D-brane plane waves, hyperscaling violation and entanglement entropy

K. Narayan Chennai Mathematical Institute

- Introduction; gravity duals of hyperscaling violation, entanglement
- Reviewing Lifshitz in string theory; AdS plane waves
- AdS plane waves, hyperscaling violation, entanglement entropy
- Nonconformal brane plane waves, EE; NS5-branes

Based on: arXiv:1202.5935, KN, 1209.4348, KN,

1212.4328, KN, Tadashi Takayanagi, Sandip Trivedi, 1304.6697, KN.

Introduction

Interesting to explore holography with reduced symmetries.

Generalizations of AdS/CFT to nonrelativistic systems

 $\rightarrow\,$ holographic condensed matter, \ldots

[Son; Balasubramanian, McGreevy; Adams et al; Herzog et al; Maldacena et al; ...]

 \rightarrow Phases of gauge/string theory with non-relativistic symmetries.

Introduction

Generalizations of AdS/CFT to nonrelativistic systems

 \rightarrow holographic condensed matter, ...

[Son; Balasubramanian,McGreevy; Adams et al; Herzog et al; Maldacena et al; ...]

 \rightarrow Phases of gauge/string theory with non-relativistic symmetries.

Sometimes qualitative features of some of these phases from the gravity/string descriptions can be distilled to give interesting, perhaps unexpected insights for field theories.

Present context: entanglement entropy.

> Useful tool to characterize phases of matter.

Introduction, summary

[Nonrelativistic AdS/CFT: qualitative features of gravity phases \rightarrow insights for gauge theories.]

Present context: entanglement entropy in various quantum field theories shows leading divergence \rightarrow area law (Bombelli et al; Srednicki, ...).

Ryu-Takayanagi bulk prescription for EE:
minimal surface area in gravity dual.
Gravity systems with "hyperscaling violation"
→ area law deviations.

Introduction, summary

[Nonrelativistic AdS/CFT: qualitative features of gravity phases \rightarrow insights for gauge theories.]

Present context: entanglement entropy in various quantum field theories shows leading divergence \rightarrow area law (Bombelli et al; Srednicki, ...).

Ryu-Takayanagi bulk prescription for EE: minimal surface area in gravity dual. Gravity systems with "hyperscaling violation" \rightarrow area law deviations.

- String theory realizations $\rightarrow AdS$ plane waves, dual to strongly coupled CFTs with uniform energy-momentum density T_{++} .
- 4d Super Yang-Mills CFTs with T₊₊ → logarithmic deviation from area law for holographic EE (finite part grows as log *l*, large for fixed cutoff).
 Stronger area law deviations in some strongly coupled 3-dim CFTs.
- Similarly, nonconformal brane plane wave states: strongly coupled gauge theories with T_{++} . EE^{finite} has interesting structure.

Holography and Lifshitz scaling

Lifshitz: t, x_i -translations, x_i -rotations, scaling $t \to \lambda^z t, x_i \to \lambda x_i$ [z: dynamical exponent]. (smaller than Galilean symmetries: e.g. boosts broken) Landau-Ginzburg action (free z = 2 Lifshitz): $S = \int d^3x ((\partial_t \varphi)^2 - \kappa (\nabla^2 \varphi)^2)$.

Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. Kachru,Liu,Mulligan; Taylor [z = 1 : AdS] Solution to 4-dim gravity with $\Lambda < 0$ and massive gauge field $A \sim \frac{dt}{r^z}$ [Lifshitz-attractors, Einstein-Maxwell-scalar theories, Gubser,Rocha; Kachru,Trivedi et al, ...]

Holography, hyperscaling violation

More general gravity phases: $ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right).$

 θ = hyperscaling violation exponent; d = "boundary" spatial dim (x_i).

Conformal to Lifshitz (dynamical exponent z).

Arise in effective gravity+vector+scalar (Einstein-Maxwell-scalar) theories (Gubser,Rocha; Trivedi et al; Kiritsis et al, ...)

Black holes: entropy-temperature relation is $S \sim T^{(d-\theta)/z}$. Thermodynamics ~ space dim $d_{eff} = d - \theta$: actual space is d-dim.

 $\theta = d - 1$: entanglement entropy $\sim \log l$, logarithmic behaviour (grows for fixed UV cutoff). Gravitational duals of hidden Fermi surfaces? (Ogawa,Takayanagi,Ugajin; Huijse,Sachdev,Swingle)

Various aspects of holography with hyperscaling violation (Kachru et al). Energy conditions: $(d - \theta)(d(z - 1) - \theta) \ge 0$, $(z - 1)(d + z - \theta) \ge 0$. $d - 1 \le \theta < d$: entanglement entropy shows area law violations. Gauge/string realizations?

Non-relativistic AdS/CFT

4-dim $\mathcal{N}=4$ superconformal Yang-Mills theory dual to IIB string theory on $AdS_5 \times S^5$. $[ds^2 = \frac{R^2}{r^2}(-2dx^+dx^- + dx_i^2 + dr^2) + R^2d\Omega_5^2, \qquad R^4 \sim g_{YM}^2 N \alpha'^2]$ Large N limit \rightarrow classical gravity description useful.

A fairly traditional way to obtain non-relativistic quantum field theory is to use lightcone variables ($x^- \equiv time$), and study the system with nonzero lightcone momentum [e.g. $p_{\mu}p^{\mu} = 0 \rightarrow p_- = \frac{1}{2p_+}p_i^2$].

For instance, x^+ -DLCQ of relativistic $\mathcal{N}=4$ SYM \longrightarrow

z = 2 nonrelativistic (Galilean) 2+1-dim system. DLCQ $_{x^+}$ of AdS_5 in lightcone coordinates — nonrelativistic, Schrodinger (Galilean) symmetries [Goldberger, Barbon et al, Maldacena et al].

Lifshitz, string theory

Lifshitz: t, x_i -translations, x_i -rotations, scaling $t \to \lambda^z t, x_i \to \lambda x_i$ [z: dynamical exponent]. (smaller than Galilean symmetries: *e.g.* boosts broken) Lifshitz spacetime: $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$. Kachru,Liu,Mulligan; Taylor [z = 1 : AdS] Solution to 4-dim gravity with $\Lambda < 0$ and massive gauge field $A \sim \frac{dt}{r^z}$

Gauge/string construction for z = 2 Lifshitz [Balasubramanian,KN]: relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel (Galilean) 2+1-dim system. Gauge coupling $g_{YM}^2(x^+) = e^{\Phi(x^+)}$ varying in lightlike x^+ -direction \longrightarrow breaks x^+ -shift reducing to 2+1-dim Lifshitz symmetries.

Bulk: $AdS + g_{++} [\sim r^0] \xrightarrow{x^+ - \dim redn.} z = 2$ Lifshitz. Kaluza-Klein x^+ -reduction of non-normalizable null deformations of $AdS_5 \times S^5$: g_{++} sourced by lightlike scalar (dilaton $\Phi(x^+)$) $[x^- \equiv time]$. $[ds_5^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + \#r^0 (dx^+)^2 \longrightarrow ds_4^2 = -\frac{(dx^-)^2}{r^4} + \frac{dx_i^2 + dr^2}{r^2}]$ More general: g_{++} sourced by axion-dilaton, fluxes [Donos,Gauntlett; et al].

SYM, $T_{++} \neq 0$: AdS plane waves

[Relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel (Galilean) 2+1-dim system. Lightcone $AdS_5 \xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel Schrodinger (Galilean) symmetries].

Consider $\mathcal{N}=4$ SYM with uniform lightcone momentum density T_{++} . At large N, we expect the gravity dual to this excited state to be some normalizable deformation of $AdS_5 \times S^5$, with g_{++} nonzero.

SYM, $T_{++} \neq 0$: AdS plane waves

[Relativistic $\mathcal{N}=4$ SYM $\xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel (Galilean) 2+1-dim system. Lightcone $AdS_5 \xrightarrow{x^+-\text{DLCQ}} z = 2$ non-rel Schrodinger (Galilean) symmetries].

Consider $\mathcal{N}=4$ SYM with uniform lightcone momentum density T_{++} . At large N, we expect the gravity dual to this excited state to be some normalizable deformation of $AdS_5 \times S^5$, with g_{++} nonzero.

Can identify this precisely: AdS_5 plane wave $[AdS + g_{++}],$ $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2 + R^2 d\Omega_5^2$ Arises in gravity/5-form sector (5-dim part solves $R_{MN} = -\frac{4}{R^2}g_{MN}).$ Holographic boundary stress tensor using AdS/CFT rules gives $T_{++} \sim Q \longrightarrow$ uniform lightcone momentum density. **SYM,** $T_{++} \neq 0$: AdS plane waves

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} \left[-2dx^+ dx^- + dx_i^2 + dr^2\right] + R^2 Qr^2 (dx^+)^2 + R^2 d\Omega_5^2$

- AdS analogs of plane-waves: $AdS + g_{++}$. Supersymmetric. Likely α' -exact string backgrounds due to lightlike nature.
- Boundary energy-momentum density $T_{++} \ge 0$ (null energy condition).
- Can be realized as "zero temperature", highly boosted double scaling limit of boosted AdS Schwarzschild black 3-branes (Singh).

$$ds^{2} = \frac{1}{r^{2}} \left[-2dx^{+}dx^{-} + Qr^{4} \left(dx^{+} + \frac{r_{0}^{4}}{2Q} dx^{-} \right)^{2} + dx_{i}^{2} \right] + \frac{dr^{2}}{r^{2}(1 - r_{0}^{4}r^{4})}.$$

Boost $\lambda^2 = \frac{2Q}{r_0^4}$: as $r_0 \to 0$, Q = fixed, recover AdS_5 plane wave.

- Simple excited pure states in $\mathcal{N}=4$ SYM CFT (no entropy density): limit of thermal state, $\lambda \to \infty$, $T \to 0$, with $Q \sim \lambda^2 T^4$ fixed.
- Generalize to AdS_D plane wave (e.g. states in M2-, M5- CFTs): $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^{D-3} (dx^+)^2 + R^2 d\Omega^2$

Bulk x^+ -dimensional reduction?

AdS plane wave, hyperscaling violation

 $ds^{2} = \frac{R^{2}}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2} \right] + R^{2}Qr^{2}(dx^{+})^{2} + R^{2}d\Omega_{5}^{2}$ AdS plane wave: Q ~ lightcone-momentum density T_{++} [$R^{4} \sim g_{VM}^{2}N\alpha'^{2}$].

Dimensionally reduce 10-dim metric on S^5 and on x^+ -circle:

4-dim Einstein metric $(x^- \equiv t)$: $ds_E^2 = \frac{R^3\sqrt{Q}}{r} \left(-\frac{dt^2}{Qr^4} + dx_i^2 + dr^2\right)$, Electric gauge field $A = -\frac{dt}{Qr^4}$, scalar $e^{\phi} \sim r$. Nontrivial IR scales R, Q.

$$ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right)$$

d = "boundary" spatial dim (x_i).

 θ = hyperscaling violation exponent.

Hyperscaling violating spacetime (effective Einstein-Maxwell-dilaton theories) Thermodynamics reflects effective space dim $(d - \theta)$ [e.g. $S \sim T^{(d-\theta)/z}$].

Above: $d = 2, \ \theta = 1, \ z = 3 \ (d_{eff} = d - \theta = 1).$

[D*p*-branes, S^{8-p} reduction $\rightarrow d = p, z = 1, \theta \neq 0$ (Dong, Harrison, Kachru, Torroba, Wang)]

AdS plane wave, hyperscaling violation

 $ds^{2} = \frac{R^{2}}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2} \right] + R^{2}Qr^{D-3}(dx^{+})^{2} + R^{2}d\Omega^{2}$

 AdS_D plane wave, D = d + 3, Q lightcone-momentum density, (D - 1)-dim.

Dim'nal redn: $ds_E^2 = \frac{R^2 (R^2 Q)^{1/(D-3)}}{r} \left(-\frac{dt^2}{Qr^{D-1}} + dx_i^2 + dr^2 \right).$

"boundary" spatial dimension d = D - 3, $\theta = \frac{d}{2}$, $z = \frac{d}{2} + 2$.

In particular, for the conformal branes of M-theory: *M*2-brane stacks $\rightarrow AdS_4$ deformations, d = 1, $z = \frac{5}{2}$, $\theta = \frac{1}{2}$.

M5-brane stacks $\rightarrow AdS_7$ deformations, d = 4, z = 4, $\theta = 2$.

[General dim'nal reduction: $\int d^D x \sqrt{-g^{(D)}} \left(R^{(D)} - 2\Lambda \right) = \int dx^+ d^{D-1} x \sqrt{-g^{(D-1)}} \left(R^{(D-1)} - \#\Lambda e^{-2\phi/(D-3)} - \#(\partial\phi)^2 - \#e^{2(D-2)\phi/(D-3)} F_{\mu\nu}^2 \right)$

(recall effective gravity+vector+scalar theories, e.g. Trivedi et al, Kiritsis et al, Takayanagi et al)]

Summary so far: AdS plane waves dual to simple pure excited CFT states. x^+ -dim. redn \rightarrow gravity backgrounds, hyperscaling violation. AdS_5 plane wave $\rightarrow \theta = d - 1$.

Entanglement, hyperscaling violation

Entanglement entropy for subsystem A, $S_A = -tr\rho_A \log \rho_A$, with partial trace $\rho_A = tr_B \rho$.

• Ryu-Takayanagi bulk prescription: find bulk surface bounding A with minimal area. $EE_A \propto$ area of bulk minimal surface bounding A.

[E.g.: SYM CFT ground state, strip with width l, bndry area L^2 : ordinary time-t slice in bulk $AdS_5 \longrightarrow S_A \sim \frac{R^3}{G_5} \left(\frac{L^2}{\epsilon^2} - \# \frac{L^2}{l^2}\right)$, with leading divergence reflecting area law (Bombelli et al; Srednicki, ...) $[\epsilon = SYM UV \text{ cutoff}]$, and finite cutoff-independent part.]

• Hyperscaling violating bulk metrics $ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right)$ with $\theta = d - 1 \longrightarrow$ logarithmic violation of area law. Gravitational dual of Fermi surfaces? (Ogawa,Takayanagi,Ugajin; Huijse,Sachdev,Swingle)

• AdS plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2 + R^2 d\Omega_5^2$. Dual to CFT pure excited state, energy-momentum density T_{++} . AdS_5 plane wave: $\rightarrow x^+ - \text{dim.redn.} \rightarrow d = 2, \ \theta = 1, \ z = 3.$

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2 + R^2 d\Omega_5^2.$

• AdS_5 plane wave $\xrightarrow{x^+ - \text{dim.redn.}}$ hyperscaling violation $ds^2 = r^{2\theta/d} \left(-\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2} \right)$ with d = 2, $\theta = 1$, z = 3.

4-dim $\mathcal{N}=4$ SYM CFT in these pure excited states $(T_{++} \sim Q)$ exhibits logarithmic behaviour of holog. entanglement entropy (not area law).

Holographic EE S_E = area of bulk minimal surface bounding A. Subsystem A = strip in x_i -plane, width l (possibly wrapping x^+ -direction), lying on const- x^- slice (\equiv constant time-t slice (4-dim)).

Logarithmic behaviour of EE: $S_A = \frac{R^3 \sqrt{Q}}{2G_5} L_+ L \log \frac{l}{\epsilon}$.

[This uses only 5-d spacetime: also applies to various $\mathcal{N}=1$ SYM CFTs.] Other AdS_D plane waves, entanglement different (not log).

Null entanglement entropy: perhaps somewhat mysterious per se.

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2$ [EE for subsystem A, $S_A = -tr\rho_A \log \rho_A$, partial trace over A-complement, $\rho_A = tr_B\rho$.] Consider entanglement entropy with spacelike (not null) slicing: consider spacelike subsystems ($\Delta x^+ > 0 > \Delta x^-$, strip, width *l*). Non-static spacetime: use covariant HEE (Hubeny,Rangamani,Takayanagi). HEE \sim area of bulk extremal surface bounding A

(stationary point of area functional; if several surfaces exist, choose minimal area).

Two choices for subsystem depending on energy flux T_{++} direction:

(spacelike subsystem: leading divergence is area law $\sim \frac{V_2}{\epsilon^2}$).

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2$

Simple excited pure states in $\mathcal{N}=4$ SYM CFT: $T_{++} = const$.

spacelike subsystem: leading divergence is area law $\sim \frac{V_2}{\epsilon^2}$.

Case A: width direction is x_i . Strip along energy flux. Finite piece $N^2 V_2 \sqrt{Q} \log(lQ^{1/4})$, grows with size. Less than $N^2 T^3 V_2 l$ (thermal entropy), larger than $-N^2 \frac{V_2}{l^2}$ (CFT ground state). Heuristically, size increases, entanglement increases.

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2$

Simple excited pure states in $\mathcal{N}=4$ SYM CFT: $T_{++} = const$.

spacelike subsystem: leading divergence is area law $\sim \frac{V_2}{\epsilon^2}$.

Case A: width direction is x_i . Strip along energy flux. Finite piece $N^2 V_2 \sqrt{Q} \log(lQ^{1/4})$, grows with size. Less than $N^2 T^3 V_2 l$ (thermal entropy), larger than $-N^2 \frac{V_2}{l^2}$ (CFT ground state). Heuristically, size increases, entanglement increases.

Case B: width along x_3 (and flux). Strip orthogonal to energy flux. Phase transition: $S_A \sim \text{constant}$ (saturated) beyond $l_c \sim Q^{-1/4}$ (no connected surface, $\Delta x^+ > 0 > \Delta x^-$; disconnected surfaces for large l). correlation length $\sim Q^{-1/4}$. Large l: entanglement saturation. (Analysing regulated AdS plane wave (with horizon) vindicates this.)

AdS₅ plane wave: $ds^2 = \frac{R^2}{r^2} [-2dx^+ dx^- + dx_i^2 + dr^2] + R^2 Qr^2 (dx^+)^2$

To understand phase transition better, consider regulated AdS_5 plane wave: boosted black D3-brane (Singh).

$$ds^{2} = \frac{1}{r^{2}} \left[-2dx^{+}dx^{-} + Qr^{4} \left(dx^{+} + \frac{r_{0}^{4}}{2Q} dx^{-} \right)^{2} + dx_{i}^{2} \right] + \frac{dr^{2}}{r^{2}(1 - r_{0}^{4}r^{4})}.$$

Boost $\lambda^{2} = \frac{2Q}{r_{0}^{4}}$: as $r_{0} \to 0$, $Q = fixed$, recover AdS_{5} plane wave.

For small r_0 , the scale Q dominates, so phase transition persists (no connected extremal surface for large size with spacelike subsystem).

Connected extremal surface for Case B can be found by scaling towards horizon, and towards double zero of surface equation (which gives large size) [becomes disconnected surface in *AdS* plane wave limit].

AdS_{d+1} plane waves, EE

Uniformize notation with nonconformal case: redefine $Q \rightarrow Q \frac{G_{d+1}}{D^{d-1}}$. $\left[Q \rightarrow \frac{Q}{N^2} (D3), \ Q \rightarrow \frac{Q}{N^{3/2}} (M2), \ Q \rightarrow \frac{Q}{N^3} (M5)\right]$ $ds^{2} = \frac{R^{2}}{r^{2}} \left(-2dx^{+}dx^{-} + dx_{i}^{2} + dr^{2}\right) + \frac{G_{d+1}Q}{R^{d-3}}r^{d-2}(dx^{+})^{2} + R^{2}d\Omega^{2}$ Plane wave excited states: EE^{finite} (strip along flux direction): $\pm \sqrt{Q} V_{d-2} l^{2-\frac{d}{2}} \sqrt{\frac{R^{d-1}}{G_{d+1}}} \qquad [+: d < 4, -: d > 4];$ $\sqrt{Q}V_2N \log(lQ^{1/4})$ (D3), $\sqrt{Q}L\sqrt{l}\sqrt{N^{3/2}}$ (M2), $-\sqrt{Q}\frac{V_4}{r}\sqrt{N^3}$ (M5). 3d, 4d: finite entanglement grows with width l (large for fixed cutoff). [spacelike strip subsystem: leading divergence is area law, $\frac{V_2}{\epsilon^2}$ (4d), $\frac{V_1}{\epsilon}$ (3d)] [Strip \perp flux: phase transition.]

[EE^{fin} scaling estimates \leftarrow approximate r_*, S^{fin} for large Q, l from EE area functional]

[Ground state EE: $S_A \sim \frac{R^{d-1}}{G_{d+1}} \left(\frac{V_{d-2}}{\epsilon^{d-2}} - c_d \frac{V_{d-2}}{l^{d-2}} \right)$] [Temperature parameters: $r_0^4 \sim G_{10}\varepsilon_4 \ (D3), \ r_0^6 \sim G_{11}\varepsilon_3 \ (M2), \ r_0^3 \sim G_{11}\varepsilon_6 \ (M5)$ $\lambda \to \infty, \ \varepsilon_{p+1} \to 0, \quad \text{with} \quad \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q = \text{fixed. Boundary } T_{++} = Q.$] [$G_5 \sim G_{10} R_{D3}^5, G_{4,7} \sim G_{11} R_{M2,M5}^{7,4}, \text{with} \ R_{D3}^4 \sim g_s N l_s^4, R_{M2}^6 \sim N l_P^6, R_{M5}^3 \sim N l_P^3$]

Nonconformal brane plane waves

(Recall Dp-brane phases, Itzhaki, Maldacena, Sonnenschein, Yankielowicz)

$$ds_{st}^{2} = \frac{r^{(7-p)/2}}{R_{p}^{(7-p)/2}} dx_{\parallel}^{2} + \frac{G_{10}Q_{p}}{R_{p}^{(7-p)/2}} \frac{(dx^{+})^{2}}{r^{(7-p)/2}} + R_{p}^{(7-p)/2} \frac{dr^{2}}{r^{(7-p)/2}} + R_{p}^{(7-p)/2} r^{(p-3)/2} d\Omega_{8-p}^{2}$$
$$e^{\Phi} = g_{s} \left(\frac{R_{p}^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}, \ g_{YM}^{2} \sim g_{s} \alpha'^{(p-3)/2}, \ R_{p}^{7-p} \sim g_{YM}^{2} N \alpha'^{5-p} \sim g_{s} N \alpha'^{(7-p)/2}.$$

 $\begin{bmatrix} g_{++} \text{-deformation obtained from double scaling limit of boosted black Dp-branes} \\ r_0^{7-p} = (U_0 \alpha')^{7-p} \sim G_{10} \varepsilon_{p+1}; \quad \lambda \to \infty, r_0 \to 0, \text{ with } \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q_p \text{ fixed.} \end{bmatrix}$

Strongly coupled Yang-Mills theories with constant energy flux T_{++} . Dimensionally reducing on S^{8-p} and x^+ , Einstein metric $ds_E^2 = e^{-\Phi/2} ds_{st}^2$ gives hyperscaling violating metrics with $\theta = \frac{p^2 - 6p + 7}{p - 5}, \ z = \frac{2(p - 6)}{p - 5}$ (Singh).

D-brane plane waves, EE

$$\begin{split} ds_{st}^2 &= \frac{r^{(7-p)/2}}{R_p^{(7-p)/2}} dx_{\parallel}^2 + \frac{G_{10}Q_p}{R_p^{(7-p)/2}} \frac{(dx^+)^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} \frac{dr^2}{r^{(7-p)/2}} + R_p^{(7-p)/2} r^{(p-3)/2} d\Omega_{8-p}^2 \\ e^\Phi &= g_s \left(\frac{R_p^{7-p}}{r^{7-p}}\right)^{\frac{3-p}{4}}, \ g_{YM}^2 \sim g_s \alpha'^{(p-3)/2}, \ R_p^{7-p} \sim g_{YM}^2 N \alpha'^{5-p} \sim g_s N \alpha'^{(7-p)/2}. \\ & \left[r_0^{7-p} = (U_0 \alpha')^{7-p} \sim G_{10} \varepsilon_{p+1}; \ \lambda \to \infty, r_0 \to 0, \text{ with } \frac{\lambda^2 \varepsilon_{p+1}}{2} \equiv Q_p \text{ fixed.} \end{split}$$

Strongly coupled Yang-Mills theories with constant energy flux T_{++} .]

Ground state: Ryu-Takayanagi, Barbon-Fuertes

$$S_A = N_{eff}(\epsilon) \frac{V_{d-2}}{\epsilon^{d-2}} - c_d N_{eff}(l) \frac{V_{d-2}}{l^{d-2}} , \quad N_{eff}(\epsilon) = N^2 \left(\frac{g_{YM}^2 N}{\epsilon^{p-3}}\right)^{\frac{p-3}{5-p}}$$

Plane wave excited states: leading divergence as above. Scaling estimates from entanglement entropy area functional:

$$l \sim \frac{R_p^{\frac{7-p}{2}}}{r_*^{\frac{5-p}{2}}}, \qquad S_A^{finite} \sim \frac{V_{p-1}\sqrt{Q}}{(3-p)\sqrt{G_{10}}} \frac{R_p^{7-p}}{r_*^{(3-p)/2}} \qquad \text{(strip along flux)}$$

$$\text{EE}^{finite}: \quad \frac{1}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}} N\left(\frac{g_{YM}^2 N}{l^{p-3}}\right)^{\frac{p-3}{2(5-p)}} = \frac{\sqrt{N_{eff}(l)}}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}}$$

$$[\text{involves dimensionless combination } \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}} \text{ and } N_{eff}(l)]$$

D-brane plane waves, EE

Plane wave excited states: leading divergence $N_{eff}(\epsilon) \frac{V_{d-2}}{\epsilon^{d-2}}$ as for ground states (area law).

EE^{finite}:
$$\frac{\sqrt{N_{eff}(l)}}{3-p} \frac{V_{p-1}\sqrt{Q}}{l^{(p-3)/2}}, \qquad N_{eff}(l) = N^2 \left(\frac{g_{YM}^2 N}{l^{p-3}}\right)^{\frac{p-3}{5-p}}$$

D2-M2: $V_1\sqrt{l}\sqrt{Q}\sqrt{\frac{N^2}{(g_{YM}^2 Nl)^{1/3}}}$ (D2); $V_1\sqrt{l}\sqrt{Q}\sqrt{N^{3/2}}$ (M2). IIA regime of validity (IMSY) for turning point r_* gives $1 \ll g_{YM}^2 Nl_{D2} \ll N^{6/5}$, and so $N^{3/2} \ll \frac{N^2}{(g_{YM}^2 Nl)^{1/3}} \ll N^2$. Thus $S_A^{D2,sugra}$ betw free 3d SYM (UV) and M2 (IR) (RG-consistent).

D4-M5:
$$-\frac{V_3\sqrt{Q}}{\sqrt{l}}\sqrt{N^2\frac{g_{YM}^2N}{l}}(D4); -\sqrt{Q}\frac{V_4}{l}\sqrt{N^3}(M5).$$

The finite parts for D4-sugra and M5-phases are actually same expression: D4 is wrapped M5 ($R_{11} = g_s l_s = g_{YM}^2$) and $V_4 = V_3R_{11}, \ Q_{D4} = Q_{M5}R_{11}.$ IIA: $1 \ll \frac{g_{YM}^2N}{l} \ll N^{2/3}.$

D1:
$$l\sqrt{Q}\sqrt{\frac{N^2}{(g_{YM}^2Nl^2)^{1/2}}}$$

Strip orthogonal to flux: indications of phase transitions, constrained however by IIA regime of validity.

NS5-brane plane waves

NS5-branes in certain decoupling limits dual to nonlocal 6-dim "little string" theories (Seiberg)

Plane wave excited states in little string theories (as for D-branes previously).

$$\begin{split} ds_{st}^2 &= -2dx^+ dx^- + \frac{Q\alpha'^4}{r^2} (dx^+)^2 + dy_i^2 + N\alpha' \frac{dr^2}{r^2} + N\alpha' d\Omega_3^2 \text{ ,} \\ \text{Dilaton } e^{2\Phi} &= g_s^2 \frac{N\alpha'}{r^2} \text{ unchanged.} \end{split}$$

 g_{++} -deformation lightlike, likely α' -exact, supersymmetric.

[Finite temp NS5-branes (incl asymptotic flat space) $ds^{2} = -\left(1 - \frac{r_{0}^{2}}{r^{2}}\right)dt^{2} + \left(1 + \frac{N\alpha'}{r^{2}}\right)\left(\frac{dr^{2}}{1 - r_{0}^{2}/r^{2}} + r^{2}d\Omega_{3}^{2}\right) + \sum_{i=1}^{5} dy_{i}^{2}, \ e^{2\Phi} = g_{s}^{2}\left(1 + \frac{N\alpha'}{r^{2}}\right)$ Define lightcone coordinates $t = \frac{x^{+} + x^{-}}{\sqrt{2}}, \ x_{5} = \frac{x^{+} - x^{-}}{\sqrt{2}}$, and lightlike boost $x^{\pm} \to \lambda^{\pm 1}x^{\pm}$ with $r_{0}^{2} = G_{10}\mu$. Then take $\lambda \to \infty, \ g_{s} \to 0$, with $\frac{\lambda^{2}g_{s}^{2}\mu}{2} \equiv Q$ fixed.]

[NS5-plane wave solution can be checked independently from NS-NS eqn of motion.] [Dim.redn. on S^3 , x^+ , gives metric distinct from hyperscaling violating family]

Appears distinct from Hagedorn temperature limit (Maldacena,Strominger) and other double scaling limits (*e.g.* Giveon,Kutasov). Explore?

AdS null defmns + inhomogeneities

Most general family of (static) AdS plane waves:

 $ds^{2} = \frac{1}{r^{2}}(-2dx^{+}dx^{-} + dx_{i}^{2}) + g_{++}[r, x_{i}](dx^{+})^{2} + \frac{dr^{2}}{r^{2}} + d\Omega_{5}^{2}$

• AdS analogs of plane-waves: $AdS + g_{++}$. Supersymmetric. Likely α' -exact string backgrounds due to lightlike nature.

• Restricting to normalizable modes (near boundary), these are general lightcone states in SYM with inhomogeneities: nonzero lightcone momentum density T_{++} varying spatially (frozen in lightcone time).

Static normalizable backgrounds: generically, g₊₊ vanishes at specific locii in the interior, even if positive definite near boundary (*i.e.* T₊₊ ≥ 0). Effectively a *horizon*: time-like Killing vector ∂₋ → null.

• On x^+ -dimensional reduction, this means string modes winding around x^+ -circle become light in the vicinity of $g_{++} = 0$ locii. New stringy physics beyond the gravity approximation: new operators in SYM with low anomalous dimensions.

Similar inhomogenous solutions exist for asymptotically Lifshitz solutions too.

Lifshitz singularities, string theory

Mild singularities present in Lifshitz spacetimes $ds_4^2 = -\frac{dt^2}{r^{2z}} + \frac{dx_i^2 + dr^2}{r^2}$: curvature invariants finite, diverging tidal forces as $r \to \infty$ (interior). Expect that these are zero temperature limits of Lifshitz black holes with regular horizons: however zero temperature limit singular. Singularities also reflected in above string constructions exhibiting exact Lifshitz symmetries (Horowitz, Way): origins? resolution?

Silverstein et al: in the Lifshitz-string constructions of Hartnoll,Polchinski,Silverstein,Tong, metric tidal force calculation in IR of string construction possibly incomplete: sources modify string scattering.]

String constructions involving AdS null deformations?

 $ds^{2} = \frac{1}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} \right] + \#r^{0}(dx^{+})^{2} + \frac{dr^{2}}{r^{2}} + d\Omega_{5}^{2}, \quad \Phi(x^{+}).$

Balasubramanian,KN; Donos Gauntlett; et al

Lifshitz singularities, string theory

 $ds^{2} = \frac{1}{r^{2}} \left[-2dx^{+}dx^{-} + dx_{i}^{2} \right] + \frac{1}{4} (\partial_{+}\Phi)^{2} (dx^{+})^{2} + \frac{dr^{2}}{r^{2}} + d\Omega_{5}^{2}, \quad \Phi(x^{+}) \text{ dilaton.}$

• Holographic stress tensor (Awad, Das, KN, Trivedi) vanishes identically:

 $T^{\mu\nu} \sim K^{\mu\nu} - Kh^{\mu\nu} - 3h^{\mu\nu} + \frac{1}{2}G^{\mu\nu} - \frac{1}{4}\partial^{\mu}\Phi\partial^{\nu}\Phi + \frac{1}{8}h^{\mu\nu}(\partial\Phi)^2$

Dual CFT deformed by $\int \Phi(x^+)O(x)$. Assuming modifications arise due to $\Phi(x^+)$ variation, $\langle T_{\mu\nu} \rangle = 0$ uncorrected: lightlike \Rightarrow no nonzero contractions involving $\partial_+ \Phi$.

Confusing: source for bulk field \Rightarrow generically expect response.

Coord transfm: ds² = 1/w² [e^{f(x⁺)}(-2dx⁺dy⁻ + dx_i²) + dw²]; 1/2(f')² - f'' = 1/2(Φ')². This lies in general family of AdS-deformations (also 5-form) ds²_{Einst} = R²/w²</sup> (ğ_{µν}(x^µ)dx^µdx^ν + dw²) + R²dΩ²₅, Φ = Φ(x^µ), solutions if R̃_{µν} = 1/2∂_µΦ∂_νΦ, □Φ ≡ ∂_µ(√-g̃ ğ^{µν}∂_νΦ) = 0. (Das,KN,Trivedi et al) Potential singularities (Poincare horizon w → ∞): R_{ABCD}R^{ABCD} diverges. Null solutions: invariants vanish, no nonzero contraction. Diverging tidal forces as w → ∞. Fefferman-Graham expansion: ds² = dw²/w² + 1/w² [g⁰_{µν}(x^µ) + w²g²_{µν}(x^µ) + ...]dx^µdx^ν Above solutions constrained: gⁿ_{µν} = 0, n > 0, consistent with holographic RG (Skenderis et al).
Maybe mild bulk singularity required to encode Lifshitz boundary conditions in these AdS/CFT-based constructions?

(IR singularities in Lifshitz field theory?)

Conclusions, questions

• AdS plane waves \rightarrow dim'nal redux \rightarrow hyperscaling violation. Dual to 4-d SYM CFT (or more exotic 3d CFT) excited state with T_{++} .

• Some of these lead to logarithmic (or stronger) deviations of entanglement entropy holographically relative to area law.

• *AdS* plane waves: simple excited pure states. Entanglement entropy can be studied explicitly for strip subsystems, results depend on strip direction w.r.t. energy flux. Strip orthogonal to flux: phase transition.

• Nonconformal Dp-brane plane waves, dual to strongly coupled SYM states with T_{++} . Finite part of entanglement consistent with checks.

• NS5-brane plane waves, little string excited states.

Entanglement entropy area law deviations from field theory? What are these materials?