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e AdS/CFT with cosmological singularities: gauge theorigshw
time-dep couplings and spacelike singularities, BKL etc

e worldsheet: null singularities and free strings
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See also
arXiv:0906.3275Awad, Das, Ghosh, Oh, Trivedi

Related references:

Craps et glTseytlin et af .. .: worldsheet investigations of plane waves
with singularities.

Craps, Hertog, TurgiChu, Hg Hertog, Horowitz ...: cosmological
generalizations of AAS/CFT framework.

Craps, Sethi, Verlindeand followup work by various people: Matrix
theory duals of cosmological singularities.
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Cosmology, time dependence, ...

Tempting to think very early Universe has deep repercusson
various aspects of physics.

e Big Bang singularities, time, in string theory models?
Understangpacelike, null singularities — events in time

General Relativity breaks down at singularities: curvasutidal forces
divergent. Want “stringy” description, eventually towarsimooth
guantum (stringy) completion of classical spacetime gépme

Previous examples: “stringy phases’dny. 2-dim worldsheet (linear
sigma model) descriptions (including time-dep versiong, &achyon
dynamics in (meta/)unstable vacua), dual gauge/Matriarihs, . ..

In what follows, we’ll use (i) theAdS/CFTframework,
(i) worldsheestring spectrum analysis near singularity.
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AdS/CFT and deformations

Nice stringy playgroundAdS/CFT. Bulk string theory on4dSs x S°
with dilaton (scalar}p = const, and metric (Poincare coords)

ds® = Z%(nwdx“dxy +dz?) + dS%E, ,
with 5-form field strength, dual to boundagy= 4 N'=4 (large N)

SU(N) Superconformal Yang-Mills theory, coupling. ,, = ®.

Known: symmetries, mode/operator correspondence, ebors| . . .
Deeper decoding of hologram (spacetime emergence etajaldies

Assume AdS/CFT: studirme-dependent deformations of AAdS/CFT.
Bulk subject to time-dependent sources classically evolvasmm (thro
Einstein egns), eventually giving rise to a cosmologicagislarity, and
breaks down. Avoid any bulk investigation near singularity
Boundary Gauge theory dual is a sensible Hamiltonian quantum
system in principle, subject to time-dependent sourcesp&ese ?

Cosmological singularities, gauge theory duals and strig Narayan, CM{ p.4/3



AdS cosmologies

Start with AdSs x S° and turn on non-normalizable deformations for
the metric and dilaton (also nontrivial 5-form):

d82 = Ziz(gwd:c“da:” —|— dZQ) —|— dS%g, y (I) = (I)(I'u) .

This is a solution in string theory if
Ry = 30,29,® . —= 9,(V=3§"0,2) =0,
i.e. If Itis a solution to a4-dim Einstein-dilatorsystem.
Time dep:® = ®(¢) or® = d(2™).
More later on cosmological solutions.
General family of solutions: A (z™) harmonic function)
ds? = 2712, detdx” + ZV 2 gppda™da , @ = ®(zH),
gmn(z™) Is Ricci flat, andg,, = g, (z#). [0 =0123,m =4...9.]
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AdS cosmologies cont’d

In many cases, possible to find new coordinates such thataoyn
metricds{ = lim, .o 2%ds? is flat, at least as an expansion about the
boundary £ = 0) if not exactly.

These aré’enrose-Brown-Henneaux (PBtansformations: subset of
bulk diffeomorphisms leaving metric invariant (in FeffexmGraham
form), acting as Weyl transformation on boundary.

E.g. null cosmologiesis? = L (e )y, datde” + dz?) , ®(a).
The coord. transfw = ze /2, y~ =z— — Qf/ , gives

ds* = 5 [-2dztdy™ + da? + Jw?(®)?(da™)?] + d$2 ,

usingR;+ = 3(f)? — f” = 4(®)?, the constraint on these solutions.

Now boundary atv = 0 manifestly flat 4D Minkowski spacetime.
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Gauge theories, time-dep couplings

Thus dual gauge theory lives on flat space. So sharp subtopurest
Gauge theory with time-dependent couplifig,, = ¢®. Response?

We would like to study sources that are trivial in the far fasitk is

AdSs5 x S°) and smoothly turn on: this means the gauge theory begins
In vacuum state and is subject to Hamiltonian time evolutioough

this external time-dependent source. Basic expectatioe:-tiep

source excites vacuum to higher energy state.

Want to consider sources that approath— 0 at some finite point in
time: e.g. g&y, =e* — (=)’ , p>0 [t <0].
We'd specially like to understand gauge theory responsetned).

This point in time corresponds to a singularity in the bulk:
Ry = %ciﬂ ~ }2 . Curvatures, tidal forces diverge néax 0.
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Gauge theories, time-dep couplings

Gauge theory kinetic termg e~ F2 not canonical.
As in usual perturbation theory, try absorbing couplifg, = e® into
the gauge fieldd,,: now gy-», appears only in interaction terms.

First, consider toy scalar theofyf X| = —e~® (%(85()2 + f(4).
RedefiningX = e®/2X: L— —(0X)? —m?(®)X? —e®X1,
dropping a boundary term, ana?(®) = 19, 20" ® — 59,01 P .
Time-dep® = ®(t): e.g. g5y =¥ = (=t)?, p>0 [t <0
gives m?(®) = —1($)? 1 = 2042

Can study time-dep quantum mechanics of single momernitnnedes.
* X variables canonical: tachyonic divergent mass fork€es tp% :
Extra information required a8 — oo: X description not good.

* X variables finite near = 0: interaction terms~® X*|,q large.
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Time-dep field theory wave-fn

General field theory Schrodinger picture analysis possibdat = 0.
Lagrangian L= [d3z e ?(3(0:X)? - (0, X)? — X*) .

Field theory Hamiltonian: H = e—q’V[X] +e® [ d3x( %5‘%) ,

where V[X] = [ dz ( >+ X*) [replacingll(z) — -%].
Schrodinger eqn: iatzp[f((:z:),t] = Hy[X (z),1] .

Neart = 0, the potential terma—*V dominates in the Hamiltonias-
i0pp ~ e ®OV[X ()] . This gives the wave-fn (generic state)

X (z), 8] = 71U # TOVIRED gy (X ()]
Phasev L "V[X(2)]. If p > 1, “wildly” oscillating ( — 0).
Energy diverges for generic stai(QV} # 0) [no time-dep in(V')]
(H) =~ e (V) = = [XT [0 X ()]
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The gauge theory

Scalars, fermions: no dilaton coupling in KE terms. FernYokawa
and scalar quartic terms come with powergpf, = ¢®/2 , vanish
neart = 0.

Gauge fields: KE terms have dilaton couplifig=® TrF= .

Sincee® = (—t)? neart = 0, the gauge field terms determine the
behaviour of the system near 0. Focus on this.

Consider non-interacting theory first.

Convenient (Coulomb) gaugé, = 0, 9;A4,; = 0 (longitudinal part of
gauge field time-indep from Gauss lawy(0;4,;) = 0).

Residual action for two physical transverse componentisecomes

[e *(0AY)*, (i.e. two copies of the scalar theory earlier).
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The gauge theory

Cubic/quartic interactions: no time derivatives.
Contribute only to potential energy terms (from magnetildjienot to
KE terms (from electric field). PB/[A'(z)] = § [ d®z Ty E} .

Ly=1%[dPze ®Tr ((6’tAi)2 — Ffj) .

Schrodinger quantizatione* A* = E* — 1% Then wave-fn

)
At

)
YA (@), ] ~ e A DVIN@L o [Al()] (£~ 0).

Phase as before (_lep_pV[Ai]: “wildly” oscillating (for p > 1).

Energy divergesH) ~ e~ % [ DA' VA" (z)] [o[AY]]? (if (V) #0).
Note: this is not perturbation theory. Interactions impatt

Thus if g2-,, = e® — 0 strictly, gauge theory response singular.
For cutoffe®, large energy production due to time-dep source.
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Renormalization effects

Caveats: For sufficiently high-frequency modek,E ~ e®k? might
not be negligible relative t& [ A*] (with a regularizatiore.g. |t| ~ ¢).

Introduce momentum cutoff, consider renormalization effects for the
Wilsonian effective action. Gauge theory conformal: R&zet$ are

due to coupling time-dep. Expected to be proportionabtdhen
effective potential could acquire additional terms. with operatorg);

B2 o\ 2
Vepp~ e ® (Obare + 1?3501 + ¢ (eq’%) Oy 4+ .. ) .

Heuristically, withQ; ~ Oy, this as a geometric series sums to
o1, o20A°
1—6‘13%3 P2

Soif Vs ¢[A?, ®] is comparable td{ E ~ e*, then potential might not
dominate in wavefunction. For the heuristic calculatiooayV 1
dominates over KE (as— 0) if t>72P > P, i.e.if p > 2.

Vers ~ e

Cosmological singularities, gauge theory duals and sriKgNarayan, CM{ p.12/3



AdS cosmologies with spacelike
singularities
Recall: ds? = 5 (gudatda” + dz?) + dsis , ® = P(aH) .
Solution if: Ry = 50,29,®, = u(v/~5§"0,®) = 0.

Solutions with spacelike Big-Bang (Crunch) singularities
© d?=4 [d% — A2+ 372, t2pi(dxi)2] |

e? = |t|V20-2iP)) S =1, [Kasner cosmologies]

*ds? = 5 [sz + | sinh(2t)|(—dt* + f_i:; + 72(df* + sin?0dg?)) |,

e® = g, | tanht|V3 . [k = —1 (hyperbolic) FRW boundary]
Dilaton bounded, approaching constant at early/late timggmptotic
spacetime isAdSs x S° (using a coord transformation).

Thek = 0 (flat) FRW is the same as symmetric Kasngr= %).
(There is also & = +1 (spherical) FRW solution.)
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AdS BKL-cosmologies

In fact, larger family of cosmological solutions where sglametric is
one of the homogenous spaces in the Bianchi classification:

ds® = z% {dz2 — dt? + nep(t) (egda:a)(e%d:cﬁ)} . e =20
e2 dx® are a triad of 1-forms defining symmetry directions. Sphtial
homogenous dilaton means spaﬂ#la) vanish, and?®y = $(9y®)?.

Bianchi-IX: ds? = Z% [dz2 — dt? + n?(t)eée%dm“dwﬁ} ,e® = |t~ .
Approximate Kasner-like solutiom; (¢) ~ ¥ with
2
> ipi=1, Zipgzl_%'

If all p; > 0, cosmology “stable”. Else, spatial curvatures force BKL
bounces between distinct Kasner regimes. With each bounce,
Increases — dilaton-driven attractor-like behaviour.

Attractor basin: generic Kasner-like solution with all> 0.
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Universal behaviour near
singularities
Consider symmetric Kasner-like AdS BKL-cosmologies. Near
singularity, spatial curvatures unimportant. Leadingyaiar behaviour

IS essentially dilaton-driven, symmetric Kasner spacetiriolographic
stress tensor has similar leading behavioflf, (~ ];7—42).

Consider families of such AdS cosmologies which are of thmfof

the symmetric Kasner-like solution i.@, = %: (ds3 spatial metric)

ds? = L [d2? + |2t|(=dt? + ds3)] , e =[t|V3.
Ignoring subleading curvature effects, spatial metriccapimately flat
i.e. ds3 ~ flat. Then boundary metric is conformally flat, to leading
order. [we’ve used a different time coordinate here.]

Can use PBH transformations to recast boundary metric tabe fl
spacetime.
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The gauge theory

Now g3, = e® = (—t)\/§ (t < 0). Thatis,p=+v3>1.
From earlier: wave-fn phase “wildly” oscillating, ill-defed.
Energy production divergent if coupling vanishes strictbart = 0.

* In gauge theory, deform gauge coupling so #iat, = e is small
but nonzero near= 0. Now finite but large phase oscillation and
energy production® ~ gi—ﬁ finite so bulk also nonsingular. Sugra
may still not be valid of course.

Eventual gauge theory endpoint ? Depends on details of gnerg
production at coupling’(1). On long timescales, expect that gauge
theory thermalizes: then reasonable to imagine that latebulk is
AdS-Schwarzschild black hole.

See also arXiv:0906.3278wad, Das, Ghosh, Oh, Trivedslowly
varying dilaton cosmologies and their gauge theory duals.
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Null time-dependence

Null cosmologies® = ®(z™) . No nonzero contraction so the mass
term vanishes.e. m?(®) = 0.

Gauge theory (lightcone gauge for convenience): supmgssany
detalls, but briefly, cubic/quartic interaction terms nplied by powers
of gy ar = €®/2, unimportant neat® — 0.

Thus we obtain weakly coupled Yang-Mills theory at the lomain

null time (x™ = 0) of the bulk singularity [e.ge® = g,(—2T)].

This suggests that while classical bulk sugra variablebade

lightcone Hamiltonian time evolution of the gauge theorgassible.
Moreover:.xz~-translations are symmetries, so no particle production.
Suggests continuing past singularityzdt = 0 is OK, and late-time
state is vacuum.e. late-time bulk isAdSs x S° (dual toA =4 gauge
theory vacuum® — const for largex™).
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Null singularities and strings

Bulk: sincee® — 0 near singularity, no large, effects. Rudimentary
calculations suggest stringy effects (beyond GR) are itapor

AdS string technically difficult. Possible to construct pier toy
models with no fluxes or dilaton, where the singularityig-ely
gravitational SO more tractable by string worldsheet methods.

Consider ds? = /(=) (—2datda™ + da'dz’) + ehm (@) qaemdgm.
with: =1,2, m =3,...,D — 2. Simple classes of null Kasner-like
cosmological singularities at™ = 0 for (with two scale factors)

ds? = (z1)* (=2dztdz™ + dx'dz’) + (x7)°dz™dz™, a > 0.
(a < 0 solutions can be cast in this form by coord transt.)
NO nonzero covariant contractiest no local stringy corrections.
Ricci-flat solutions of Einstein equationsif, , = 0:

%(]H)2 _ f// 4+ %(—Qh” _ (h/)2 i 2f’h’) — 0.
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Null Kasner-like singularities

This gives a® + 2a + 252 (—b% + 2b + 2ab) = 0.

Forb # a, we have2a = —2 — (D — 4)b+ /4 + (D — 4)(D — 2)b2.
a > 0 = positive radical.

Requiring unambiguous analytic continuation fremh < 0 to z+ > 0
across singularitys- a, b are even integers.

More restrictive but such solutions do exist:

(a,b) = (0,2), (44, —2), (44, 92), (2068, —92) ..., for D = 26
(bosonic string).

(a,b) = (0,2),(12,—-2), (12, 28), (180, —28), (180, 390), . . ., for

D = 10 (superstring).

No curvature invariants diverge in these null backgrounds.
Diverging tidal forces: from deviation of null geodesic goaences,
the accelerations are’, a™ ~ © +)12a — .

Cosmological singularities, gauge theory duals and striKgNarayan, CM{ p.19/3



String worldsheet theory

Closed string actioy = — [ 9792/~ hh 9, X+, XY g1 (X)) .
Lightcone gauge fixing gives
S =1 [d*0 ((0;X")% — 72(0, X")?
+ 70799, X™)2 — rbta(pg, X™)?),
containing only physical transverse string degrees oflivee

X! = X* X™. Effectively solved constraints etc.
Quadratic worldsheet theory, external time-dependerfficmats.

__hgo -
hrr °

S=[ L (Bg;0, X0, X7 — L 91,0, X0, X7 +2Eg,_8,X).

[Lightcone gauge™ = 7. Seth,, = 0, with E(7,0) =

Setting lightcone momentup. = Bor— — _2730/
T-independent-reparametrization invariance, we obtdin= —g%_. |
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Lightcone string wavefunctional

Lightcone HamiltonianH = —p., satisfying physical state condition
m* = —2g%"pyp_ — g"(pro)*:

H=_L Ozwlp—lo/ d0(<27m/>2<ﬂi>2 + 7209, X1)?

+ (2ma/ ) 2o (II™)2 + Ta+b((9aXm)2).

Understand string propagation across singularity by stgdlyehaviour
of lightcone string wavefunctional: the Schrodinger earats
10,4+ = 0, W[ X! 7] = HIX!, r|v[XT, 7], IIl[o] = —ia%f[a]-
Coord modes decouplél = >, H;[X!] = U[X!] =T], ¥ ;[X'].
This then simplifies to gived, ¥ ;[ X!, 7] = H;[ X! ]¥! (X!, 7].

X* modes: free (flat space) Schrodinger equation
0- X, 7] = [ 3 [(2mal) (1) + 72(0, X)) WX, 7]

Ao

—>T_>O —WQIIdU%\Pi[XZ’,T].
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Lightcone string wavefunctional

X" modes: i0;V,,[X™, 1] = d—“,[—(Qwa’)QTa_b(;Xf[U]z

4o
7 (9, X )2 [ W [x 7, 7.
b > 0: kinetic term dominates giving
PO\ [ X A] = —7To/fda5Xm[ E SUMX™ A,
7_2u

Flat space Schrodinger egn in tlme variable= [ dr 700 = 5 -

Alternatively U[X™ 7] ~ e fdaéXm 2 wiX™],
well-defined for2v =a+1—-0> 0.
b < 0: potential term dominates;0\V,,, = ﬁ [do(9,X™)>wm™.

a—|b|+1 T2V

Flat space Schrodinger equation in time variable- ©—— -+ = 5-.
T2V m . .

Or U[X™, 7] ~ e “smwar J 400 X™)% [ xm) well-defined if2v > 0.

Wavefunctional nonsingular near = 0 for spacetimes witky > 0.
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Wavefunctional in other variables

ds? = —2dMda~ + M1 (dz!)?, A= 2\ = & T (affine).

HamiltonianH = [ 413,((27@)2% +TAI(6’UXI)2).
y 1AL

S L
Wavefunctional U [ X!, 7] ~ e =y T v[X1], ast — 0
(for e.g. A; > 0), with well-defined phase ifl; < 1.

—1TT QY

>_rar(y ) )

( 4(zT)eFT
ds® = —2dMdy™ + S xi(y')* G + (dy')*, X1 = GH(Ar - 2) .
Anisotropic plane waves with singularities.
HamiltonianH = [ 92 ((2ma/)2(11)? + (0,y")% — >, X5 (y')?),
Wavefunctional: U[y!, 7] ~ e 7 21Xt wlyl] .
Divergent mass term gives “wildly” oscillating phasemas- 0.

Wavefunctional difficult to interpret in Brinkman varialleEarlier
Rosen coords better.

Brinkman coordinatesxz! = (z)~%/2y!, y~ =z~
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String mode functions

Classical string modes can be exactly solved for from woees EOM:

</ nratl nretl
f[(T) = anI (C,{L1J2d+2( ) —I—Cn2Y 2( a+1 )),

with dy = 1, 2v, for I = i,m, resp.,v = 2=

1
2

Using basis modeg! (7)e™?, mode expand worldsheet fields

I . . . . I L l 7-‘-(){/
X' (r,0). This gives the Hamlltonlar(kn = n\/2|0£0|(a+1>)

~and constg!, . ¢!

nls Cna-

H = 5L (X3)? +70(X5)?)
+ 5 el (a0l } + {ad, @, 1) (1 f2]? + n2r2 f22)
— {al, @l }(f1)? + n?72(f2)%) + c.c.)
+ 3, ‘;";'2<<{a m Y} (@, am, ) (r e f 2 4 n2ebtal )

—{ap,ap (P (f0)? + P (f)?) + ),

Oscillator algebrafal, a’ 1= [al,a’, | = nd'’d,m.

n —m]
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Mode asymptotics

Cutoff null surface ™ =7 = 7.

. nTa—l—l
Low-lying (smalln): f! — )\IO + M rdr, Gy S L
Highly stringy (largen): ?TC ) > 1,
fz a/2 e—znTcahLl/l(a—l—l)7 RN b —zn7§+1/(a+1).

C

These ultra-high frequency modes exist for any infinitesima
regularization of near-singularity region.

Then Hamiltonian for low-lying, highly stringy modes:

He = md/((pio)” + 7% "(pmo)*) + 22, 2 afnn? (|cz1 |(bZ’;Lb§W
o (20)2re= bl - n2rbraniio) )
)\I* ~I ]

+ n2r20p i) + i
with b1, = Mgal — Msal | bl =)\ _a

nTt ’I’L

a 1 1 ~ ~
H> ~ T ZI; n>ne a-+1 (a—nan -+ a—nan + n)?
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Osclillators and wavefunctional

The Schrodinger equation becomes
i W5) = HE |97

~ (7'('@ (sz) +Zn<nc 2(a+1>71|-cz | 2 ZT b’& )|\Ij<>
i 05) = Hig |55 b >0
a— 2v mTim,
~T b(ﬂ-a ( ) + Zn<nc 2(a,—|(-1)|)cm In? bnjbn7)|\lj"§1>’ ’
~ TOF (Zn,snc z(aﬂ)\cwb% %) ), [b<0],
ige|V7) = Hy |¥7)
~ T (Z[; S a%tl (al_na£ -+ Zil_ndﬁ + n)) ‘\IJI>>
Recovers earlier general Schrodinger wavefunctionalarsl
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Length scales

No-scale property of these spacetimes manifest in Brinkooands.
Then Rosen coords should have nontrivial length dimengmns
maintain no-scale propertylim A = L, dim xzt = L1/(e+D)

= dim 2t = L1/ @etD) - gim g = [1-0/(2(et1)),
Lightcone gaugedim 7! = dim o = L.
String coord length: [ do = 27” do.
Lightcone momentunp_ = 2m, <0 = |l=27p_|.
dim H = dim % — [~1/(at+1)
A mode is highly stringy ifn > ++1 ~ p;—f{.
Highly stringy state (instantaneous) massms2 ~ —(aﬂaz +...)
(Can also calculate low-lying spectrum)
Thus highly stringy oscillator states satisfyiﬁgf‘—/ <n K %’H are

light relative to typical energy scale&z(w )2a+2) near smgularlty
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Regulating the singularity

Some natural regulators bad, violate energy conditiens4D scale
factor el = LO((25)% + 2)%/?

— RS——)|— _ (f) f// xT—0 _( a)2 < 0.

In terms of D-dim system, no natural solutlonﬁrié+ = 0 whose 4D
scale factoe/ is as above.

This is a universal near singularity” — 0 limit of many regulators

:13+ 2 .
e.q. e/ = Lo[1 — (1 — ¢)e~"z)7]%/2, Basic problem of regulators.

Consider e/ = La(@ +€)?, el = Lb(@ + €)P.

Now accelerations a’, a™ 1 .
L2a+2(|$_L|+€)2a+2

Curvature scaleL. = (Le)*™! .
Although apparently non-analytic, the geodesics, affirapater,
curvature continuous.
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Strings and regulated singularities

Primarily interested in approach 1o~ = 0 from early times

Worldsheet theory can again be exactly solved for mode fomst
nLCH_l(%—I—E)a—'—l

fulr) = \/m?%—:in(% +e)¥ [C£1Jd_f ( [(a+1) )

().

—|_ C,’I,L2Y dr

2a+2

Can solve for Hamiltonian, string spectrum, (instantaisg¢ouasses
etc.

Highly string oscillators light if pz—j‘/ <nK g—;
Implicitly requires p_ < 7-.
Number of such Ievels:g—é(l —p_L,).
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Strings and regulated singularities

For any finitep_ < Li only finite set of highly stringy oscillators
excited in regulated near singularity region. In singuilamtl L. — 0,
all oscillator states light, number of excited oscillattates diverges.

With L. ~ [, no highly stringy oscillators turned on in regulated
region (.e. n ~ 1 already not light).

With L. ~ I,,, highest level oscillator is ~ (j).
Large proliferation of light string states in near singtlaregion.
As L. — 0, we recover original no-scale spacetime. Now number of

light oscillator levels diverges, all oscillators light.
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Conclusions, open questions

*Spacelike:lf g% ,,(t) — 0 strictly, then gauge theory response
singular: energy diverges. Deforg , , to be small but nonzero near
t = 0. Now finite but large phase oscillation and energy productio
D ~ gi—ﬁ finite now, so bulk also nonsingular.

Sugra may still not be valid of course.

* Explore AdS BKL-cosmologies/duals further.

*Null: Free string wavefunctional nonsingular for spacetimeh wit
2v > 0. However, light string state production could be large.cAls
backreaction of modes could be divergent.

String states being light in near-singularity region swgjgéhat
Interactions are non-negligible: dual to renormalizatdiects (for
corresponding AdS cosmologies)?

2nd quantized (string field theory) framework?
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* Energy divergence

Analyzing KE terms shows they are indeed subleading hea.

This means energy pumped in by time-dep source diverges as
(H) ~ e=(V) = =5 [ DX VIX] [go[X (2)]]?

since no time-dep ihV). Oscillating phase cancels fif|2.
This holds for generic states. For special states With= 0, energy
may be finite (subleading KE terms do not diverge unjess?2).

Even for these special staté#/2) will diverge (if (V) = 0,
generically(V?) does not vanish).
Thus fluctuations non-negligible about states wWih) = 0 .

Note: this is not perturbation theory. Interactions impatt
Diverging energy since coupling strictly vanishes near 0.
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* Time-dep quantum mechanics

In more detail: first ignore interactions, quantizexdratic theory.

For a single momenturh-mode, this is time-dep quantum mechanics:
Sp = [dt (X2 - () X?), W2(t) = k2 +m2(t) —177%° W2,
Generic classical solutionsl = \/—t [AJ,(—t) + BN, (-1)],

V= ]%1 . Diverge ag — 0 : i.e. generic trajectory driven to large.

Takef(t) = /™22 /—tH}(—wot) as the solution off +w?f =0,
with f — e 0ol ¢ — —oo. ExpandX = ﬂlTO[af(t) +al f*(t)] .

Using the Schrodinger equation: the ground state wavetitmcs
ta) = A )T
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* Time-dep quantum mechanics

2

X: wave-fn  ¥(t,z) = ]ﬁ(t)ei( T

Wave-fn phase- % ,“wildly” oscillating neart = 0.

kh|kh.
*| *

t—07: f~ (—t)7P/2,
e VA
Probability density:|(t, z)|? = K-e” 17 .
Gaussian, widthf|* — oo ast — 0.
Wave packet infinitely spread out &is- 0.

X variables spread out infinitely: need extra informatiotXat- oc.
X description not good.

Cosmological singularities, gauge theory duals and striKgNarayan, CM} p.34/3



* Time-dep quantum mechanics

Original X = ¢®/2X variables better defined: finite neas 0.
X = e®/2\/=t[AJ,(—t) + BN, (—t)] ~t—0 tP/2¢1/2¢=v/2

Wave-fn, probability:
&b ~2 woﬁiz

- A (L) 2 - AR —9T
U(t ) = e TTRE (D) = e T

t—0": f~ (=t)7P, |f]?e® ~ const.

~

X: wave-fn phase- (_t)% ., prob. widthconst .

p > 1. wave-fn ill-defined neat ~ 0. “Wildly” oscillating phase.
p < 1: X wave fn phase regular neair 0, |1(t, %)|? finite.

Quadratic approximation shows interactions are importaatt = 0.
Perturbation theory insufficient.
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* More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra ok, = ¢29,, is SU (2).

Spatial Ricci, decomposing along tnaﬂ? — R% :
1 _ Ot(n2n3dm) 1 B
R( 1) nining 1 ~ 2(minans)2 (n5 —m3)° =il =0,

Sayp; < 0: thenn} ~ t~4P1l non-negligible at some time. This forces

metric to transit from one Kasner regime to another. As lahganme

p; < 0, these bounces continue as:
(nt1) _ —p™ (n+1)  p{+2p™

— : — _ On
’L' 2 T 1+2p<_") 1+2p")
for the bounce from thén)-th to the(n + 1)-th Kasner regime.

9 a(n—l—l) —

If p_ <0, thena, 11 > a,. Alsoa,+11 — o, = ozn(1;22€)__) ,
l.e., o Increases slowly for smadi: attractor-like behaviour. Finite
number of bounces. If a)}; > 0, no bounce: cosmology “stable”.

For no dilaton & = 0), BKL bounces purely oscillatory.
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* More on AdS BKL-cosmologies

. . o A2 _ 2
Parametrizationp; = x, py3 = 5% + Vi-a t2r—dr-

Lower boundp; > 1_@ . Solution existence forces® < % .
Under bouncesy increases, window of alloweg shrinks. Lower
bound hitsp; > 0 = a? > 1. Bounces stop, cosmology “stabilizes”.
Attractor-like behaviour: e.g{p) = 29 = 0.3, ag = 0.001}, flows
(initially slowly) to {p; > 0} after 15 oscillations ¢15 = 1.0896).

. 1 9 33 5 7 19 3 5 9
E9:(=5:35:35) = (—apapar) — (Cip i) —
(—%,2,2) — (3,3, %) . [multiple flows with same endpoint]
Chaotic behaviour: 7% change to smallest exponegngives

13 9 65 2 13 39 3 2 23 1 3 17
(=% 3570) = Coan) = Cxhn) — (e el
drastically different endpoint.

Note also that dilatonico{ # 0) [attractor-like] and non-dilatonic

(o = 0) [oscillatory] flows drastically different.
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