Aspects of (A)dS **Extremal Surfaces and Entanglement Entropy**

K. Narayan Chennai Mathematical Institute

- Reviewing gauge/string realizations of Lifshitz & hyperscaling violation
- A lightlike limit of entanglement entropy
- de Sitter space, dS/CFT and extremal surfaces

Based mainly on arXiv:1408.7021, 1501.03019, 1504.07430, and in progress.

Gauge/gravity duality, entanglement

Many explorations of AdS/CFT over the years: *e.g.* nonrelativistic systems (holographic condmat), time-dependent systems, cosmology, ...

Holographic handle on strongly coupled gauge theory (CFT) physics.

A striking example is entanglement entropy : entropy of reduced density matrix of subsystem. **Ryu-Takayanagi** bulk prescription for EE: area of minimal surface in gravity dual.

Holographic Entanglement Entropy

Entanglement entropy: entropy of reduced density matrix of subsystem.

EE for spatial subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

Quantum Field Theory: in general difficult to compute EE. Corrl'ns strongest near interface \rightarrow leading scaling, *d*-dim area law $\mathcal{N}_{dof} \frac{V_{d-2}}{\epsilon^{d-2}}$. [$\epsilon = \text{UV cutoff}$] (Bombelli, Koul, Lee, Sorkin; Srednicki) [except: 2d CFT, Fermi surfaces]

2d Conformal field theory (single interval): $S_A = \frac{c}{3} \log \frac{l}{\epsilon}$ (c = central charge) (Holzhey,Larsen,Wilczek) ["replica": $tr\rho_A^n = \frac{Z_n}{(Z_1)^n}$, $S_A^{EE} = -\lim_{n \to 1} \partial_n tr\rho_A^n$ (Calabrese,Cardy)] d-dim free QFT (strip, width l, infinitely long): $S_A \sim \mathcal{N}_{dof}(\frac{V_{d-2}}{\epsilon^{d-2}} - \#\frac{V_{d-2}}{l^{d-2}})$.

[More progress recently (in part from interplay with holography): 2d CFT, spheres, ...]

EE a bulk surface probe [akin to correlation fns (geodesics), Wilson loops (bulk strings), ...]

Holographic Entanglement Entropy

Ryu-Takayanagi: $EE = \frac{A_{min.surf.}}{4G}$

(i) Define boundary spatial subsystem on const time slice,

(ii) corresponding const time slice in bulk, surface bounding subsystem,

(iii) extremize codim-2 surface area functional \rightarrow minimal area.

Example: CFT ground state = empty AdS_{d+1} , $ds^2 = \frac{R^2}{r^2}(dr^2 - dt^2 + dx_i^2)$. Strip, width $\Delta x = l$, infinitely long. Bulk surface x(r). Turning point r_* . $S_A \sim \frac{R^{d-1}}{G_{d+1}}(\frac{V_{d-2}}{\epsilon^{d-2}} - c_d \frac{V_{d-2}}{l^{d-2}})$, $\frac{R^3}{G_5} \sim N^2$ [4d], $\frac{R^2}{G_4} \sim N^{3/2}$ [3d]. $S_A = \frac{R}{2G_3} \log \frac{l}{\epsilon}$, $\frac{3R}{2G_3} = c$ [2d].

CFT thermal state (AdS black brane): minimal surface wraps horizon. $S^{fin} \sim N^2 T^3 V_{d-2} l$ Spherical extremal surfaces: subleading log-div. \rightarrow anomaly. Casini, Huerta, Myers derive EE.

$$\begin{bmatrix} S_A = \frac{1}{4G_{d+1}} \int_{-\infty}^{\infty} \prod_{i=1}^{d-2} \frac{Rdy_i}{r} \int \frac{R\sqrt{dr^2 + dx^2}}{r} = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\partial_r x)^2} \rightarrow \\ \frac{l}{2} = \int_0^{r_*} \frac{dr (r/r_*)^{d-1}}{\sqrt{1 - (r/r_*)^{2d-2}}}, \qquad S = \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2}{\sqrt{1 - (r/r_*)^{2d-2}}}. \end{bmatrix}$$

Nonrelativistic Holography

Generalizations of AdS/CFT with reduced symmetries.

Lifshitz spacetime: $ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru,Liu,Mulligan; Taylor) scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$ [dynamical exponent $z \ (z > 1)$] t, x_i -translations, x_i -rotations [smaller than Schrodinger symm *e.g.* Galilean boosts] [gravity, $\Lambda < 0$, massive gauge field]

Nonrelativistic Holography

Generalizations of AdS/CFT with reduced symmetries.

Lifshitz spacetime: $ds^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. (Kachru, Liu, Mulligan; Taylor) scaling $t \to \lambda^z t$, $x_i \to \lambda x_i$ [dynamical exponent $z \ (z > 1)$] t, x_i -translations, x_i -rotations [smaller than Schrodinger symm *e.g.* Galilean boosts] [gravity, $\Lambda < 0$, massive gauge field]

More general gravity phases: $ds^2 = r^{2\theta/d_i} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right).$

 θ = hyperscaling violation exponent; d_i = boundary spatial dim (x_i) .

[Conformally Lifshitz. Effective Einstein-Maxwell-Dilaton theories (Trivedi et al; Kiritsis et al, ...) $S \sim T^{(d_i - \theta)/z}$. Thermodynamics ~ space dim $d_{eff} = d_i - \theta$: actual space is d_i -dim.]

 $\theta = d_i - 1$: entanglement entropy $\sim \log l$, logarithmic behaviour. Gravity duals of Fermi surfaces? (Ogawa,Takayanagi,Ugajin; Huijse,Sachdev,Swingle) $d_i - 1 \leq \theta < d_i$: EE area law violations. (Dong,Harrison,Kachru,Torroba,Wang) [Energy conditions: $(d_i - \theta)(d_i(z - 1) - \theta) \geq 0$, $(z - 1)(d + z - \theta) \geq 0$.]

Lif/h.v., gauge/string realizations

Narrow gravity parameter space. Identify recognizable CFT deformations and regimes. Various string constructions involve x^+ -dimensional reduction of

$$ds^{2} = \frac{R^{2}}{r^{2}}(-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}) + R^{2}g_{++}(dx^{+})^{2} + R^{2}d\Omega_{S}^{2}.$$

i.e. $AdS + g_{++}$, where $g_{++} > 0$. In lower dim'nal theory, time is $t \equiv x^-$.

(i) z = 2 Lifshitz (Balasubramanian,KN; Donos,Gauntlett; ...): [Non-normalizable deformations] $g_{++} \sim r^0 \xrightarrow{x^+ - \dim redn.} z = 2$ Lifshitz. g_{++} sourced by lightlike matter, e.g. $g_{++} \sim (\partial_+ c_0)^2$ with lightlike axion $c_0 = Kx^+$: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + K^2 R^2 (dx^+)^2 \longrightarrow ds^2 = -\frac{dt^2}{r^4} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2}$. (ii) Hyperscaling violation: AdS_{d+1} plane waves (KN)

 $[\text{Normalizable } g_{++}] \quad ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Q r^{d-2} (dx^+)^2 \longrightarrow ds^2 = r^{\frac{2\theta}{d_i}} \left(-\frac{dt^2}{r^{2z}} + \frac{\sum_{i=1}^{d_i} dx_i^2 + dr^2}{r^2} \right), \quad z = \frac{d-2}{2} + 2, \quad \theta = \frac{d-2}{2}, \quad d_i = d-2.$

Anisotropic CFT excited state, energy-momentum density $T_{++} = Q$.

AdS₅ plane wave: d = 4, $d_i = 2$, $\theta = 1$, z = 3. Logarithmic behaviour of EE. Highly boosted limit of black branes (Singh).

Aspects of (A) dS extremal surfaces and entanglement entropy, K. Narayan, CMI – p.8/29

Entanglement, AdS plane waves $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{d-2} (dx^+)^2$, dual to CFT state, $T_{++} \sim Q$ EE, spacelike strips (width l, $\Delta x^+ > 0 > \Delta x^-$). (KN, Takayanagi, Trivedi)

Non-static spacetime \rightarrow extremal surfaces. Spacelike subsystem, UV cutoff ϵ : leading divergence is area law $\sim \frac{V_{d-2}}{\epsilon^{d-2}}$

Case A: width direction x_i . Strip along energy flux.Case B: Strip \perp flux.Finite cutoff-independent part of EE: size-dependent measure
of entanglement $S^{fin} \sim N^2 \sqrt{Q} V_2 \log(lQ^{1/4})$ [d=4].Phase transition (no connected
surface if $\Delta x^+ > 0 > \Delta x^-$).[ground st] $-N^2 \frac{V_2}{l^2} < S^{fin} < N^2 T^3 V_2 l$ [thermal entr] S_A saturated for $l \gtrsim Q^{-1/4}$.

[Boosted black branes (Maldacena, Martelli, Tachikawa): large boost λ , low temperature r_0 limit (Singh) $ds^2 = \frac{R^2}{r^2} \left(-2dx^+ dx^- + \frac{r_0^4 r^4}{2} (\lambda dx^+ + \lambda^{-1} dx^-)^2 + \sum_i dx_i^2 \right) + \frac{R^2 dr^2}{r^2 (1 - r_0^4 r^4)} .$]

More general plane wave states: *e.g.* M2-brane plane waves $EE^{finite} \sim \sqrt{Q}L\sqrt{l}\sqrt{N^{3/2}}$, nonconformal *Dp*-brane plane waves, ...

D-brane plane waves, EE

 $ds^{2} = \frac{R^{2}}{r^{2}}(-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}) + \frac{G_{d+1}Q}{R^{d-3}}r^{d-2}(dx^{+})^{2} + R^{2}d\Omega^{2}$ $AdS_{d+1} \text{ plane wave excited states: } EE^{finite} \pm \sqrt{Q}V_{d-2}l^{2-\frac{d}{2}}\sqrt{\frac{R^{d-1}}{G_{d+1}}}$ $[\pm : d \ge 4] \quad \sqrt{Q}V_{2}N \log(lQ^{1/4}) \text{ (D3), } \sqrt{Q}L\sqrt{l}\sqrt{N^{3/2}} \text{ (M2), } -\sqrt{Q}\frac{V_{4}}{l}\sqrt{N^{3}} \text{ (M5).}$ 3d, 4d: finite entanglement grows with width l (strip along flux direction).

[spacelike strip: leading divergence, area law, $\frac{V_2}{\epsilon^2}$ (4d), $\frac{V_1}{\epsilon}$ (3d)] [\perp flux: phase transition.]

 $\begin{bmatrix} \text{EE}^{fin} \text{ scaling estimates} \leftarrow \text{approximate } r_*, S^{fin} \text{ for large } Q, l \text{ from EE area functional} \end{bmatrix} \\ \begin{bmatrix} G_5 \sim G_{10} R_{D3}^5, G_{4,7} \sim G_{11} R_{M2,M5}^{7,4}, \text{with } R_{D3}^4 \sim g_s N l_s^4, R_{M2}^6 \sim N l_P^6, R_{M5}^3 \sim N l_P^3 \end{bmatrix}$

Nonconformal Dp-brane plane waves $\rightarrow \theta = \frac{p^2 - 6p + 7}{p - 5}, \ z = \frac{2(p - 6)}{p - 5}$. Dual to strongly coupled Yang-Mills theories with constant energy flux T_{++} (KN) (Singh). $ds_{st}^2 = \frac{r^{(7-p)/2}}{R_p^{(7-p)/2}} dx_{\parallel}^2 + \frac{G_{10}Q_p}{R_p^{(7-p)/2}} \frac{(dx^+)^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} \frac{dr^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} r^{(p-3)/2} d\Omega_{8-p}^2$ $e^{\Phi} = g_s \left(\frac{R_p^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}, \ g_{YM}^2 \sim g_s \alpha'^{(p-3)/2}, \ R_p^{7-p} \sim g_{YM}^2 N \alpha'^{5-p} \sim g_s N \alpha'^{(7-p)/2}.$ EE leading divergence $N_{eff}(\epsilon) \frac{V_{d-2}}{\epsilon^{d-2}}$ as for ground states (area law). $EE^{finite}: \frac{\sqrt{N_{eff}(l)}}{3-p} \frac{V_{p-1}\sqrt{Q}}{l(p-3)/2}, \qquad N_{eff}(l) = N^2 \left(\frac{g_{YM}^2 N}{lp-3}\right)^{\frac{p-3}{5-p}}$

Consistent with Dp-brane phase diagram, RG flows.

Mutual Information

MI (disjoint subsystems A & B): $I[A, B] = S[A] + S[B] - S[A \cup B]$.

 $I[A, B] \ge 0$. Cutoff-dependent divergences cancel. Gives bound for correlation fns.

Holographic mutual information: find extremal surface for $A \cup B$.

Subsystems far, two disjoint minimal surfaces: MI = 0.

Subsystems nearby, connected surface has lower area.

Ryu-Takayanagi \Rightarrow MI disentangling transition (Headrick).

[This is large N: expect softer subleading decay for MI.]

(Mukherjee, KN) MI for AdS plane wave excited states \rightarrow critical separation $\frac{x_c}{l}$ between subsystems smaller than in ground state. Mutual information disentangling occurs faster. Suggests energy density disorders system.

[e.g. $\frac{x_c}{l} \simeq 0.732$ (pure AdS_5) whereas $\frac{x_c}{l} \simeq 0.414$ (AdS_5 plane wave).] [Wide strips ($Ql^d \gg 1$), critical $\frac{x_c}{l}$ independent of flux Q.] [$Ql^d \sim O(1)$: numerical study] [Narrow strips $Ql^d \ll 1$: perturbative corrections ΔS (\sim EE thermodynamics) \rightarrow MI decreases.]

-

A lightlike limit of entanglement

AdS_{d+1} null deformation: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 g_{++} (dx^+)^2$ (KN) Recall that lower dim'nal theory after x^+ -reduction has time $t \equiv x^ \Rightarrow$ lower dim entangling surface lies on $x^- = const$ slice upstairs.

Strip subsystem: $x^+ = \alpha \chi$, $x^- = -\beta \chi$, $-\frac{l}{2} < x \le \frac{l}{2}$, $-\infty < \chi, y_i < \infty$. [Spacelike strip $\alpha = \beta = 1 \rightarrow \frac{x^+ + x^-}{\sqrt{2}} \equiv t = const$ surface. $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, area law.]

EE, null time x^- slice $(\beta = 0)$ $S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2 \neq g_{++}r^2}{\sqrt{2 \neq g_{++}r^2 - A^2r^{2d-2}}}$

 $\Rightarrow \qquad \text{Milder leading divergence } S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \frac{\sqrt{g_{++}(\epsilon)}}{\epsilon^{d-3}}$

 $g_{++} = 0$ (ground state) \Rightarrow lightlike EE (on x^- slices) vanishes.

A lightlike limit of entanglement

AdS_{d+1} null deformation: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 g_{++} (dx^+)^2$ (KN) Recall that lower dim'nal theory after x^+ -reduction has time $t \equiv x^ \Rightarrow$ lower dim entangling surface lies on $x^- = const$ slice upstairs.

Strip subsystem: $x^+ = \alpha \chi$, $x^- = -\beta \chi$, $-\frac{l}{2} < x \le \frac{l}{2}$, $-\infty < \chi, y_i < \infty$. [Spacelike strip $\alpha = \beta = 1 \rightarrow \frac{x^+ + x^-}{\sqrt{2}} \equiv t = const$ surface. $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$, area law.]

EE, null time x^- slice $(\beta = 0)$ $S \sim \frac{V_{d-2}R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2 \not < g_{++}r^2}{\sqrt{2 \not < g_{++}r^2 - A^2r^{2d-2}}}$

$$\Rightarrow \qquad \text{Milder leading divergence } S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \frac{\sqrt{g_{++}(\epsilon)}}{\epsilon^{d-3}}$$

 $g_{++} = 0$ (ground state) \Rightarrow lightlike EE (on x^- slices) vanishes.

Lightlike limit \equiv highly boosted limit of EE for spacelike strips.

Boost
$$x^{\pm} \to \lambda^{\pm 1} x^{\pm} \Rightarrow \alpha = \lambda$$
 and $\beta = \frac{1}{\lambda} \to 0$
 $\to S = \frac{V_{d-2} R^{d-1}}{4G_{d+1}} \int_{\epsilon}^{r_*} \frac{dr}{r^{d-1}} \frac{2 + \lambda^2 g_{++} r^2}{\sqrt{2 + \lambda^2 g_{++} r^2 - A^2 r^{2d-2}}}$ (and width $l \sim r_*$).

Regime $\lambda^2 g_{++}(\epsilon) \epsilon^2 \gtrsim 1$: \rightarrow EE on null time x^- slices ($\beta = 0$).

[Similar structure for boosted black branes, nonconformal brane plane waves etc]

Null EE, AdS_{d+1} plane waves

 $ds^2 = AdS_{d+1} + R^2Qr^{d-2}(dx^+)^2$, $T_{++} \sim Q$: spacelike EE, area law, $S^{div} \sim \frac{V_{d-2}}{\epsilon^{d-2}}$.

EE on null time x^- slices if $\lambda^2 g_{++}(\epsilon)\epsilon^2 \gtrsim 1$, *i.e.* $\lambda^2 Q\epsilon^d \gtrsim 1$.

In bulk: UV surface $r = \epsilon$ dips in sufficiently to feel g_{++} presence.

$$S \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}\sqrt{\lambda^2 Q}}{d-4} \left(\frac{1}{\epsilon^{\frac{d}{2}-2}} - c_d \frac{1}{l^{\frac{d}{2}-2}}\right)$$

Milder leading divergence $S^{div} \sim \frac{R^{d-1}}{4G_{d+1}} \frac{V_{d-2}}{\epsilon^{d_{eff}-2}}$ $(d_{eff} = d - 1 - \theta = \frac{d}{2})$

Resembles spacelike EE in hyperscaling violating theory $(\theta = \frac{d-2}{2})$ from x^+ -red'n. $g_{++} = 0$ (ground state) \Rightarrow lightlike EE (on x^- slices) vanishes.

Reminiscent of ultralocality in lightcone QFT (Wall).

Ground state: *n*-pt functions (fields at distinct locations) vanish. Suggests vanishing EE. Excited states, $P_+ \neq 0$: can show free-field correlators non-vanishing. Suggests EE nonzero. Boundary space: $ds^2 = -2dx^+dx^- + g^2(dx^+)^2 + \sum_{i=1}^{d-2} dx_i^2$, with $g^2 = T_{++}\epsilon^d \gtrsim 1$. Usual area law $S_{div} \sim N^2 \frac{V_x + V_{yi}}{\epsilon^{d-2}} = N^2 V_{d-2} \frac{\sqrt{T_{++}\epsilon^d}}{\epsilon^{d-2}} = N^2 \sqrt{Q} \frac{V_{d-2}}{\epsilon^{d}eff^{-2}}$.

de Sitter space and dS/CFT

de Sitter space $ds^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2).$ future infinity future timelike Fascinating for various reasons. future horizon for dS dS/CFT: fluctuations about dS encoded in dual bast horizon for dS⁴ "lower patch" dS ast timelike Euclidean non-unitary CFT on boundary at future timelike infinity \mathcal{I}^+ (Strominger; Witten). Interesting to explore. (Maldacena '02) analytic continuation $r \rightarrow -i\tau$, $R_{AdS} \rightarrow -iR_{dS}$ from Eucl $AdS \rightarrow$ Hartle-Hawking wavefunction of the universe $\Psi[\varphi] = Z_{CFT}$. Energy-momentum tensor $\langle TT \rangle$ 2-pt fn \rightarrow dual CFT central charge $C_d \sim i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}}$, negative or imaginary. $C_3 \sim -\frac{R_{dS}^2}{G_4}$ for dS_4 . \int Bulk EAdS regularity conditions, deep interior \rightarrow Bunch-Davies initial conditions in deSitter, $\varphi_k(\tau) \sim e^{ik\tau}$, for large $|\tau|$. $Z_{CFT} = \Psi[\varphi] \sim e^{iS_{cl}[\varphi]}$ (semiclassical). [Dual CFT: $\langle O_k O_{k'} \rangle \sim \frac{\delta^2 Z}{\delta \varphi_k^0 \varphi_{k'}^0}$] [Bulk expectation values $\langle f_1 f_2' \rangle \sim \int D \varphi f_1 f_2' |\Psi|^2$.]

Wavefunction $\Psi[\varphi]$ not pure phase \rightarrow complex saddle points contribute to observables.]

dS/CFT at uniform energy density

(Sumit Das, Diptarka Das, KN)

$$ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} \left(-\frac{d\tau^2}{1+\alpha\tau_0^d\tau^d} + (1+\alpha\tau_0^d\tau^d)dw^2 + \sum_{i=1}^{d-1} dx_i^2 \right),$$

 α is a complex phase and τ_0 real parameter of dimension energy, solves $R_{MN} = \frac{d}{R_{dS}^2} g_{MN}$.

- Regularity: Wick rotate $\tau \rightarrow il$, demand resulting spacetime (thought of as saddle point in path integral) in Euclidean (l, w)-plane has no conical singularity \Rightarrow
 - $\alpha = -(-i)^d, \ l \ge \tau_0, \ w \simeq w + \frac{4\pi}{(d-1)\tau_0}.$ [analogous to interior regularity in AdS]

[This is equivalent to analytic continuation $r \to -i\tau$, $R_{AdS} \to -iR_{dS}$ from EAdS black brane $ds^2 = \frac{R_{AdS}^2}{r^2} \left(\frac{dr^2}{1 - r_0^d r^d} + (1 - r_0^d r^d) d\theta^2 + \sum_{i=1}^{d-1} dx_i^2 \right).$]

"Normalizable" metric modes \Rightarrow energy-momentum tensor vev. $T_{ij} = \frac{2}{\sqrt{h}} \frac{\delta Z_{CFT}}{\delta h^{ij}} = \frac{2}{\sqrt{h}} \frac{\delta \Psi}{\delta h^{ij}} \propto i \frac{R_{dS}^{d-1}}{G_{d+1}} g_{ij}^{(d)} \rightarrow dS$ black brane. $[g_{ij}^{(d)} = \text{coefficient of } \tau^{d-2} \text{ in Fefferman-Graham expn}]. \qquad [dS/CFT: Z_{CFT} = \Psi].$ Note *i* arising from the wavefunction of the universe $\Psi \sim e^{iS_{cl}}$ \Rightarrow energy-momentum real only if $g_{ij}^{(d)}$ pure imaginary. $dS_4/CFT_3: \quad \alpha = -i, \quad T_{ww} = -\frac{R_{dS}^2}{G_4} \tau_0^3 \quad \text{with} \quad T_{ww} + (d-1)T_{ii} = 0.$

de Sitter "bluewall"

$$ds^{2} = \frac{R_{dS}^{2}}{\tau^{2}} \left(-\frac{d\tau^{2}}{1-\tau_{0}^{d}\tau^{d}} + (1-\tau_{0}^{d}\tau^{d})dw^{2} + dx_{i}^{2} \right)$$

Penrose diagram resembles AdS-Schwarzschild rotated by $\frac{\pi}{2}$.

 $[-\infty \le w \le \infty]$ Take $\alpha = -1$ earlier.

Equivalently, analytically continue au_0^d parameter too.

Using Kruskal coordinates: two asymptotic dS universes $(\tau \rightarrow 0)$. Timelike singularities $(\tau \rightarrow \infty)$. Cauchy horizons $(\tau = \tau_0)$.

 \simeq interior of Reissner-Nordstrom black hole (or wormhole).

Trajectories in the de Sitter bluewall and the Cauchy horizon \rightarrow Observers P_1 are static while P_2 has w-momentum p_w ,

crosses the horizon, turns around inside and appears

to re-emerge in the future universe.

Incoming lightrays from infinity "crowd near" Cauchy horizon:

Late time infalling observers P_2 see early lightrays blueshifted.

Infinite blueshift due to Cauchy horizon: instability.

A generalization of Ryu-Takayanagi to $dS \ ds^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2)$: Eucl time slice w = const, subregion at future timelike infinity \rightarrow codim-2 extremal surfaces in de Sitter space.

 \rightarrow bulk analog of setting up entanglement entropy in dual Eucl CFT: consider boundary Euclidean time slice, construct spatial subsystem, trace over complement.

An obvious concern: \mathcal{I}^+ boundary spacelike \Rightarrow real surfaces appear timelike, dipping inwards into past. Might imagine appropriate surfaces encoding EE should be spacelike.

A generalization of Ryu-Takayanagi to $dS \ ds^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2)$: Eucl time slice w = const, subregion at future timelike infinity \rightarrow codim-2 extremal surfaces in de Sitter space.

 \rightarrow bulk analog of setting up entanglement entropy in dual Eucl CFT: consider boundary Euclidean time slice, construct spatial subsystem, trace over complement.

An obvious concern: \mathcal{I}^+ boundary spacelike \Rightarrow real surfaces appear timelike, dipping inwards into past. Might imagine appropriate surfaces encoding EE should be spacelike.

Some possible expectations of extremal surface area for interpretation as entanglement entropy based on $Z_{CFT} = \Psi$:

- central charge coefficient in leading (area law) divergence must match dual CFT central charge earlier (from $\langle TT \rangle$ correlators).
- coefficient in logarithmic divergence must match conformal anomaly.
- expect finite cutoff-independent parts which are size-dependent measures of entanglement entropy in CFT.

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface. The above expectations and dual CFT central charge being negative or pure imaginary suggest real surfaces will not work \rightarrow

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface. The above expectations and dual CFT central charge being negative or pure imaginary suggest real surfaces will not work \rightarrow

• Sign difference from $AdS \Rightarrow$ no <u>real</u> "turning point". $x(\tau)$ hyperboloid.

Join two half-extremal-surfaces with cusp $\rightarrow S_{dS} = 2 \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int_{\epsilon}^{\tau_0} \frac{d\tau}{\tau^{d-1}} \frac{2}{\sqrt{1+B^2\tau^{2d-2}}}$. Minimize area: increase $B \Rightarrow$ surface shape saturates, approaches $\dot{x}^2 \rightarrow 1$ as $B \gg \frac{1}{\epsilon^{d-1}}$.

 \rightarrow restriction of past lightcone wedge of subregion. $x(\tau)$ null surface. Area vanishes.

Real codim-2 surfaces: featureless, no apparent relation to EE.

["outward bending" surfaces \rightarrow null, $S_{dS} = 0$] [surfaces $x(\tau) = const$: B = 0, max area] [Codim-1 surfaces: similar structure.]

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{a} \cdot V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{a} \cdot V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad (\partial_{\tau} x)^2 = \frac{-A^2 \tau^{2d-2}}{1 - A^2 \tau^{2d-2}} . \qquad [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}]$$

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad (\partial_{\tau}x)^2 = \frac{-A^2\tau^{2d-2}}{1 - A^2\tau^{2d-2}} \cdot \qquad [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}]$$

$$\frac{dS_4/CFT_3}{x(\tau)}: \text{ consider } A^2 > 0. \text{ Near } \tau \to 0: \quad \dot{x}^2 \sim -A^2 \tau^4 \text{ i.e.}$$

$$x(\tau) \sim \pm iA\tau^3 + x(0). \quad \text{This is spatial direction in Eucl CFT} \Rightarrow$$

$$x(\tau) \text{ real-valued } \Rightarrow \tau = iT \quad \text{[can show width } \Delta x \text{ also real]}$$

 $x(\tau) \to \text{complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$ $(\frac{dx}{dT})^2 = \frac{A^2T^4}{1-A^2T^4}$. Note turning point: $T_* = \frac{1}{\sqrt{A}}$ (where $|\dot{x}|^2 \to \infty$).

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad (\partial_{\tau}x)^2 = \frac{-A^2\tau^{2d-2}}{1 - A^2\tau^{2d-2}} \,. \qquad [A^2 < 0 \text{ is earlier real-}\tau \text{ solution}]$$

$$\frac{dS_4/CFT_3}{x(\tau)} \approx \frac{dS_4}{CFT_3}: \text{ consider } A^2 > 0. \text{ Near } \tau \to 0: \quad \dot{x}^2 \sim -A^2 \tau^4 \text{ i.e.}$$

$$x(\tau) \sim \pm iA\tau^3 + x(0). \quad \text{This is spatial direction in Eucl CFT} \Rightarrow$$

$$x(\tau) \text{ real-valued } \Rightarrow \tau = iT \qquad \text{[can show width } \Delta x \text{ also real]}$$

 $x(\tau) \to \text{complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$ $(\frac{dx}{dT})^2 = \frac{A^2T^4}{1-A^2T^4}$. Note turning point: $T_* = \frac{1}{\sqrt{A}}$ (where $|\dot{x}|^2 \to \infty$).

Can now smoothly join half-extremal-surfaces at turning point.
$$[\tau_{UV} = i\epsilon, \ \tau_* \sim il]$$

$$\frac{\Delta x}{2} = \frac{l}{2} = \int_0^{\tau_*} d\tau \frac{iA\tau^2}{\sqrt{1 - A^2\tau^4}} = \int_0^{T_*} \frac{(T^2/T_*^2) dT}{\sqrt{1 - (T^4/T_*^4)}} \sim T_*$$

$$S_{dS_4} = -i\frac{R_{dS}^2}{4G_4}V_1 \int_{\tau_{UV}}^{\tau_*} \frac{d\tau}{\tau^2} \frac{1}{\sqrt{1 - \tau^4/\tau_*^4}} = -\frac{R_{dS}^2}{4G_4}V_1 \int_{\epsilon}^{l} \frac{dT/T^2}{\sqrt{1 - T^4/T_*^4}} \sim -\frac{R_{dS}^2}{G_4}V_1(\frac{1}{\epsilon} - c\frac{1}{l})$$
Overall sign \rightarrow match with dS_4/CFT_3 central charge.

Aspects of (A) dS extremal surfaces and entanglement entropy, K. Narayan, CMI – p.24/29

de Sitter (Poincare): $ds_{d+1}^2 = \frac{R_{dS}^2}{\tau^2} (-d\tau^2 + dw^2 + dx_i^2) \rightarrow \text{EE in dual Eucl CFT} \rightarrow$ bulk: Eucl time slice w = const, subregion at future timelike infnty \rightarrow codim-2 extremal surface.

$$[\text{strip}] \quad S_{dS} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{1}{\tau^{d-1}} \sqrt{dx^2 - d\tau^2} = \frac{R_{dS}^{d-1}V_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} \sqrt{\dot{x}^2 - 1}$$

$$Extremize \quad \to \quad \left(\partial_{\tau}x\right)^2 = \frac{-A^2\tau^{2d-2}}{1 - A^2\tau^{2d-2}} \,. \qquad [A^2 < 0 \text{ is the earlier real solution}]$$

 $\frac{dS_{d+1}/CFT_d}{x(\tau) \sim \pm \sqrt{-A^2} \tau^d + x(0)}.$ This is spatial direction in Eucl CFT $\Rightarrow x(\tau) \text{ real-valued} \Rightarrow A^2 < 0, \ \tau = iT \qquad \text{[can show width } \Delta x \text{ also real]}$ $x(\tau) \rightarrow \text{ complex extremal surface, } \tau \text{ along imaginary path } \tau = iT.$

 $(\frac{dx}{dT})^2 = \frac{A^2 T^{2d-2}}{1+(-1)^{d-1} A^2 T^{2d-2}}$. Note turning point: $T_*^{2d-2} A^2 = 1$.

$$S_{dS} = -i \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int_{\tau_{UV}}^{\tau_*} \frac{d\tau}{\tau^{d-1}} \frac{2}{\sqrt{1+A^2\tau^{2d-2}}}$$

= $i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}} V_{d-2} \int_{\epsilon}^{T_*} \frac{dT/T^{d-1}}{\sqrt{1+(-1)^{d-1}A^2T^{2d-2}}} \sim i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}} V_{d-2} (\frac{1}{\epsilon^{d-2}} - c_d \frac{1}{l^{d-2}})$

de Sitter extremal surfaces, dS/CFT

Complex extremal surfaces: compare dS_{d+1}/CFT_d central charges. [Strip width real (CFT spatial direction) \Rightarrow path $\tau = iT \rightarrow$ extremal surface with turning point.] dS_4 : area $S_{dS_4} = -\frac{R_{dS}^2}{4G_4}V_1 \int_{\epsilon}^{l} \frac{dT/T^2}{\sqrt{1-T^4/T_*^4}} \sim -\frac{R_{dS}^2}{G_4}V_1(\frac{1}{\epsilon} - c\frac{1}{l})$ dS_{d+1} , even d: area $S_{dS} = i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}}V_{d-2} \int_{\epsilon}^{T_*} \frac{dT/T^{d-1}}{\sqrt{1+(-1)^{d-1}(T/T_*)^{2d-2}}}$ $\sim i^{1-d} \frac{R_{dS}^{d-1}}{2G_{d+1}}V_{d-2}(\frac{1}{\epsilon^{d-2}} - c_d\frac{1}{l^{d-2}})$

- = analytic continuation from AdS Ryu-Takayanagi extremization. $S_{AdS}[R, x(r), r] = \frac{R^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{dr}{r^{d-1}} \sqrt{1 + (\frac{dx}{dr})^2}, \qquad (x')^2 = \frac{A^2 r^{2d-2}}{1 - A^2 r^{2d-2}} \rightarrow$ $\dot{x}^2 = \frac{-(-1)^{d-1} A^2 \tau^{2d-2}}{1 - (-1)^{d-1} A^2 \tau^{2d-2}}, \qquad S_{dS} = -i \frac{R_{dS}^{d-1}}{4G_{d+1}} V_{d-2} \int \frac{d\tau}{\tau^{d-1}} \frac{1}{\sqrt{1 - (-1)^{d-1} A^2 \tau^{2d-2}}}.$
- leading "area law" divergence $C_d \frac{V_{d-2}}{\epsilon^{d-2}} \rightarrow$ central charges $C_d = i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}}$ match dS/CFT using $Z_{CFT} = \Psi$.
- finite cutoff-independent parts $\sim i^{1-d} \frac{R_{dS}^{d-1}}{G_{d+1}} \frac{V_{d-2}}{l^{d-2}}$.
- Spherical extremal surfaces: subleading log-div. Anomaly coeff exactly matches Ψ log-coeff.
- dS_4 black brane, CFT_3 at uniform energy density: S_{dS}^{fin} resembles extensive thermal entropy.

Spherical extremal surfaces, $dS/CFT_{(KN)}$ $ds^2 = \frac{R_{dS}^2}{\tau^2}(-d\tau^2 + dw^2 + dr^2 + r^2 d\Omega_{d-2}^2) \rightarrow w = const$, sphere subregion. $0 \le r \le l$ $S_{dS} = \frac{R_{dS}^{d-1}\Omega_{d-2}}{4G_{d+1}} \int \frac{d\tau}{\tau^{d-1}} r^{d-2} \sqrt{(\frac{dr}{d\tau})^2 - 1}$, extremize: $r(\tau) = \sqrt{l^2 + \tau^2}$, $\dot{r} = \frac{\tau}{\sqrt{l^2 + \tau^2}}$

Real τ : outward-bending, $r(\tau) \ge l$. Timelike: $\dot{r} \le 1$. No "end" at finite τ . $\rightarrow \epsilon < |\tau| < \infty \rightarrow S_{dS}$ real, no finite cutoff-indep parts.

 $\tau = iT: \text{ now } 0 \leq r(\tau) < l \text{ and } \Delta r = l. \text{ Turning point } \tau_* = il.$ $S_{dS} = \frac{R_{dS}^{d-1}\Omega_{d-2}}{4G_{d+1}} \int_{i\epsilon}^{\tau_*} \frac{d\tau}{\tau^{d-1}} (-il)(l^2 + \tau^2)^{(d-3)/2} \rightarrow S_{dS_4} = -\frac{\pi R_{dS}^2}{2G_4}(\frac{l}{\epsilon} - 1)$ $\underline{d \text{ even: } \log \frac{l}{\epsilon} \text{ divergence. } \operatorname{Coeff} \rightarrow -i\frac{R_{dS}}{2G_3} [dS_3]; \quad -i\frac{\pi R_{dS}^3}{2G_5} [dS_5], \dots$ Free energy of CFT_d on sphere: log-div, related to conformal anomaly. $Casini, \text{Huerta, Myers: } -F_{CFT} = \log Z_{CFT} = a \log \epsilon + \dots, \text{ integ. trace anomaly } a = \int \langle T^k_k \rangle.$ $Z_{CFT} = e^{-F} = \Psi \sim e^{iS_{cl}} \text{ for auxiliary global } dS. \quad T_{ij} \sim \frac{2}{\sqrt{h}} \frac{\delta(-F_{CFT})}{\delta h^{ij}} \sim i\frac{2}{\sqrt{h}} \frac{\delta S}{\delta h^{ij}}$ $\rightarrow \text{ log-div coeff matches } \rightarrow \text{ equivalent to analytic continuation from } AdS.$

$$\begin{bmatrix} S_{CFT}^{EE} = -\lim_{n \to 1} \partial_n \frac{Z_n}{(Z_1)^n}; \text{ scale change } l \frac{\partial}{\partial l} S_{CFT}^{EE} \sim \int \langle T_\mu^\mu \rangle; \text{ here } S_{CFT}^{EE} = S_{dS} \end{bmatrix}$$

$$S_{cl} = \frac{2d \Omega_d R_{dS}^{d-1}}{16\pi G_{d+1}} \int \frac{dt}{R_{dS}} (\cosh \frac{t}{R_{dS}})^d \rightarrow \text{log-div } [ds^2 = -dt^2 + R_{dS}^2 (\cosh \frac{t}{R_{dS}})^2 d\Omega_d^2]$$

$$Aspects of (A) dS \text{ extremal surfaces and entanglement entropy, K. Narayan, CMI - p.27/29}$$

 dS_4 surfaces, negative EE dS_4 : $S_A \sim -\frac{R_{dS}^2}{G_4}(\frac{V_1}{\epsilon} - \frac{V_1}{l})$ [strip]

• Disjoint strip subregions A, B: analog of mutual information $I[A, B] = S[A] + S[B] - S[A \cup B]$ negative definite for A, Bsufficiently nearby (vanishes beyond critical separation).

• Consider two strip subregions, width l_2 and $l_1 > l_2$ $(l_1, l_2 \ll V_1)$. Then $S(l_1) - S(l_2) = -\frac{R_{dS}^2}{G_4} (\frac{V_1}{l_2} - \frac{V_1}{l_1}) < 0$, *i.e.* $S(l_1) < S(l_2) \Rightarrow$ bigger subregion more ordered than smaller one. [conventional unitary CFT: $S(l_1) > S(l_2)$, *i.e.* bigger subregion more disordered]

• Entropic c-function $c(l) = \frac{l^{d-1}}{V_{d-2}} \frac{dS_A}{dl}$. $c(l) \equiv \frac{l^2}{V_1} \frac{dS_A}{dl} = -\frac{R_{dS}^2}{G_4} < 0$ *i.e.* as l increases, S(l) decreases. Asymptotically dS_4 spaces, negative areas S_A of complex extremal surfaces imply c'(l) > 0, *i.e.* as l increases, c(l) increases. New degrees of freedom *integrated in*? $|\tau_*| = l$: increasing size $l \to$ going to larger $|\tau_*|$ (earlier times in past).

Conclusions, questions

Various gauge/string realizations of Lifshitz & hyperscaling violation involve x⁺-reduction of AdS deformations with g₊₊.
 Entanglement entropy, lower dim theory → null time x⁻ slices upstairs → lightlike limit of EE. Lightcone QFT, ultralocality, ...?

• Deeper understanding of complex extremal surfaces in de Sitter space, EE as probe of dS/CFT.

Entanglement entropy in non-unitary (ghost) CFTs [tentative]

 $\begin{bmatrix} e.g. \ 2d \ bc\text{-CFTs with } (h_b, h_c) = (1, 0) \text{ have } c = -2. \ SL(2) \text{ vacuum } |1\rangle (L_0 \text{ eigenvalue zero}) \\ \text{satisfies } b_{m \ge 0} |1\rangle = 0, \ c_{m \ge 1} |1\rangle = 0 \text{ appears to coincide with ghost ground state } |\downarrow\rangle. \\ Z_N \text{ orbifold } \rightarrow \text{twist operator } \sigma_{k/N} \dim h_{\sigma} = -\frac{1}{2} \frac{k}{N} (1 - \frac{k}{N}). \text{ Replica } \rightarrow S = \frac{c}{3} \log \frac{l}{\epsilon} < 0. \\ \text{Lowest conformal dimension is } \Delta = 0 \Rightarrow \text{ it appears that } c_{eff} = c - 24\Delta = c < 0. \\ \end{bmatrix}$

 \rightarrow subsector of complex ghost $\partial \chi \bar{\partial} \bar{\chi}$ CFT with c = -2 with anticommuting scalars $\chi, \bar{\chi}$ \rightarrow logarithmic CFT, but restricting to $\partial \chi, \ \partial \bar{\chi}$ operators \rightarrow negative EE (mapping to above).]