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• AdS/CFT with cosmological singularities: gauge theories with

time-dep couplings and spacelike singularities, BKL etc

• worldsheet: null singularities and free strings
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See also

arXiv:0906.3275,Awad, Das, Ghosh, Oh, Trivedi.

Related references:

Craps et al; Tseytlin et al; . . . : worldsheet investigations of plane waves

with singularities.

Craps, Hertog, Turok; Chu, Ho; Hertog, Horowitz, . . . : cosmological

generalizations of AdS/CFT framework.

Craps, Sethi, Verlinde, and followup work by various people: Matrix

theory duals of cosmological singularities.

. . .
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Cosmology, time dependence, . . .

Tempting to think very early Universe has deep repercussions on

various aspects of physics.

• Big Bang singularities, time, in string theory models?

Understandspacelike, null singularities — events in time.

General Relativity breaks down at singularities: curvatures, tidal forces

divergent. Want “stringy” description, eventually towards smooth

quantum (stringy) completion of classical spacetime geometry.

Previous examples: “stringy phases” ine.g. 2-dim worldsheet (linear

sigma model) descriptions (including time-dep versions, e.g. tachyon

dynamics in (meta/)unstable vacua), dual gauge/Matrix theories, . . .

In what follows, we’ll use (i) theAdS/CFTframework,

(ii) worldsheetstring spectrum analysis near singularity.
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AdS/CFT and deformations

Nice stringy playground:AdS/CFT. Bulk string theory onAdS5 × S5

with dilaton (scalar)Φ = const, and metric (Poincare coords)

ds2 = 1
z2 (ηµνdx

µdxν + dz2) + ds2S5 ,

with 5-form field strength, dual to boundaryd = 4 N=4 (largeN )

SU(N) Superconformal Yang-Mills theory, couplingg2
Y M = eΦ.

Known: symmetries, mode/operator correspondence, correlators, . . .

Deeper decoding of hologram (spacetime emergence etc): desirable.

Assume AdS/CFT: studytime-dependent deformations of AdS/CFT.

Bulk subject to time-dependent sources classically evolves in time (thro

Einstein eqns), eventually giving rise to a cosmological singularity, and

breaks down. Avoid any bulk investigation near singularity.

Boundary: Gauge theory dual is a sensible Hamiltonian quantum

system in principle, subject to time-dependent sources. Response ?
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AdS cosmologies

Start withAdS5 × S5 and turn on non-normalizable deformations for

the metric and dilaton (also nontrivial 5-form):

ds2 = 1
z2 (g̃µνdx

µdxν + dz2) + ds2S5 , Φ = Φ(xµ) .

This is a solution in string theory if

R̃µν = 1
2∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0 ,

i.e. if it is a solution to a4-dim Einstein-dilatonsystem.

Time dep:Φ = Φ(t) or Φ = Φ(x+) .

More later on cosmological solutions.

General family of solutions: (Z(xm) harmonic function)

ds2 = Z−1/2g̃µνdx
µdxν + Z1/2gmndx

mdxn , Φ = Φ(xµ),

gmn(xm) is Ricci flat, and̃gµν = g̃µν(xµ). [µ = 0123,m = 4 . . . 9.]
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AdS cosmologies cont’d

In many cases, possible to find new coordinates such that boundary

metricds24 = limz→0 z
2ds25 is flat, at least as an expansion about the

boundary (z = 0) if not exactly.

These arePenrose-Brown-Henneaux (PBH)transformations: subset of

bulk diffeomorphisms leaving metric invariant (in Fefferman-Graham

form), acting as Weyl transformation on boundary.

E.g. null cosmologiesds2 = 1
z2 (ef(x+)ηµνdx

µdxν + dz2) , Φ(x+).

The coord. transf.w = ze−f/2, y− = x− − w2f ′

4 , gives

ds2 = 1
w2 [−2dx+dy− + dx2

i + 1
4w

2(Φ′)2(dx+)2] + dw2

w2 ,

usingR++ = 1
2(f ′)2 − f ′′ = 1

2(Φ′)2 , the constraint on these solutions.

Now boundary atw = 0 manifestly flat 4D Minkowski spacetime.
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Gauge theories, time-dep couplings

Thus dual gauge theory lives on flat space. So sharp sub-question:

Gauge theory with time-dependent couplingg2
Y M = eΦ. Response?

We would like to study sources that are trivial in the far past(bulk is

AdS5 × S5) and smoothly turn on: this means the gauge theory begins

in vacuum state and is subject to Hamiltonian time evolutionthrough

this external time-dependent source. Basic expectation: time-dep

source excites vacuum to higher energy state.

Want to consider sources that approacheΦ → 0 at some finite point in

time: e.g. g2
Y M = eΦ → (−t)p , p > 0 [t < 0].

We’d specially like to understand gauge theory response near t = 0.

This point in time corresponds to a singularity in the bulk:

Rtt = 1
2 Φ̇2 ∼ 1

t2
. Curvatures, tidal forces diverge neart = 0.
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Gauge theories, time-dep couplings

Gauge theory kinetic terms
∫

e−ΦF 2 not canonical.

As in usual perturbation theory, try absorbing couplingg2
Y M = eΦ into

the gauge fieldAµ: nowgY M appears only in interaction terms.

First, consider toy scalar theoryL[X̃ ] = −e−Φ
(

1
2(∂X̃)2 + X̃4

)

.

RedefiningX̃ = eΦ/2X: L→ −(∂X)2 −m2(Φ)X2 − eΦX4 ,

dropping a boundary term, andm2(Φ) = 1
4∂µΦ∂µΦ − 1

2∂µ∂
µΦ .

Time-depΦ = Φ(t): e.g. g2
Y M = eΦ = (−t)p , p > 0 [t < 0]

gives m2(Φ) = −1
4(Φ̇)2 + 1

2 Φ̈ = −p(p+2)
4 t2

.

Can study time-dep quantum mechanics of single momentum-k modes.

* X variables canonical: tachyonic divergent mass forcesX ∼ 1
tp/2 .

Extra information required asX → ∞: X description not good.

* X̃ variables finite neart = 0: interaction termse−ΦX̃4|t∼0 large.
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Time-dep field theory wave-fn

General field theory Schrodinger picture analysis possibleneart = 0.

Lagrangian L =
∫

d3x e−Φ(1
2(∂tX̃)2 − 1

2(∂iX̃)2 − X̃4) .

Field theory Hamiltonian:H = e−ΦV [X̃] + eΦ
∫

d3x(−1
2

δ2

δX̃2
) ,

where V [X̃] =
∫

d3x (1
2(∂iX̃)2 + X̃4) [replacingΠ(x) → 1

i
δ

δX̃
] .

Schrodinger eqn: i∂tψ[X̃(x), t] = Hψ[X̃(x), t] .

Neart = 0, the potential terme−ΦV dominates in the Hamiltonian⇒
i∂tψ ∼ e−Φ(t)V [X̃(x)]ψ . This gives the wave-fn (generic state)

ψ[X̃(x), t] = e−i(
R

dt e−Φ(t))V [X̃(x)] ψ0[X̃(x)] .

Phase∼ (−t)1−p

1−p V [X̃(x)] . If p > 1, “wildly” oscillating (t→ 0).

Energy diverges for generic states(〈V 〉 6= 0) [no time-dep in〈V 〉]
〈H〉 ≃ e−Φ〈V 〉 = 1

(−t)p

∫

DX̃ V [X̃] |ψ0[X̃(x)]|2 .
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The gauge theory

Scalars, fermions: no dilaton coupling in KE terms. FermionYukawa

and scalar quartic terms come with powers ofgY M = eΦ/2 , vanish

neart = 0.

Gauge fields: KE terms have dilaton coupling
∫

e−Φ TrF 2 .

SinceeΦ = (−t)p neart = 0, the gauge field terms determine the

behaviour of the system neart ∼ 0. Focus on this.

Consider non-interacting theory first.

Convenient (Coulomb) gaugeA0 = 0 , ∂jAj = 0 (longitudinal part of

gauge field time-indep from Gauss law:∂0(∂jAj) = 0 ).

Residual action for two physical transverse componentsAi becomes
∫

e−Φ(∂Ai)2 , (i.e. two copies of the scalar theory earlier).
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The gauge theory

Cubic/quartic interactions: no time derivatives.

Contribute only to potential energy terms (from magnetic field), not to

KE terms (from electric field). PEV [Ai(x)] = 1
4

∫

d3x TrF 2
ij .

Lg = 1
4

∫

d3x e−Φ Tr
(

(∂tA
i)2 − F 2

ij

)

.

Schrodinger quantization:e−ΦȦi = Ei → 1
i

δ
δAi . Then wave-fn

ψ[Ai(x), t] ∼ e−i(
R

dt e−Φ)V [Ai(x)] ψ0[A
i(x)] (t ∼ 0) .

Phase as before∼ (−t)1−p

1−p V [Ai]: “wildly” oscillating (for p > 1).

Energy diverges〈H〉 ≃ e−Φ
∫

DAi V [Ai(x)] |ψ0[A
i]|2 (if 〈V 〉 6= 0) .

Note: this is not perturbation theory. Interactions important.

Thus ifg2
Y M = eΦ → 0 strictly, gauge theory response singular.

For cutoffeΦ, large energy production due to time-dep source.
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Renormalization effects

Caveats: For sufficiently high-frequency modes,KE ∼ eΦk2 might

not be negligible relative toV [Ai] (with a regularizatione.g. |t| ∼ ǫ).

Introduce momentum cutoffΛ, consider renormalization effects for the

Wilsonian effective action. Gauge theory conformal: RG effects are

due to coupling time-dep. Expected to be proportional toΦ̇. Then

effective potential could acquire additional termse.g. with operatorsOi

Veff ∼ e−Φ

(

Obare + c1e
Φ Φ̇2

Λ2O1 + c2

(

eΦ Φ̇2

Λ2

)2
O2 + . . .

)

.

Heuristically, withOi ∼ Obare, this as a geometric series sums to

Veff ∼ e−Φ 1

1−eΦ Φ̇2

Λ2

∼ e−2Φ Λ2

Φ̇2
.

So if Veff [Ai,Φ] is comparable toKE ∼ eΦ, then potential might not

dominate in wavefunction. For the heuristic calculation above,Veff

dominates over KE (ast→ 0) if t2−2p ≫ tp, i.e. if p > 2
3 .
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AdS cosmologies with spacelike
singularities

Recall: ds2 = 1
z2 (g̃µνdx

µdxν + dz2) + ds2S5 , Φ = Φ(xµ) .

Solution if: R̃µν = 1
2∂µΦ∂νΦ , 1√−g̃

∂µ(
√−g̃ g̃µν∂νΦ) = 0 .

Solutions with spacelike Big-Bang (Crunch) singularities:

* ds2 = 1
z2

[

dz2 − dt2 +
∑3

i=1 t
2pi(dxi)2

]

,

eΦ = |t|
√

2(1−
P

i p2
i ),

∑

i pi = 1 . [Kasner cosmologies]

* ds2 = 1
z2

[

dz2 + | sinh(2t)|(−dt2 + dr2

1+r2 + r2(dθ2 + sin2θdφ2))
]

,

eΦ = gs | tanh t|
√

3 . [k = −1 (hyperbolic) FRW boundary]

Dilaton bounded, approaching constant at early/late times: asymptotic

spacetime isAdS5 × S5 (using a coord transformation).

Thek = 0 (flat) FRW is the same as symmetric Kasner (pi = 1
3 ).

(There is also ak = +1 (spherical) FRW solution.)
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AdS BKL-cosmologies

In fact, larger family of cosmological solutions where spatial metric is

one of the homogenous spaces in the Bianchi classification:

ds2 = 1
z2

[

dz2 − dt2 + ηab(t)(e
a
αdx

α)(ebβdx
β)

]

, eΦ = eΦ(t) .

eaαdx
α are a triad of 1-forms defining symmetry directions. Spatially

homogenous dilaton means spatialRa
(a) vanish, andR0

0 = 1
2(∂0Φ)2.

Bianchi-IX: ds2 = 1
z2

[

dz2 − dt2 + η2
i (t)e

i
αe

i
βdx

αdxβ
]

, eΦ = |t|α .

Approximate Kasner-like solutionηi(t) ≃ tpi with
∑

i pi = 1 ,
∑

i p
2
i = 1 − α2

2 .

If all pi > 0, cosmology “stable”. Else, spatial curvatures force BKL

bounces between distinct Kasner regimes. With each bounce,α

increases — dilaton-driven attractor-like behaviour.

Attractor basin: generic Kasner-like solution with allpi > 0.
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Universal behaviour near
singularities

Consider symmetric Kasner-like AdS BKL-cosmologies. Near

singularity, spatial curvatures unimportant. Leading singular behaviour

is essentially dilaton-driven, symmetric Kasner spacetime. Holographic

stress tensor has similar leading behaviour (Tµν ∼ N2

t4
).

Consider families of such AdS cosmologies which are of the form of

the symmetric Kasner-like solution i.e.pi = 1
3 : (ds23 spatial metric)

ds2 = 1
z2

[

dz2 + |2t|(−dt2 + ds23)
]

, eΦ = |t|
√

3 .

Ignoring subleading curvature effects, spatial metric approximately flat

i.e. ds23 ∼ flat. Then boundary metric is conformally flat, to leading

order. [we’ve used a different time coordinate here.]

Can use PBH transformations to recast boundary metric to be flat

spacetime.
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The gauge theory

Now g2
Y M = eΦ = (−t)

√
3 (t < 0). That is, p =

√
3 > 1 .

From earlier: wave-fn phase “wildly” oscillating, ill-defined.

Energy production divergent if coupling vanishes strictlyneart = 0.

* In gauge theory, deform gauge coupling so thatg2
Y M = eΦ is small

but nonzero neart = 0. Now finite but large phase oscillation and

energy production.Φ̇ ∼ ġY M
gY M

finite so bulk also nonsingular. Sugra

may still not be valid of course.

Eventual gauge theory endpoint ? Depends on details of energy

production at couplingO(1). On long timescales, expect that gauge

theory thermalizes: then reasonable to imagine that late-time bulk is

AdS-Schwarzschild black hole.

See also arXiv:0906.3275,Awad, Das, Ghosh, Oh, Trivedi: slowly

varying dilaton cosmologies and their gauge theory duals.
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Null time-dependence

Null cosmologies:Φ = Φ(x+) . No nonzero contraction so the mass

term vanishesi.e.m2(Φ) = 0.

Gauge theory (lightcone gauge for convenience): suppressing many

details, but briefly, cubic/quartic interaction terms multiplied by powers

of gY M = eΦ/2, unimportant neareΦ → 0.

Thus we obtain weakly coupled Yang-Mills theory at the location in

null time (x+ = 0) of the bulk singularity [e.g.eΦ = gs(−x+)p].

This suggests that while classical bulk sugra variables arebad,

lightcone Hamiltonian time evolution of the gauge theory issensible.

Moreover:x−-translations are symmetries, so no particle production.

Suggests continuing past singularity atx+ = 0 is OK, and late-time

state is vacuum:i.e. late-time bulk isAdS5 × S5 (dual toN=4 gauge

theory vacuum,Φ → const for largex+).
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Null singularities and strings

Bulk: sinceeΦ → 0 near singularity, no largegs effects. Rudimentary

calculations suggest stringy effects (beyond GR) are important.

AdS string technically difficult. Possible to construct simpler toy

models with no fluxes or dilaton, where the singularity ispurely

gravitational so more tractable by string worldsheet methods.

Consider ds2 = ef(x+)
(

−2dx+dx− + dxidxi
)

+ ehm(x+)dxmdxm,

with i = 1, 2, m = 3, . . . ,D − 2. Simple classes of null Kasner-like

cosmological singularities atx+ = 0 for (with two scale factors)

ds2 = (x+)a
(

−2dx+dx− + dxidxi
)

+ (x+)bdxmdxm, a > 0.

(a < 0 solutions can be cast in this form by coord transf.)

No nonzero covariant contraction⇒ no local stringy corrections.

Ricci-flat solutions of Einstein equations ifR++ = 0:
1
2(f ′)2 − f ′′ + D−4

4 (−2h′′ − (h′)2 + 2f ′h′) = 0.
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Null Kasner-like singularities

This gives a2 + 2a+ D−4
2 (−b2 + 2b+ 2ab) = 0.

For b 6= a, we have2a = −2 − (D − 4)b±
√

4 + (D − 4)(D − 2)b2.

a > 0 ⇒ positive radical.

Requiring unambiguous analytic continuation fromx+ < 0 to x+ > 0

across singularity⇒ a, b are even integers.

More restrictive but such solutions do exist:

(a, b) = (0, 2), (44,−2), (44, 92), (2068,−92) . . ., for D = 26

(bosonic string).

(a, b) = (0, 2), (12,−2), (12, 28), (180,−28), (180, 390), . . ., for

D = 10 (superstring).

No curvature invariants diverge in these null backgrounds.

Diverging tidal forces: from deviation of null geodesic congruences,

the accelerations areai, am ∼ 1
(x+)2a+2 .
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String worldsheet theory

Closed string actionS = −
∫

dτdσ
4πα′

√
−hhab ∂aX

µ∂bX
νgµν(X) .

Lightcone gauge fixing gives

S = 1
4πα′

∫

d2σ ((∂τX
i)2 − τ2a(∂σX

i)2

+ τ b−a(∂τX
m)2 − τ b+a(∂σX

m)2),

containing only physical transverse string degrees of freedom

XI ≡ Xi,Xm. Effectively solved constraints etc.

Quadratic worldsheet theory, external time-dependent coefficients.

[Lightcone gaugex+ = τ . Sethτσ = 0, with E(τ, σ) =
√

−hσσ
hττ

:

S =
∫

d2σ
4πα′ (EgIJ∂τX

I∂τX
J − 1

E gIJ∂σX
I∂σX

J + 2Eg+−∂τX
−).

Setting lightcone momentump− = Eg+−

2πα′ = − 1
2πα′ to const by

τ -independentσ-reparametrization invariance, we obtainE = − 1
g+−

. ]
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Lightcone string wavefunctional

Lightcone HamiltonianH = −p+, satisfying physical state condition

m2 = −2g+−p+p− − gII(pI0)
2:

H = 1
4πα′

∫ 2π|p−|α′

0 dσ
(

(2πα′)2(Πi)2 + τ2a(∂σX
i)2

+ (2πα′)2τa−b(Πm)2 + τa+b(∂σX
m)2

)

.

Understand string propagation across singularity by studying behaviour

of lightcone string wavefunctional: the Schrodinger equation is

i∂x+Ψ ≡ i∂τΨ[XI , τ ] = H[XI , τ ]Ψ[XI , τ ] , ΠI [σ] = −i δ
δXI [σ]

.

Coord modes decouple:H =
∑

I HI [X
I ] ⇒ Ψ[XI ] =

∏

I ΨI [X
I ].

This then simplifies to givei∂τΨI [X
I , τ ] = HI [X

I ]ΨI [XI , τ ].

Xi modes: free (flat space) Schrodinger equation

i∂τΨi[X
i, τ ] =

∫

dσ
4πα′

[

(2πα′)2(Πi)2 + τ2a(∂σX
i)2

]

Ψi[Xi, τ ]

→τ→0 −πα′ ∫ dσ δ2

δXi[σ]2
Ψi[Xi, τ ].
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Lightcone string wavefunctional

Xm modes: i∂τΨm[Xm, τ ] =
∫

dσ
4πα′

[

−(2πα′)2τa−b δ2

δXm[σ]2

+ τa+b(∂σX
m)2

]

Ψm[Xm, τ ].

b > 0: kinetic term dominates giving

i∂λΨm[Xm, λ] = −πα′ ∫ dσ δ2

δXm[σ]2
Ψm[Xm, λ],

Flat space Schrodinger eqn in time variableλ =
∫

dτ τa−b = τ2ν

2ν .

Alternatively Ψ[Xm, τ ] ∼ e
iπα′ τ2ν

2ν

R

dσ δ2

δXm[σ]2 Ψ[Xm],

well-defined for2ν = a+ 1 − b ≥ 0.

b < 0: potential term dominates,i∂λΨm = 1
4πα′

∫

dσ(∂σX
m)2Ψm.

Flat space Schrodinger equation in time variableλ = τa−|b|+1

a+b+1 = τ2ν

2ν .

Or Ψ[Xm, τ ] ∼ e−i τ2ν

8πνα′

R

dσ(∂σXm)2 Ψ[Xm] well-defined if2ν ≥ 0.

Wavefunctional nonsingular nearx+ = 0 for spacetimes with2ν ≥ 0.
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Wavefunctional in other variables

ds2 = −2dλdx− + λAI (dxI)2, AI = aI
a+1 , λ = (x+)a+1

a+1 (affine).

HamiltonianH =
∫

dσ
4πα′ ((2πα′)2 (ΠI)2

τAI
+ τAI (∂σX

I)2).

WavefunctionalΨ[XI , τ ] ∼ e
−iπα′ τ1−AI

1−AI

R

dσ δ2

δXI2 Ψ[XI ], asτ → 0

(for e.g. Ai > 0), with well-defined phase ifAI < 1.

Brinkman coordinates:xI = (x+)−aI/2yI , y− = x− + (
P

I aI(yI)2

4(x+)a+1 ),

ds2 = −2dλdy− +
∑

I χI(y
I)2 dλ2

λ2 + (dyI)2, χI = AI
4 (AI − 2) .

Anisotropic plane waves with singularities.

HamiltonianH =
∫

dσ
4πα′ ((2πα′)2(ΠI

y)
2 + (∂σy

I)2 − ∑

I
χI

τ2 (yI)2),

Wavefunctional: Ψ[yI , τ ] ∼ e−
i
τ

P

I χI(yI)2 Ψ[yI ] .

Divergent mass term gives “wildly” oscillating phase asτ → 0.

Wavefunctional difficult to interpret in Brinkman variables. Earlier

Rosen coords better.
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String mode functions

Classical string modes can be exactly solved for from worldsheet EOM:

f I
n(τ) =

√
nτdI

(

cIn1J dI
2a+2

(nτa+1

a+1 ) + cIn2Y dI
2a+2

(nτa+1

a+1 )
)

,

with dI = 1, 2ν, for I = i,m, resp.,ν = a+1−b
2 , and constscIn1, c

I
n2.

Using basis modesf I
n(τ)einσ, mode expand worldsheet fields

XI(τ, σ). This gives the Hamiltonian
(

kI
n = i

n

√

πα′

2|cI
n0|(a+1)

)

H = 1
2α′ ((Ẋi

0)
2 + τ b−a(Ẋm

0 )2)

+
∑

n
|ki

n|2
2α′ (({ai

n, a
i
−n} + {ãi

n, ã
i
−n})(|ḟ i

n|2 + n2τ2a|f i
n|2)

− {ai
n, ã

i
n}((ḟ i

n)2 + n2τ2a(f i
n)2) + c.c.)

+
∑

n
|km

n |2
2α′ (({am

n , a
m
−n} + {ãm

n , ã
m
−n})(τ b−a|ḟm

n |2 + n2τ b+a|fm
n |2)

− {am
n , ã

m
n }(τ b−a(ḟm

n )2 + n2τ b+a(fm
n )2) + c.c.),

Oscillator algebra:[aI
n, a

J
−m] = [ãI

n, ã
J
−m] = nδIJδnm.

Cosmological singularities, gauge theory duals and strings, K. Narayan, CMI– p.24/37



Mode asymptotics

Cutoff null surface x+ ≡ τ = τc:

Low-lying (smalln): f I
n → λI

n0 + λI
nττ

dI
c , nτa+1

c
(a+1) . 1.

Highly stringy (largen): nτa+1
c

(a+1) ≫ 1,

f i
n ∼ 1

τ
a/2
c

e−inτa+1
c /l(a+1), fm

n ∼ 1

τ
b/2
c

e−inτa+1
c /(a+1).

These ultra-high frequency modes exist for any infinitesimal

regularization of near-singularity region.

Then Hamiltonian for low-lying, highly stringy modes:

H< = πα′((pi0)
2 + τa−b(pm0)

2) +
∑

n
π

2(a+1)n2

(

1
|ci

n0|
(bi†nτb

i
nτ

+ n2τ2ab
i†
n0b

i
n0) + 1

|cm
n0|

((2ν)2τa−bb
m†
nτ b

m
nτ + n2τ b+ab

m†
n0 b

m
n0)

)

[with bIn0 = λI
n0a

I
n − λI∗

n0ã
I
−n, b

I
nτ = λI

nτa
I
n − λI∗

nτ ã
I
−n],

H> ∼ τa
∑

I; n≫nc

1
a+1 (aI

−na
I
n + ãI

−nã
I
n + n),
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Oscillators and wavefunctional
The Schrodinger equation becomes

i ∂
∂τ |Ψ<

i 〉 = H<
i |Ψ<

i 〉
∼

(

πα′(pi0)
2 +

∑

n.nc

π
2(a+1)|ci

n0|n2 b
i†
nτ b

i
nτ

)

|Ψ<
i 〉 ,

i ∂
∂τ |Ψ<

m〉 = H<
m|Ψ<

m〉 [b > 0]

∼ τa−b
(

πα′(pm0)
2 +

∑

n.nc

(2ν)2π
2(a+1)|cm

n0|n2 b
m†
nτ b

m
nτ

)

|Ψ<
m〉, ,

∼ τa+b
(

∑

n.nc

π
2(a+1)|cm

n0|
b
m†
n0 b

m
n0

)

|Ψ<
m〉, [b < 0] ,

i ∂
∂τ |Ψ>

I 〉 = H>
I |Ψ>

I 〉
∼ τa

(

∑

I; n≫nc

1
a+1 (aI

−na
I
n + ãI

−nã
I
n + n)

)

|Ψ>
I 〉.

Recovers earlier general Schrodinger wavefunctional analysis.
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Length scales

No-scale property of these spacetimes manifest in Brinkmancoords.

Then Rosen coords should have nontrivial length dimensionsto

maintain no-scale property:dim λ ≡ L, dim x+ ≡ L1/(a+1)

⇒ dim xi ≡ L1−a/(2(a+1)), dim xm ≡ L1−b/(2(a+1)).

Lightcone gauge:dim τa+1 = dim σ = L.

String coord lengthl:
∫

dσ ≡
∫ 2πl
0 dσ.

Lightcone momentump− = − l
2πα′ < 0 ⇒ l = 2π|p−|α′.

dim H = dim 1
τ = L−1/(a+1).

A mode is highly stringy ifn≫ l
τa+1
c

∼ p−α′

τa+1
c

.

Highly stringy state (instantaneous) masses:m2 ∼ 1
α′ (a

i†
n a

i
n + . . .)

(Can also calculate low-lying spectrum)

Thus highly stringy oscillator states satisfyingp−α′

τa+1
c

≪ n≪ α′

τ2a+2
c

are

light relative to typical energy scales (ai ∼ 1
(x+)2a+2 ) near singularity.
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Regulating the singularity

Some natural regulators bad, violate energy conditions:e.g. 4D scale

factor ef = La((x+

L )2 + ǫ2)a/2

⇒ R
(4)
++ = 1

2(f ′)2 − f ′′ −→x+→0 − a
(Lǫ)2

< 0.

In terms of D-dim system, no natural solution toR(D)
++ = 0 whose 4D

scale factoref is as above.

This is a universal near singularityx+ → 0 limit of many regulators

e.g. ef = La[1 − (1 − ǫ)e−( x+

L
)2 ]a/2. Basic problem of regulators.

Consider ef = La( |x
+|
L + ǫ)a, eh = Lb( |x

+|
L + ǫ)b.

Now accelerations ai, am ∼ 1

L2a+2(
|x+|

L
+ǫ)2a+2

.

Curvature scale:Lc = (Lǫ)a+1 .

Although apparently non-analytic, the geodesics, affine parameter,

curvature continuous.
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Strings and regulated singularities

Primarily interested in approach tox+ = 0 from early times

Worldsheet theory can again be exactly solved for mode functions

f I
n(τ) =

√

nLdI

ldI/(a+1) (
τ
L + ǫ)dI

[

cIn1J dI
2a+2

(

nLa+1( τ
L

+ǫ)a+1

l(a+1)

)

+ cIn2Y dI
2a+2

(

nLa+1( τ
L

+ǫ)a+1

l(a+1)

)]

.

Can solve for Hamiltonian, string spectrum, (instantaneous) masses

etc.

Highly string oscillators light if p−α′

Lc
≪ n≪ α′

L2
c
.

Implicitly requires p− ≪ 1
Lc

.

Number of such levels:α
′

L2
c
(1 − p−Lc) .
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Strings and regulated singularities

For any finitep− ≪ 1
Lc

, only finite set of highly stringy oscillators

excited in regulated near singularity region. In singular limit Lc → 0,

all oscillator states light, number of excited oscillator states diverges.

With Lc ∼ ls, no highly stringy oscillators turned on in regulated

region (i.e. n ∼ 1 already not light).

With Lc ∼ lp, highest level oscillator isn ∼ ( ls
lp

)2.

Large proliferation of light string states in near singularity region.

AsLc → 0, we recover original no-scale spacetime. Now number of

light oscillator levels diverges, all oscillators light.
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Conclusions, open questions

*Spacelike:If g2
Y M (t) → 0 strictly, then gauge theory response

singular: energy diverges. Deformg2
Y M to be small but nonzero near

t = 0. Now finite but large phase oscillation and energy production.

Φ̇ ∼ ġY M
gY M

finite now, so bulk also nonsingular.

Sugra may still not be valid of course.

* Explore AdS BKL-cosmologies/duals further.

*Null: Free string wavefunctional nonsingular for spacetimes with

2ν ≥ 0. However, light string state production could be large. Also

backreaction of modes could be divergent.

String states being light in near-singularity region suggests that

interactions are non-negligible: dual to renormalizationeffects (for

corresponding AdS cosmologies)?

2nd quantized (string field theory) framework?
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* Energy divergence

Analyzing KE terms shows they are indeed subleading neart = 0.

This means energy pumped in by time-dep source diverges as

〈H〉 ≃ e−Φ〈V 〉 = 1
(−t)p

∫

DX̃ V [X̃] |ψ0[X̃(x)]|2 ,

since no time-dep in〈V 〉. Oscillating phase cancels in|ψ0|2.

This holds for generic states. For special states with〈V 〉 = 0 , energy

may be finite (subleading KE terms do not diverge unlessp > 2).

Even for these special states,〈H2〉 will diverge (if 〈V 〉 = 0,

generically〈V 2〉 does not vanish).

Thus fluctuations non-negligible about states with〈V 〉 = 0 .

Note: this is not perturbation theory. Interactions important.

Diverging energy since coupling strictly vanishes neart = 0.
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* Time-dep quantum mechanics

In more detail: first ignore interactions, quantizequadratic theory.

For a single momentum-k mode, this is time-dep quantum mechanics:

Sk =
∫

dt (1
2Ẋ

2 − ω2(t)X2) , ω2(t) = k2 +m2(t) −→t→−∞ ω2
0 .

Generic classical solutions:X =
√−t [AJν(−t) +BNν(−t)] ,

ν = p+1
2 . Diverge ast→ 0 : i.e. generic trajectory driven to largeX.

Takef(t) =
√

πω0
2

√−tH1
ν (−ω0t) as the solution off̈ + ω2f = 0 ,

with f → e−iω0t, t→ −∞ . ExpandX = 1√
2ω0

[af(t) + a†f∗(t)] .

Using the Schrodinger equation: the ground state wave-function is

ψ(t, x) = A√
f∗(t)

e
i( ḟ∗

f∗ ) x2

2 .
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* Time-dep quantum mechanics

X: wave-fn ψ(t, x) = A√
f∗(t)

e
i( ḟ∗

f∗ ) x2

2 ,

Wave-fn phase∼ 1
t , “wildly” oscillating neart = 0.

t→ 0−: f ∼ (−t)−p/2 .

Probability density:|ψ(t, x)|2 = |A|2
|f | e

−ω0x2

|f |2 .

Gaussian, width|f |2 → ∞ ast→ 0.

Wave packet infinitely spread out ast→ 0.

X variables spread out infinitely: need extra information atX ∼ ∞.

X description not good.
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* Time-dep quantum mechanics

Original X̃ = eΦ/2X variables better defined: finite neart = 0.

X̃ = eΦ/2
√−t[AJν(−t) +BNν(−t)] ∼t→0 tp/2t1/2t−ν/2 .

Wave-fn, probability:

ψ(t, x̃) = A√
f∗(t)eΦ/2

e
i( ḟ∗

f∗ + Φ̇
2

) x̃2

2eΦ , |ψ(t, x̃)|2 = |A|2
|f |eΦ/2 e

− ω0x̃2

|f |2eΦ .

t→ 0−: f ∼ (−t)−p , |f |2eΦ ∼ const .

X̃: wave-fn phase∼ 1
(−t)p−1 , prob. widthconst .

p > 1: wave-fn ill-defined neart ∼ 0. “Wildly” oscillating phase.

p < 1: X̃ wave fn phase regular neart ∼ 0 , |ψ(t, x̃)|2 finite.

Quadratic approximation shows interactions are importantneart = 0.

Perturbation theory insufficient.
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* More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra ofXa = eαa∂α is SU(2).

Spatial Ricci, decomposing along triadRa
(a) = Ra

αe
α
a :

R1
(1) = ∂t(η2η3∂tη1)

η1η2η3
− 1

2(η1η2η3)2
[(η2

2 − η2
3)

2 − η4
1] = 0 , . . . .

Sayp1 < 0: thenη4
1 ∼ t−4|p1| non-negligible at some time. This forces

metric to transit from one Kasner regime to another. As long as some

pi < 0, these bounces continue as:

p
(n+1)
i =

−p
(n)
−

1+2p
(n)
−

, p
(n+1)
j =

p
(n)
+ +2p

(n)
−

1+2p
(n)
−

, α(n+1) = αn

1+2p
(n)
−

,

for the bounce from the(n)-th to the(n+ 1)-th Kasner regime.

If p− < 0 , thenαn+1 > αn. Alsoαn+1 − αn = αn( −2p−
1+2p−

) ,

i.e.,α increases slowly for smallα: attractor-like behaviour. Finite

number of bounces. If allpi > 0, no bounce: cosmology “stable”.

For no dilaton (α = 0), BKL bounces purely oscillatory.
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* More on AdS BKL-cosmologies

Parametrization:p1 = x, p2,3 = 1−x
2 ±

√
1−α2+2x−3x2

2 .

Lower bound:p1 ≥ 1−
√

4−3α2

3 . Solution existence forcesα2 ≤ 4
3 .

Under bounces,α increases, window of allowedpi shrinks. Lower

bound hitsp1 ≥ 0 ⇒ α2 ≥ 1. Bounces stop, cosmology “stabilizes”.

Attractor-like behaviour: e.g.:{p0
1 = x0 = 0.3, α0 = 0.001} , flows

(initially slowly) to {pi > 0} after 15 oscillations (α15 = 1.0896).

E.g.:(−1
5 ,

9
35 ,

33
35) → (− 5

21 ,
7
21 ,

19
21) → (− 3

11 ,
5
11 ,

9
11) →

(−1
5 ,

3
5 ,

3
5) → (1

3 ,
1
3 ,

1
3) . [multiple flows with same endpoint]

Chaotic behaviour: 7% change to smallest exponent−1
5 gives

(−13
70 ,

9
35 ,

65
70) → (− 2

11 ,
13
44 ,

39
44) → (− 3

28 ,
2
7 ,

23
28) → ( 1

11 ,
3
22 ,

17
22) ,

drastically different endpoint.

Note also that dilatonic (α 6= 0) [attractor-like] and non-dilatonic

(α = 0) [oscillatory] flows drastically different.
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