosity bound satisfied.

$$D = \frac{r_0^{z-2}}{d_i + 2 - z - \theta} = \frac{1}{d_i + 2 - z - \theta} \cdot \left(\frac{4\pi}{d_i + z - \theta}\right)^{1 - 2/z} T^{\frac{z-2}{z}}$$
$$\frac{\eta}{s} = \frac{d_i + 2 - z - \theta}{4\pi} \left(\frac{4\pi}{d_i + z - \theta}\right)^{\frac{2-z}{z}} \mathcal{D}T^{\frac{2-z}{z}} = \frac{1}{4\pi}$$

Continuously connected to AdS, $z = 1, \theta = 0 \rightarrow \frac{\eta}{s} = DT = \frac{1}{4\pi}$

Near horizon long-wavelength modes $\rightarrow D$, hydrodynamics.

 $\frac{z = d_i + 2 - \theta}{z}: \text{ viscosity bound satisfied, but some curious features.}$ Quasinormal mode analysis $\rightarrow \frac{\eta}{s} = \frac{1}{4\pi}$ from q = 0 Kubo limit Shear diffusion const \rightarrow logarithmic scaling $\mathcal{D} = \frac{1}{z} (\frac{2\pi}{z-1})^{1-2/z} \cdot T^{\frac{z-2}{z}} \log \frac{\Lambda}{T}$ (Λ UV cutoff). Perhaps some transport coefficients nontrivial \rightarrow these exponents arise from redux of *AdS* plane waves (highly boosted; lightlike limit?).

 $z > d_i + 2 - \theta$: universal near horizon low energy modes do not dictate hydrodynamics.

AdS₂ holography from redux, renormalization group flows and c-functions

Extremal black branes and AdS_2

4-dim general relativity: charged black holes (G = c = 1) $ds^{2} = -\left(1 - \frac{2M}{r} + \frac{Q^{2}}{r^{2}}\right)dt^{2} + \frac{dr^{2}}{1 - 2m/r + Q^{2}/r^{2}} + r^{2}d\Omega_{2}^{2}$

Extremality $Q^2 = m^2 \rightarrow \text{zero Hawking temperature}$ (not due to susy) Near horizon $r_0 = Q$: $ds^2 \sim -\frac{(r-r_0)^2}{r_0^2}dt^2 + \frac{r_0^2dr^2}{(r-r_0)^2} + r_0^2d\Omega_2^2 \rightarrow \boxed{AdS_2 \times S^2}$

Extremal black branes and AdS_2

4-dim general relativity: charged black holes (G = c = 1) $ds^2 = -(1 - \frac{2M}{r} + \frac{Q^2}{r^2})dt^2 + \frac{dr^2}{1 - 2m/r + Q^2/r^2} + r^2 d\Omega_2^2$ Extremality $Q^2 = m^2 \rightarrow$ zero Hawking temperature (not due to susy) Near horizon $r_0 = Q$: $ds^2 \sim -\frac{(r - r_0)^2}{r_0^2}dt^2 + \frac{r_0^2 dr^2}{(r - r_0)^2} + r_0^2 d\Omega_2^2 \rightarrow \boxed{AdS_2 \times S^2}$

 AdS_2 : universal near horizon geometry, extremal black holes/branes.

- Einstein-Maxwell theory, $\Lambda < 0$: extremal relativistic black branes.
- Einstein-Maxwell-scalar + U(1): extremal hvLif black branes.

 $S = \int \sqrt{-g} \left(R - \frac{1}{2} (\partial \Psi)^2 + |\Lambda| e^{\gamma \Psi} - \frac{e^{\lambda_1 \Psi}}{4} F_{\mu\nu}^{(1)\,2} - \frac{e^{\lambda_2 \Psi}}{4} F_{\mu\nu}^{(2)\,2} \right) \to \left[AdS_2 \times R^2 \right]$

Extremal black branes and AdS_2

4-dim general relativity: charged black holes (G = c = 1) $ds^2 = -(1 - \frac{2M}{r} + \frac{Q^2}{r^2})dt^2 + \frac{dr^2}{1 - 2m/r + Q^2/r^2} + r^2 d\Omega_2^2$ Extremality $Q^2 = m^2 \rightarrow$ zero Hawking temperature (not due to susy) Near horizon $r_0 = Q$: $ds^2 \sim -\frac{(r - r_0)^2}{r_0^2}dt^2 + \frac{r_0^2 dr^2}{(r - r_0)^2} + r_0^2 d\Omega_2^2 \rightarrow \boxed{AdS_2 \times S^2}$

 AdS_2 : universal near horizon geometry, extremal black holes/branes.

- Einstein-Maxwell theory, $\Lambda < 0$: extremal relativistic black branes.
- Einstein-Maxwell-scalar + U(1): extremal hvLif black branes.

$$S = \int \sqrt{-g} \left(\frac{R}{2} - \frac{1}{2} (\partial \Psi)^2 + |\Lambda| e^{\gamma \Psi} - \frac{e^{\lambda_1 \Psi}}{4} F_{\mu\nu}^{(1)\,2} - \frac{e^{\lambda_2 \Psi}}{4} F_{\mu\nu}^{(2)\,2} \right) \to \boxed{AdS_2 \times R^2}$$

Effective 2-dim dynamics: $ds^2 = g_{\mu\nu}^{(2)} dx^{\mu} dx^{\nu} + \Phi^2 d\vec{x}^2$, Φ dilaton. Leading backreaction \rightarrow breaking of AdS_2 isometries \equiv breaking of local boundary time reparametrizations (modulo global SL(2) symm) \rightarrow universally captured by Schwarzian derivative action. Almheiri,Polchinski; Jensen; Maldacena,Stanford,Zhang; Engelsoy,Mertens,Verlinde; ...

Schwarzian: breaking of emergent conformality in SYK (Sachdev, Ye, Kitaev)

Extremal branes, 2d dilaton-gravity

$$\begin{split} \underline{\text{Einstein-Maxwell}} \colon & S = \int \sqrt{-g} [\frac{1}{16\pi G_4} (\mathcal{R} - 2\Lambda) - \frac{1}{4} F_{MN} F^{MN}], \quad \Lambda = -\frac{3}{R^2} \\ ds^2 &= -\frac{r^2 f(r)}{R^2} dt^2 + \frac{R^2}{r^2 f(r)} dr^2 + \frac{r^2}{R^2} dx_i^2, \quad f(r) = 1 - (\frac{r_0}{r})^3 + \frac{Q_e^2}{r^4} (1 - \frac{r}{r_0}), \quad Q_e^2 = 3r_0^4 \\ & \text{[Dim.reduction:} \quad ds^2 = g_{\mu\nu}^{(2)} dx^\mu dx^\nu + \Phi^2 dx_i^2] \end{split}$$

Solve for $F_{\mu\nu}$, put back in EOM/action \rightarrow dim.redux \rightarrow equivalent dilaton-gravity + potential

$$\rightarrow \quad S = \frac{1}{16\pi G_2} \int d^2x \sqrt{-g} \left(\Phi^2 \mathcal{R} - U(\Phi) \right), \qquad U(\Phi) = 2\Lambda \Phi + \frac{2Q_e^2}{R^6 \Phi^3}$$

Extremal branes, 2d dilaton-gravity

$$\begin{split} \underline{\text{Einstein-Maxwell}} \colon & S = \int \sqrt{-g} [\frac{1}{16\pi G_4} (\mathcal{R} - 2\Lambda) - \frac{1}{4} F_{MN} F^{MN}], \quad \Lambda = -\frac{3}{R^2} \\ ds^2 &= -\frac{r^2 f(r)}{R^2} dt^2 + \frac{R^2}{r^2 f(r)} dr^2 + \frac{r^2}{R^2} dx_i^2, \quad f(r) = 1 - (\frac{r_0}{r})^3 + \frac{Q_e^2}{r^4} (1 - \frac{r}{r_0}), \quad Q_e^2 = 3r_0^4 \\ & \text{[Dim.reduction:} \quad ds^2 = g_{\mu\nu}^{(2)} dx^\mu dx^\nu + \Phi^2 dx_i^2] \end{split}$$

Solve for $F_{\mu\nu}$, put back in EOM/action \rightarrow dim.redux \rightarrow equivalent dilaton-gravity + potential

$$\rightarrow \quad S = \frac{1}{16\pi G_2} \int d^2x \sqrt{-g} \left(\Phi^2 \mathcal{R} - U(\Phi) \right), \qquad U(\Phi) = 2\Lambda \Phi + \frac{2Q_e^2}{R^6 \Phi^3}$$

$$\begin{aligned} \underline{\text{Einstein-Maxwell-scalar} + U(1): \quad (\gamma, \lambda_1, \lambda_2 \text{ fns of } z, \theta)} \\ S &= \int \sqrt{-g} (R - \frac{1}{2} (\partial \Psi)^2 + V_0 e^{\gamma \Psi} - \frac{e^{\lambda_1 \Psi}}{4} F_{\mu\nu}^{(1)\,2} - \frac{e^{\lambda_2 \Psi}}{4} F_{\mu\nu}^{(2)\,2}) \\ ds^2 &= (\frac{r}{r_{h\nu}})^{-\theta} [-\frac{r^{2z} f(r)}{R^{2z}} dt^2 + \frac{R^2}{r^2 f(r)} dr^2 + \frac{r^2}{R^2} dx_i^2], \qquad Q^2 \sim r_0^{2(1+z-\theta)} \\ \text{[Also } \Psi, \ F_{tr}^{(1)}, \ F_{tr}^{(2)} \text{ fns of } r] \qquad \text{[Energy condns:} \quad z \ge 1, \ 2z - 2 - \theta \ge 0, \ 2 - \theta \ge 0] \end{aligned}$$

Equivalent 2-dim dilaton-gravity-scalar theory + potential: $S = \frac{1}{16\pi G_2} \int d^2 x \sqrt{-g} \left(\Phi^2 \mathcal{R} - \frac{\Phi^2}{2} (\partial \Psi)^2 - U(\Phi, \Psi) \right),$ $U(\Phi, \Psi) = -V_0 e^{\gamma \Psi} \Phi + \frac{1}{\Phi^3} \left(\frac{V_1}{e^{\lambda_1 \Psi}} + \frac{V_2 Q^2}{e^{\lambda_2 \Psi}} \right) \qquad [V_0, V_1, V_2 \text{ fns of } z, \theta]$

Is the near- AdS_2 theory Jackiw-Teitelboim?

Extremal branes, 2d dilaton-gravity

$$\begin{split} \underline{\text{Einstein-Maxwell}} \colon & S = \int \sqrt{-g} [\frac{1}{16\pi G_4} (\mathcal{R} - 2\Lambda) - \frac{1}{4} F_{MN} F^{MN}], \quad \Lambda = -\frac{3}{R^2} \\ ds^2 &= -\frac{r^2 f(r)}{R^2} dt^2 + \frac{R^2}{r^2 f(r)} dr^2 + \frac{r^2}{R^2} dx_i^2, \quad f(r) = 1 - (\frac{r_0}{r})^3 + \frac{Q_e^2}{r^4} (1 - \frac{r}{r_0}), \quad Q_e^2 = 3r_0^4 \\ & \text{[Dim.reduction:} \quad ds^2 = g_{\mu\nu}^{(2)} dx^\mu dx^\nu + \Phi^2 dx_i^2] \end{split}$$

Solve for $F_{\mu\nu}$, put back in EOM/action \rightarrow dim.redux \rightarrow equivalent dilaton-gravity + potential

$$\rightarrow \quad S = \frac{1}{16\pi G_2} \int d^2x \sqrt{-g} \left(\Phi^2 \mathcal{R} - U(\Phi) \right), \qquad U(\Phi) = 2\Lambda \Phi + \frac{2Q_e^2}{R^6 \Phi^3}$$

$$\begin{aligned} \underline{\text{Einstein-Maxwell-scalar} + U(1)}: \quad & (\gamma, \lambda_1, \lambda_2 \text{ fns of } z, \theta) \\ S &= \int \sqrt{-g} (R - \frac{1}{2} (\partial \Psi)^2 + V_0 e^{\gamma \Psi} - \frac{e^{\lambda_1 \Psi}}{4} F_{\mu\nu}^{(1)\,2} - \frac{e^{\lambda_2 \Psi}}{4} F_{\mu\nu}^{(2)\,2}) \\ & ds^2 &= (\frac{r}{r_{hv}})^{-\theta} [-\frac{r^{2z} f(r)}{R^{2z}} dt^2 + \frac{R^2}{r^2 f(r)} dr^2 + \frac{r^2}{R^2} dx_i^2], \qquad Q^2 \sim r_0^{2(1+z-\theta)} \\ \text{[Also } \Psi, \; F_{tr}^{(1)}, \; F_{tr}^{(2)} \; \text{fns of } r] \qquad \text{[Energy condns:} \quad z \ge 1, \; 2z - 2 - \theta \ge 0, \; 2 - \theta \ge 0] \end{aligned}$$

Equivalent 2-dim dilaton-gravity-scalar theory + potential: $S = \frac{1}{16\pi G_2} \int d^2 x \sqrt{-g} \left(\Phi^2 \mathcal{R} - \frac{\Phi^2}{2} (\partial \Psi)^2 - U(\Phi, \Psi) \right),$ $U(\Phi, \Psi) = -V_0 e^{\gamma \Psi} \Phi + \frac{1}{\Phi^3} \left(\frac{V_1}{e^{\lambda_1 \Psi}} + \frac{V_2 Q^2}{e^{\lambda_2 \Psi}} \right) \qquad [V_0, V_1, V_2 \text{ fns of } z, \theta]$

Is the near- AdS_2 theory Jackiw-Teitelboim? Yes.

Linearized fluctuations $\rightarrow \Psi$ -scalar massive, propagates on AdS_2 . Quadratic corrections, ...

Generic 2-dim dilaton-gravity-scalar

D-dim gravity-scalar theory (after incorporating $(F_{\mu\nu}^I)^2$ contributions)

$$S = \frac{1}{16\pi G_D} \int d^D x \sqrt{-g^{(D)}} \left(\mathcal{R}^{(D)} - \frac{h_{IJ}}{2} \partial_M \Psi^I \partial^M \Psi^J - V(\Psi^I, g) \right)$$

Dim.redux: $ds^2 = g^{(2)}_{\mu\nu} dx^{\mu} dx^{\nu} + \Phi^{\frac{4}{D-2}} \sum_{i=1}^{D-2} dx_i^2, \qquad g^{(D)}_{xx} \equiv \Phi^{\frac{4}{D-2}}$

2-dim dilaton-gravity-matter theory (Weyl transfm $g_{\mu\nu} = \Phi^{\frac{2(D-3)}{(D-2)}} g_{\mu\nu}^{(2)}$ to absorb Φ -kinetic term) $S = \frac{1}{16\pi G_2} \int d^2x \sqrt{-g} \left(\Phi^2 \mathcal{R} - \frac{\Phi^2}{2} h_{IJ} \partial_\mu \Psi^I \partial^\mu \Psi^J - U(\Phi, \Psi^I) \right), \quad U(\Phi, \Psi^I) = V \Phi^{\frac{2}{D-2}}$

EOM:
$$g_{\mu\nu}\nabla^2\Phi^2 - \nabla_{\mu}\nabla_{\nu}\Phi^2 + \frac{g_{\mu\nu}}{2}\left(\frac{\Phi^2}{2}h_{IJ}\partial_{\mu}\Psi^I\partial^{\mu}\Psi^J + U\right) - \frac{\Phi^2}{2}h_{IJ}\partial_{\mu}\Psi^I\partial_{\nu}\Psi^J = 0,$$

 $\mathcal{R} - \frac{h_{IJ}}{2}\partial_{\mu}\Psi^I\partial^{\mu}\Psi^J - \frac{\partial U}{\partial(\Phi^2)} = 0,$ $\frac{1}{\sqrt{-g}}\partial_{\mu}(\sqrt{-g}\Phi^2h_{IJ}\partial^{\mu}\Psi^J) - \frac{\partial U}{\partial\Psi^I} = 0$

<u>AdS₂ critical point</u>: $U_b = 0$, $\frac{\partial U}{\partial (\Phi^2)}\Big|_b = \frac{-2}{L^2}$, $\frac{\partial U}{\partial \Psi^I}\Big|_b = 0$

Static bgnd, away from AdS_2 : nontrivial radial flow. Interpret as holographic renormalization group flow? c-function?

$$ds^{2} = -B^{2}dt^{2} + \frac{du^{2}}{B^{2}} + \Phi^{\frac{4}{D-2}} \sum_{i=1}^{D-2} dx_{i}^{2} \qquad [\zeta^{t}, \zeta^{r} \neq 0, \quad \xi^{t}, \xi^{i} \neq 0]$$

Null energy conditions: $R_{MN}\zeta^{M}\zeta^{N} = -2B^{2}\left[\frac{\Phi''}{\Phi} - \frac{(D-4)}{(D-2)}\frac{(\Phi')^{2}}{\Phi^{2}}\right] \ge 0,$
 $R_{MN}\xi^{M}\xi^{N} = \frac{B^{2}}{2}\left[\frac{(B^{2})''}{B^{2}} - \frac{2}{(D-2)}\frac{(\Phi^{2})''}{\Phi^{2}} + \frac{2(D-4)}{(D-2)}\frac{(B^{2})'\Phi'}{B^{2}\Phi}\right] \ge 0$

Dim.redux \rightarrow focus on 2-dim flows ending in IR at AdS_2 .

$$ds^{2} = -B^{2}dt^{2} + \frac{du^{2}}{B^{2}} + \Phi^{\frac{4}{D-2}} \sum_{i=1}^{D-2} dx_{i}^{2} \qquad [\zeta^{t}, \zeta^{r} \neq 0, \quad \xi^{t}, \xi^{i} \neq 0]$$

Null energy conditions: $R_{MN}\zeta^{M}\zeta^{N} = -2B^{2} \left[\frac{\Phi''}{\Phi} - \frac{(D-4)}{(D-2)} \frac{(\Phi')^{2}}{\Phi^{2}}\right] \ge 0,$
 $R_{MN}\xi^{M}\xi^{N} = \frac{B^{2}}{2} \left[\frac{(B^{2})''}{B^{2}} - \frac{2}{(D-2)} \frac{(\Phi^{2})''}{\Phi^{2}} + \frac{2(D-4)}{(D-2)} \frac{(B^{2})'\Phi'}{B^{2}\Phi}\right] \ge 0$

Dim.redux \rightarrow focus on 2-dim flows ending in IR at AdS_2 . $[G_2 = \frac{G_D}{V_{D-2}}]$

Nonrelativistic Holography: entanglement, viscosity and AdS_2 , K. Narayan, CMI – p.26/32

$$ds^{2} = -B^{2}dt^{2} + \frac{du^{2}}{B^{2}} + \Phi^{\frac{4}{D-2}} \sum_{i=1}^{D-2} dx_{i}^{2} \qquad [\zeta^{t}, \zeta^{r} \neq 0, \quad \xi^{t}, \xi^{i} \neq 0]$$

ull energy conditions:
$$R_{MN}\zeta^{M}\zeta^{N} = -2B^{2} \left[\frac{\Phi''}{\Phi} - \frac{(D-4)}{(D-2)} \frac{(\Phi')^{2}}{\Phi^{2}}\right] \ge 0,$$
$$R_{MN}\xi^{M}\xi^{N} = \frac{B^{2}}{2} \left[\frac{(B^{2})''}{B^{2}} - \frac{2}{(D-2)} \frac{(\Phi^{2})''}{\Phi^{2}} + \frac{2(D-4)}{(D-2)} \frac{(B^{2})'\Phi'}{B^{2}\Phi}\right] \ge 0$$

N

Dim.redux \rightarrow focus on 2-dim flows ending in IR at AdS_2 . $[G_2 = \frac{G_D}{V_{D-2}}]$ Extremal entropy $S_{BH} = \frac{g_{xx}^{(D-2)/2}|_h V_{D-2}}{4G_D} = \frac{\Phi_h^2}{4G_2}$ (compactified black branes) Holographic c-function $C(u) = \frac{\Phi^2(u)}{4G_2} = \frac{\Phi^2(u) V_{D-2}}{4G_D}$ $\Phi^2 = g_{xx}^{(D-2)/2}$

Number of active degrees of freedom at scale u. $C(u) \rightarrow S_{BH}$, number of BH microstates [Studied by Goldstein,Jena,Mandal,Trivedi'05, nonsusy 4d BH attractors. Our context, details different]

$$ds^{2} = -B^{2}dt^{2} + \frac{du^{2}}{B^{2}} + \Phi^{\frac{4}{D-2}} \sum_{i=1}^{D-2} dx_{i}^{2} \qquad [\zeta^{t}, \zeta^{r} \neq 0, \quad \xi^{t}, \xi^{i} \neq 0]$$

Null energy conditions: $R_{MN}\zeta^{M}\zeta^{N} = -2B^{2}\left[\frac{\Phi''}{\Phi} - \frac{(D-4)}{(D-2)}\frac{(\Phi')^{2}}{\Phi^{2}}\right] \ge 0,$
 $R_{MN}\xi^{M}\xi^{N} = \frac{B^{2}}{2}\left[\frac{(B^{2})''}{B^{2}} - \frac{2}{(D-2)}\frac{(\Phi^{2})''}{\Phi^{2}} + \frac{2(D-4)}{(D-2)}\frac{(B^{2})'\Phi'}{B^{2}\Phi}\right] \ge 0$

Dim.redux \rightarrow focus on 2-dim flows ending in IR at AdS_2 . $[G_2 = \frac{G_D}{V_{D-2}}]$ Extremal entropy $S_{BH} = \frac{g_{xx}^{(D-2)/2}|_h V_{D-2}}{4G_D} = \frac{\Phi_h^2}{4G_2}$ (compactified black branes) Holographic c-function $C(u) = \frac{\Phi^2(u)}{4G_2} = \frac{\Phi^2(u) V_{D-2}}{4G_D}$ $\Phi^2 = g_{xx}^{(D-2)/2}$

Number of active degrees of freedom at scale u. $C(u) \rightarrow S_{BH}$, number of BH microstates [Studied by Goldstein,Jena,Mandal,Trivedi'05, nonsusy 4d BH attractors. Our context, details different]

[c-theorem proof: define $\tilde{\Phi} = \Phi^{2/(D-2)}$. Then $NEC1 \Rightarrow -\frac{\tilde{\Phi}''}{\tilde{\Phi}} \ge 0$, *i.e.* $\tilde{\Phi}'$ is decreasing along flow towards interior (IR). Can show $\tilde{\Phi}' \ge 0$ at boundary for hvLif bndry condns (NECs/sp.ht.+vity): broad family including AdS, nonconf branes etc $\Rightarrow \tilde{\Phi}' \ge 0$ all thro bulk]

Dual: RG flow to lower energies in dual QM to IR CFT_1 with $C_{IR} = S_{BH}$.

Nonrelativistic Holography: entanglement, viscosity and AdS_2 , K. Narayan, CMI – p.28/32

c-function, nonconformal Dp-branes

E.g.: nonconformal D2-M2 phases redux — UV: 3d SYM \rightarrow D2-sugra \rightarrow M2-AdS₄ (IR)

D2-brane sugra:

 $ds_{st}^{2} = \frac{r^{5/2}}{R_{2}^{5/2}} dx_{||}^{2} + \frac{R_{2}^{5/2}}{r^{5/2}} (dr^{2} + r^{2} d\Omega_{6}^{2}), \quad e^{\phi} = g_{s} \left(\frac{R_{2}^{5}}{r^{5}}\right)^{1/4}, \quad g_{YM}^{2} = \frac{g_{s}}{\sqrt{\alpha'}}, \quad R_{2}^{5} = \alpha'^{3} g_{YM}^{2} N$ $ds^{2} = \frac{r^{7/2}}{R_{2}^{7/2}} (-dt^{2} + dx_{1}^{2} + dx_{2}^{2}) + \frac{R_{2}^{3/2}}{r^{3/2}} dr^{2} = \left(\frac{\rho}{R_{2}}\right)^{1/3} \left[\frac{\rho^{2}}{R_{2}^{2}} (-dt^{2} + dx_{i}^{2}) + \frac{R_{2}^{2}}{\rho^{2}} d\rho^{2}\right]$

w nonconf Dp-brane supergravity radius/energy coord $w = \frac{r^{3/2}}{R_2^{5/2}}, \quad \rho = \frac{r^{3/2}}{R_2^{1/2}}, \quad u = \frac{r^2}{R_2}$ $\mathcal{C}(w) \sim \frac{V_2 \Phi^2}{G_4} = V_2 w^{7/3} \frac{N^2}{(g_{YM}^2 N)^{1/3}} = V_2 w^2 N_{eff}(w)$

$$\begin{aligned} \mathbf{M2}-AdS_4: \quad ds^2 &= \frac{r^2}{R^2} dx_{||}^2 + \frac{R^2}{r^2} dr^2 + R^2 d\Omega_7^2, \quad R^6 \sim Nl_p^6 \\ \mathcal{C}(w) &= \frac{V_2}{G_4} \frac{r^2}{R^2} = N^{3/2} V_2 w^2 \qquad [N^{3/2} \ll N_{eff}(w) \ll N^2] \end{aligned}$$

IR
$$AdS_2$$
: $C \to N^{3/2} \frac{V_2 Q}{R^4} \to \text{doped } CFT_3 \text{ redux (dopant density } \sigma_Q \equiv \frac{Q}{R^4})$.
[also other nonconformal Dp -branes]

Compare entropic c-function & Freedman, Gubser, Pilch, Warner: $C \sim c_E V_{d_i} w^{d_i}$, $c_{FGPW} \sim c_E$

Holographic RG, radial flow, dVV

Various versions of the holographic renormalization group have been formulated: de Boer, Verlinde, Verlinde formulated this in terms of radial Hamiltonian flow using a radial ADM-type split.

[Not Wilsonian, data not just from integrating out bulk at higher scales. Wilsonian formulations: Heemskerk,Polchinski; Faulker,Liu,Rangamani]

- $L_{bulk} \rightarrow H_{bulk} \rightarrow \text{conjugate momenta} \rightarrow \text{Hamiltonian constraints } [\pi^k, U, \dot{\psi}^k, \ldots].$
- Imagine finding the boundary action on some radial slice as a function of boundary field values at that scale \rightarrow Hamilton-Jacobi form for these conjugate momenta $\pi^k \sim \frac{\partial S}{\partial u b^k}$.
- Segregate this boundary action into local and nonlocal parts in a derivative expansion $S_{bdy} = S_{loc} + \Gamma$. $S_{loc} \sim \int \sqrt{-\gamma}W + \ldots$, with boundary potential W
- Hamiltonian constraints \rightarrow relate $H_{bulk} \& S_{bdy}$ in derivative expansion: e.g. $U \leftrightarrow W \ldots$

2-dim dilaton-gravity-scalars: $\frac{U}{(8\pi G_2)^2} = \frac{2h^{IJ}}{\Phi^2} \frac{\partial W}{\partial \Psi^I} \frac{\partial W}{\partial \Psi^J} - \frac{W}{\Phi} \frac{\partial W}{\partial \Phi}$ Flow eqns: $\dot{\Phi} = \frac{(4\pi G_2)W}{\Phi}, \quad \dot{\gamma}_{tt} = (8\pi G_2)\frac{\gamma_{tt}}{\Phi}\frac{\partial W}{\partial \Phi}, \quad \dot{\Psi}^I = -\frac{(16\pi G_2)h^{IJ}}{\Phi^2}\frac{\partial W}{\partial \Psi^J}$ β -functions: $\gamma_{tt} = a^2 \hat{\gamma}_{tt}, \quad \beta^I \equiv a \frac{d}{da} \Psi^I = -\frac{4h^{IJ}}{\Phi}\frac{\partial W}{\partial \Phi}, \quad \beta_\Phi \equiv a \frac{d}{da} \Phi = \frac{W}{\frac{\partial W}{\partial \Phi}}$

$NECs \rightarrow constraints \ on \ 2d \ potential$

 $\operatorname{NEC} T_{MN} \zeta^M \zeta^N \geq 0 \ (\zeta^t, \ \zeta^r \neq 0) \xrightarrow{redux} \operatorname{NEC in 2-dim} \ (\operatorname{monotonicity of c-fn})$

NEC $T_{MN}\xi^M\xi^N \ge 0 \ (\xi^t, \ \xi^x \ne 0)$; for static bgnds, $\partial_t \Psi^I = 0 \longrightarrow$

$$U - (D - 2)\frac{\partial U}{\partial \Phi^2} \ge 0$$

Nontrivial constraint on 2-dim effective potential & derivative.

Intrinsic origin/interpretation in 2-dim?

Sensible constraint for theories arising from dim.redux.

At
$$AdS_2$$
 criticality: $R = -\frac{2}{L^2} = \frac{\partial U}{\partial \Phi^2}$, $U = 0$

 dS_2 ? here R > 0 but U = 0 ...?

Conclusions, questions

- Various facets to nonrelativistic holography and AdS/CMT: string realizations for Lifshitz and hyperscaling violation.
- Nontrivial scalings for entanglement entropy.
 Viscosity bound satisfied for hvLif family with z ≤ 2 + d_i − θ.
- Adding charge \rightarrow extremal black branes $\xrightarrow{redux} AdS_2$ holography. Away from AdS_2 throat, nontrivial flow \rightarrow holographic RG \rightarrow dilatonic c-function in 2-dim dilaton-gravity-scalar theories.
- ??? Wilsonian RG in 2-dim theories
- ??? c-function formulation applies only for sufficiently symmetric transverse spaces. More generally?
- ??? RG in large N quantum mechanics?
- ??? NECs & constraints on 2-dim potential (intrinsically 2-dim)? dS_2 ?