Cosmological singularities, gauge theory duals and strings

K. Narayan

Chennai Mathematical Institute (CMI), Chennai

[arXiv:0909.4731, KN; arXiv:0904.4532, Kallingalthodi Madhu, KN; arXiv:0807.1517, Adel Awad, Sumit Das, Suresh Nampuri, KN, Sandip Trivedi; arXiv:0711.2994, Awad, Das, KN, Trivedi; hep-th/0602107, hep-th/0610053, Das, Jeremy Michelson, KN, Trivedi; and work in progress.]

- AdS/CFT with cosmological singularities: gauge theories with time-dep couplings and spacelike singularities, BKL etc
- worldsheet: null singularities and free strings

See also arXiv:0906.3275, Awad, Das, Ghosh, Oh, Trivedi.

Related references:

. . .

Craps et al; **Tseytlin et al**; ...: worldsheet investigations of plane waves with singularities.

Craps, Hertog, Turok; Chu, Ho; Hertog, Horowitz, ...: cosmological generalizations of AdS/CFT framework.

Craps, Sethi, Verlinde, and followup work by various people: Matrix theory duals of cosmological singularities.

Cosmology, time dependence, ...

Tempting to think very early Universe has deep repercussions on various aspects of physics.

• Big Bang singularities, time, in string theory models? Understand spacelike, null singularities — events in time.

General Relativity breaks down at singularities: curvatures, tidal forces divergent. Want "stringy" description, eventually towards smooth quantum (stringy) completion of classical spacetime geometry.

Previous examples: "stringy phases" in *e.g.* 2-dim worldsheet (linear sigma model) descriptions (including time-dep versions, e.g. tachyon dynamics in (meta/)unstable vacua), dual gauge/Matrix theories, ...

In what follows, we'll use (i) the AdS/CFT framework, (ii) worldsheet string spectrum analysis near singularity.

AdS/CFT and deformations

Nice stringy playground: AdS/CFT. Bulk string theory on $AdS_5 \times S^5$ with dilaton (scalar) $\Phi = const$, and metric (Poincare coords)

 $ds^2 = \frac{1}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2) + ds^2_{S^5}$,

with 5-form field strength, dual to boundary $d = 4 \mathcal{N} = 4$ (large N) SU(N) Superconformal Yang-Mills theory, coupling $g_{YM}^2 = e^{\Phi}$.

Known: symmetries, mode/operator correspondence, correlators, ... Deeper decoding of hologram (spacetime emergence etc): desirable.

Assume AdS/CFT: study *time-dependent* deformations of AdS/CFT. Bulk subject to time-dependent sources classically evolves in time (thro Einstein eqns), eventually giving rise to a cosmological singularity, and breaks down. Avoid any bulk investigation near singularity. Boundary: Gauge theory dual is a sensible Hamiltonian quantum system in principle, subject to time-dependent sources. Response ?

AdS cosmologies

Start with $AdS_5 \times S^5$ and turn on non-normalizable deformations for the metric and dilaton (also nontrivial 5-form):

$$ds^{2} = \frac{1}{z^{2}} (\tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + dz^{2}) + ds^{2}_{S^{5}} , \qquad \Phi = \Phi(x^{\mu}) .$$

This is a solution in string theory if

$$\tilde{R}_{\mu\nu} = \frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi , \qquad \frac{1}{\sqrt{-\tilde{g}}} \partial_{\mu} (\sqrt{-\tilde{g}} \, \tilde{g}^{\mu\nu} \partial_{\nu} \Phi) = 0 ,$$

i.e. if it is a solution to a 4-dim Einstein-dilaton system. Time dep: $\Phi = \Phi(t)$ or $\Phi = \Phi(x^+)$. More later on cosmological solutions.

General family of solutions: $(Z(x^m)$ harmonic function)

$$ds^{2} = Z^{-1/2} \tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + Z^{1/2} g_{mn} dx^{m} dx^{n} , \quad \Phi = \Phi(x^{\mu}),$$

 $g_{mn}(x^m)$ is Ricci flat, and $\tilde{g}_{\mu\nu} = \tilde{g}_{\mu\nu}(x^\mu)$. $[\mu = 0.123, m = 4...9]$

AdS cosmologies cont'd

In many cases, possible to find new coordinates such that boundary metric $ds_4^2 = \lim_{z\to 0} z^2 ds_5^2$ is flat, at least as an expansion about the boundary (z = 0) if not exactly.

These are Penrose-Brown-Henneaux (PBH) transformations: subset of bulk diffeomorphisms leaving metric invariant (in Fefferman-Graham form), acting as Weyl transformation on boundary.

E.g. null cosmologies $ds^2 = \frac{1}{z^2} (e^{f(x^+)} \eta_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2)$, $\Phi(x^+)$. The coord. transf. $w = ze^{-f/2}$, $y^- = x^- - \frac{w^2 f'}{4}$, gives

 $ds^{2} = \frac{1}{w^{2}} \left[-2dx^{+}dy^{-} + dx_{i}^{2} + \frac{1}{4}w^{2}(\Phi')^{2}(dx^{+})^{2} \right] + \frac{dw^{2}}{w^{2}} ,$

using $R_{++} = \frac{1}{2}(f')^2 - f'' = \frac{1}{2}(\Phi')^2$, the constraint on these solutions. Now boundary at w = 0 manifestly flat 4D Minkowski spacetime.

Gauge theories, time-dep couplings

Thus dual gauge theory lives on flat space. So sharp sub-question: Gauge theory with time-dependent coupling $g_{YM}^2 = e^{\Phi}$. Response? We would like to study sources that are trivial in the far past (bulk is $AdS_5 \times S^5$) and smoothly turn on: this means the gauge theory begins in vacuum state and is subject to Hamiltonian time evolution through this external time-dependent source. Basic expectation: time-dep source excites vacuum to higher energy state.

Want to consider sources that approach $e^{\Phi} \to 0$ at some finite point in time: e.g. $g_{YM}^2 = e^{\Phi} \to (-t)^p$, p > 0 [t < 0].

We'd specially like to understand gauge theory response near t = 0.

This point in time corresponds to a singularity in the bulk:

 $R_{tt} = \frac{1}{2}\dot{\Phi}^2 \sim \frac{1}{t^2}$. Curvatures, tidal forces diverge near t = 0.

Gauge theories, time-dep couplings

Gauge theory kinetic terms $\int e^{-\Phi} F^2$ not canonical. As in usual perturbation theory, try absorbing coupling $g_{YM}^2 = e^{\Phi}$ into the gauge field A_{μ} : now g_{YM} appears only in interaction terms.

First, consider toy scalar theory $L[\tilde{X}] = -e^{-\Phi} \left(\frac{1}{2}(\partial \tilde{X})^2 + \tilde{X}^4\right)$. Redefining $\tilde{X} = e^{\Phi/2}X$: $L \to -(\partial X)^2 - m^2(\Phi)X^2 - e^{\Phi}X^4$, dropping a boundary term, and $m^2(\Phi) = \frac{1}{4}\partial_{\mu}\Phi\partial^{\mu}\Phi - \frac{1}{2}\partial_{\mu}\partial^{\mu}\Phi$. Time-dep $\Phi = \Phi(t)$: e.g. $g_{YM}^2 = e^{\Phi} = (-t)^p$, p > 0 [t < 0]gives $m^2(\Phi) = -\frac{1}{4}(\dot{\Phi})^2 + \frac{1}{2}\ddot{\Phi} = -\frac{p(p+2)}{4t^2}$.

Can study time-dep quantum mechanics of single momentum-k modes. * X variables canonical: tachyonic divergent mass forces $X \sim \frac{1}{t^{p/2}}$. Extra information required as $X \to \infty$: X description not good. * \tilde{X} variables finite near t = 0: interaction terms $e^{-\Phi} \tilde{X}^4|_{t\sim 0}$ large.

Time-dep field theory wave-fn

General field theory Schrodinger picture analysis possible near t = 0. Lagrangian $L = \int d^3x \ e^{-\Phi}(\frac{1}{2}(\partial_t \tilde{X})^2 - \frac{1}{2}(\partial_i \tilde{X})^2 - \tilde{X}^4)$. Field theory Hamiltonian: $H = e^{-\Phi}V[\tilde{X}] + e^{\Phi}\int d^3x(-\frac{1}{2}\frac{\delta^2}{\delta\tilde{X}^2})$, where $V[\tilde{X}] = \int d^3x \ (\frac{1}{2}(\partial_i \tilde{X})^2 + \tilde{X}^4)$ [replacing $\Pi(x) \to \frac{1}{i}\frac{\delta}{\delta\tilde{X}}$]. Schrodinger eqn: $i\partial_t\psi[\tilde{X}(x),t] = H\psi[\tilde{X}(x),t]$.

Near t = 0, the potential term $e^{-\Phi}V$ dominates in the Hamiltonian $\Rightarrow i\partial_t \psi \sim e^{-\Phi(t)}V[\tilde{X}(x)]\psi$. This gives the wave-fn (generic state)

$$\psi[\tilde{X}(x), t] = e^{-i(\int dt \ e^{-\Phi(t)})V[\tilde{X}(x)]} \ \psi_0[\tilde{X}(x)] \ .$$

Phase ~ $\frac{(-t)^{1-p}}{1-p}V[\tilde{X}(x)]$. If p > 1, "wildly" oscillating $(t \to 0)$. Energy diverges for generic states $(\langle V \rangle \neq 0)$ [no time-dep in $\langle V \rangle$] $\langle H \rangle \simeq e^{-\Phi} \langle V \rangle = \frac{1}{(-t)^p} \int D\tilde{X} V[\tilde{X}] |\psi_0[\tilde{X}(x)]|^2$.

The gauge theory

Scalars, fermions: no dilaton coupling in KE terms. Fermion Yukawa and scalar quartic terms come with powers of $g_{YM} = e^{\Phi/2}$, vanish near t = 0.

Gauge fields: KE terms have dilaton coupling $\int e^{-\Phi} \operatorname{Tr} F^2$.

Since $e^{\Phi} = (-t)^p$ near t = 0, the gauge field terms determine the behaviour of the system near $t \sim 0$. Focus on this.

Consider non-interacting theory first.

Convenient (Coulomb) gauge $A_0 = 0$, $\partial_j A_j = 0$ (longitudinal part of gauge field time-indep from Gauss law: $\partial_0(\partial_j A_j) = 0$).

Residual action for two physical transverse components A^i becomes $\int e^{-\Phi} (\partial A^i)^2$, (i.e. two copies of the scalar theory earlier).

The gauge theory

Cubic/quartic interactions: no time derivatives.

Contribute only to potential energy terms (from magnetic field), not to KE terms (from electric field). PE $V[A^i(x)] = \frac{1}{4} \int d^3x \operatorname{Tr} F_{ij}^2$.

$$L_g = \frac{1}{4} \int d^3x \ e^{-\Phi} \operatorname{Tr} \left((\partial_t A^i)^2 - F_{ij}^2 \right)$$

Schrodinger quantization: $e^{-\Phi}\dot{A}^i = E^i \rightarrow \frac{1}{i}\frac{\delta}{\delta A^i}$. Then wave-fn

$$\psi[A^i(x),t] \sim e^{-i(\int dt \ e^{-\Phi})V[A^i(x)]} \psi_0[A^i(x)] \qquad (t \sim 0) .$$

Phase as before $\sim \frac{(-t)^{1-p}}{1-p}V[A^i]$: "wildly" oscillating (for p > 1).

Energy diverges $\langle H \rangle \simeq e^{-\Phi} \int DA^i V[A^i(x)] |\psi_0[A^i]|^2$ (if $\langle V \rangle \neq 0$).

Note: this is not perturbation theory. Interactions important.

Thus if $g_{YM}^2 = e^{\Phi} \to 0$ strictly, gauge theory response singular. For cutoff e^{Φ} , large energy production due to time-dep source.

Renormalization effects

Caveats: For sufficiently high-frequency modes, $KE \sim e^{\Phi}k^2$ might not be negligible relative to $V[A^i]$ (with a regularization e.g. $|t| \sim \epsilon$). Introduce momentum cutoff Λ , consider renormalization effects for the Wilsonian effective action. Gauge theory conformal: RG effects are due to coupling time-dep. Expected to be proportional to $\dot{\Phi}$. Then effective potential could acquire additional terms e.g. with operators \mathcal{O}_i

$$V_{eff} \sim e^{-\Phi} \left(\mathcal{O}_{bare} + c_1 e^{\Phi} \frac{\dot{\Phi}^2}{\Lambda^2} \mathcal{O}_1 + c_2 \left(e^{\Phi} \frac{\dot{\Phi}^2}{\Lambda^2} \right)^2 \mathcal{O}_2 + \dots \right)$$

Heuristically, with $\mathcal{O}_i \sim \mathcal{O}_{bare}$, this as a geometric series sums to

$$V_{eff} \sim e^{-\Phi} \frac{1}{1 - e^{\Phi} \frac{\dot{\Phi}^2}{\Lambda^2}} \sim e^{-2\Phi} \frac{\Lambda^2}{\dot{\Phi}^2}$$

So if $V_{eff}[A^i, \Phi]$ is comparable to $KE \sim e^{\Phi}$, then potential might not dominate in wavefunction. For the heuristic calculation above, V_{eff} dominates over KE (as $t \to 0$) if $t^{2-2p} \gg t^p$, *i.e.* if $p > \frac{2}{3}$.

AdS cosmologies with spacelike singularities

 $\begin{array}{ll} \text{Recall:} & ds^2 = \frac{1}{z^2} (\tilde{g}_{\mu\nu} dx^{\mu} dx^{\nu} + dz^2) + ds_{S^5}^2 \ , \ \ \Phi = \Phi(x^{\mu}) \ . \\ \text{Solution if:} & \tilde{R}_{\mu\nu} = \frac{1}{2} \partial_{\mu} \Phi \partial_{\nu} \Phi \ , \quad \frac{1}{\sqrt{-\tilde{g}}} \ \partial_{\mu} (\sqrt{-\tilde{g}} \ \tilde{g}^{\mu\nu} \partial_{\nu} \Phi) = 0 \ . \end{array}$

Solutions with spacelike Big-Bang (Crunch) singularities:

 $\begin{aligned} & * \quad ds^2 = \frac{1}{z^2} \left[dz^2 - dt^2 + \sum_{i=1}^3 t^{2p_i} (dx^i)^2 \right], \\ & e^{\Phi} = |t| \sqrt{2(1 - \sum_i p_i^2)}, \qquad \sum_i p_i = 1. \end{aligned} [Kasner cosmologies] \\ & * \, ds^2 = \frac{1}{z^2} \left[dz^2 + |\sinh(2t)| (-dt^2 + \frac{dr^2}{1 + r^2} + r^2 (d\theta^2 + sin^2\theta d\phi^2)) \right], \\ & e^{\Phi} = g_s \, |\tanh t|^{\sqrt{3}}. \qquad [k = -1 \text{ (hyperbolic) FRW boundary]} \end{aligned}$

Dilaton bounded, approaching constant at early/late times: asymptotic spacetime is $AdS_5 \times S^5$ (using a coord transformation).

The k = 0 (flat) FRW is the same as symmetric Kasner $(p_i = \frac{1}{3})$. (There is also a k = +1 (spherical) FRW solution.)

AdS BKL-cosmologies

In fact, larger family of cosmological solutions where spatial metric is one of the homogenous spaces in the Bianchi classification:

 $ds^{2} = \frac{1}{z^{2}} \left[dz^{2} - dt^{2} + \eta_{ab}(t) (e^{a}_{\alpha} dx^{\alpha}) (e^{b}_{\beta} dx^{\beta}) \right], \quad e^{\Phi} = e^{\Phi(t)}.$ $e^{a}_{\alpha} dx^{\alpha} \text{ are a triad of 1-forms defining symmetry directions. Spatially homogenous dilaton means spatial <math>R^{a}_{(a)}$ vanish, and $R^{0}_{0} = \frac{1}{2} (\partial_{0} \Phi)^{2}.$ Bianchi-IX: $ds^{2} = \frac{1}{z^{2}} \left[dz^{2} - dt^{2} + \eta^{2}_{i}(t) e^{i}_{\alpha} e^{i}_{\beta} dx^{\alpha} dx^{\beta} \right], e^{\Phi} = |t|^{\alpha}.$ Approximate Kasner-like solution $\eta_{i}(t) \simeq t^{p_{i}}$ with

$$\sum_{i} p_{i} = 1 \; , \; \sum_{i} p_{i}^{2} = 1 - \frac{\alpha^{2}}{2} \; .$$

If all $p_i > 0$, cosmology "stable". Else, spatial curvatures force BKL bounces between distinct Kasner regimes. With each bounce, α increases — dilaton-driven attractor-like behaviour. Attractor basin: generic Kasner-like solution with all $p_i > 0$.

Universal behaviour near singularities

Consider symmetric Kasner-like AdS BKL-cosmologies. Near singularity, spatial curvatures unimportant. Leading singular behaviour is essentially dilaton-driven, symmetric Kasner spacetime. Holographic stress tensor has similar leading behaviour $(T_{\mu\nu} \sim \frac{N^2}{t^4})$.

Consider families of such AdS cosmologies which are of the form of the symmetric Kasner-like solution i.e. $p_i = \frac{1}{3}$: (ds_3^2 spatial metric)

 $ds^2 = \frac{1}{z^2} \left[dz^2 + |2t|(-dt^2 + ds_3^2) \right] , \qquad e^{\Phi} = |t|^{\sqrt{3}} .$

Ignoring subleading curvature effects, spatial metric approximately flat i.e. $ds_3^2 \sim flat$. Then boundary metric is conformally flat, to leading order. [we've used a different time coordinate here.] Can use PBH transformations to recast boundary metric to be flat spacetime.

The gauge theory

Now $g_{YM}^2 = e^{\Phi} = (-t)^{\sqrt{3}}$ (t < 0). That is, $p = \sqrt{3} > 1$. From earlier: wave-fn phase "wildly" oscillating, ill-defined. Energy production divergent if coupling vanishes strictly near t = 0. * In gauge theory, deform gauge coupling so that $g_{YM}^2 = e^{\Phi}$ is small but nonzero near t = 0. Now finite but large phase oscillation and energy production. $\dot{\Phi} \sim \frac{\dot{g}_{YM}}{g_{YM}}$ finite so bulk also nonsingular. Sugra may still not be valid of course.

Eventual gauge theory endpoint ? Depends on details of energy production at coupling O(1). On long timescales, expect that gauge theory thermalizes: then reasonable to imagine that late-time bulk is AdS-Schwarzschild black hole.

See also arXiv:0906.3275, Awad, Das, Ghosh, Oh, Trivedi: slowly varying dilaton cosmologies and their gauge theory duals.

Null time-dependence

Null cosmologies: $\Phi = \Phi(x^+)$. No nonzero contraction so the mass term vanishes *i.e.* $m^2(\Phi) = 0$.

Gauge theory (lightcone gauge for convenience): suppressing many details, but briefly, cubic/quartic interaction terms multiplied by powers of $g_{YM} = e^{\Phi/2}$, unimportant near $e^{\Phi} \to 0$.

Thus we obtain weakly coupled Yang-Mills theory at the location in null time $(x^+ = 0)$ of the bulk singularity [e.g. $e^{\Phi} = g_s(-x^+)^p$]. This suggests that while classical bulk sugra variables are bad, lightcone Hamiltonian time evolution of the gauge theory is sensible. Moreover: x^- -translations are symmetries, so no particle production. Suggests continuing past singularity at $x^+ = 0$ is OK, and late-time state is vacuum: *i.e.* late-time bulk is $AdS_5 \times S^5$ (dual to $\mathcal{N}=4$ gauge theory vacuum, $\Phi \to const$ for large x^+).

Null singularities and strings

Bulk: since $e^{\Phi} \to 0$ near singularity, no large g_s effects. Rudimentary calculations suggest stringy effects (beyond GR) are important. AdS string technically difficult. Possible to construct simpler toy models with no fluxes or dilaton, where the singularity is *purely gravitational* so more tractable by string worldsheet methods.

Consider $ds^2 = e^{f(x^+)} \left(-2dx^+dx^- + dx^i dx^i\right) + e^{h_m(x^+)} dx^m dx^m$, with $i = 1, 2, m = 3, \dots, D-2$. Simple classes of null Kasner-like cosmological singularities at $x^+ = 0$ for (with two scale factors) $ds^2 = (x^+)^a \left(-2dx^+dx^- + dx^i dx^i\right) + (x^+)^b dx^m dx^m$, a > 0. (a < 0 solutions can be cast in this form by coord transf.) No nonzero covariant contraction \Rightarrow no local stringy corrections. Ricci-flat solutions of Einstein equations if $R_{++} = 0$: $\frac{1}{2}(f')^2 - f'' + \frac{D-4}{4}(-2h'' - (h')^2 + 2f'h') = 0$.

Null Kasner-like singularities

This gives $a^2 + 2a + \frac{D-4}{2}(-b^2 + 2b + 2ab) = 0.$ For $b \neq a$, we have $2a = -2 - (D-4)b \pm \sqrt{4 + (D-4)(D-2)b^2}.$ $a > 0 \Rightarrow$ positive radical.

Requiring unambiguous analytic continuation from $x^+ < 0$ to $x^+ > 0$ across singularity $\Rightarrow a, b$ are even integers.

More restrictive but such solutions do exist:

 $(a, b) = (0, 2), (44, -2), (44, 92), (2068, -92) \dots$, for D = 26(bosonic string).

 $(a,b) = (0,2), (12,-2), (12,28), (180,-28), (180,390), \dots$, for D = 10 (superstring).

No curvature invariants diverge in these null backgrounds. Diverging tidal forces: from deviation of null geodesic congruences, the accelerations are $a^i, a^m \sim \frac{1}{(x^+)^{2a+2}}$.

String worldsheet theory

Closed string action $S = -\int \frac{d\tau d\sigma}{4\pi \alpha'} \sqrt{-h} h^{ab} \partial_a X^{\mu} \partial_b X^{\nu} g_{\mu\nu}(X)$.

Lightcone gauge fixing gives

$$S = \frac{1}{4\pi\alpha'} \int d^2\sigma \left((\partial_\tau X^i)^2 - \tau^{2a} (\partial_\sigma X^i)^2 + \tau^{b-a} (\partial_\tau X^m)^2 - \tau^{b+a} (\partial_\sigma X^m)^2 \right),$$

containing only physical transverse string degrees of freedom $X^{I} \equiv X^{i}, X^{m}$. Effectively solved constraints etc.

Quadratic worldsheet theory, external time-dependent coefficients.

[Lightcone gauge $x^+ = \tau$. Set $h_{\tau\sigma} = 0$, with $E(\tau, \sigma) = \sqrt{-\frac{h_{\sigma\sigma}}{h_{\tau\tau}}}$: $S = \int \frac{d^2\sigma}{4\pi\alpha'} (Eg_{IJ}\partial_{\tau}X^I\partial_{\tau}X^J - \frac{1}{E}g_{IJ}\partial_{\sigma}X^I\partial_{\sigma}X^J + 2Eg_{+-}\partial_{\tau}X^-)$. Setting lightcone momentum $p_- = \frac{Eg_{+-}}{2\pi\alpha'} = -\frac{1}{2\pi\alpha'}$ to const by τ -independent σ -reparametrization invariance, we obtain $E = -\frac{1}{g_{+-}}$.]

Lightcone string wavefunctional

Lightcone Hamiltonian $H = -p_+$, satisfying physical state condition $m^2 = -2g^{+-}p_+p_- - g^{II}(p_{I0})^2$: $H = \frac{1}{4\pi\alpha'} \int_0^{2\pi|p_-|\alpha'} d\sigma \Big((2\pi\alpha')^2 (\Pi^i)^2 + \tau^{2a} (\partial_\sigma X^i)^2 + (2\pi\alpha')^2 \tau^{a-b} (\Pi^m)^2 + \tau^{a+b} (\partial_\sigma X^m)^2 \Big).$

Understand string propagation across singularity by studying behaviour of lightcone string wavefunctional: the Schrodinger equation is $i\partial_{x^+}\Psi \equiv i\partial_{\tau}\Psi[X^I,\tau] = H[X^I,\tau]\Psi[X^I,\tau], \quad \Pi^I[\sigma] = -i\frac{\delta}{\delta X^I[\sigma]}.$ Coord modes decouple: $H = \sum_I H_I[X^I] \Rightarrow \Psi[X^I] = \prod_I \Psi_I[X^I].$ This then simplifies to give $i\partial_{\tau}\Psi_I[X^I,\tau] = H_I[X^I]\Psi^I[X^I,\tau].$

 $\begin{aligned} X^{i} \text{ modes: free (flat space) Schrodinger equation} \\ i\partial_{\tau}\Psi_{i}[X^{i},\tau] &= \int \frac{d\sigma}{4\pi\alpha'} \left[(2\pi\alpha')^{2} (\Pi^{i})^{2} + \tau^{2a} (\partial_{\sigma}X^{i})^{2} \right] \Psi^{i}[X^{i},\tau] \\ &\to^{\tau\to 0} -\pi\alpha' \int d\sigma \frac{\delta^{2}}{\delta X^{i}[\sigma]^{2}} \Psi^{i}[X^{i},\tau]. \end{aligned}$

Lightcone string wavefunctional

 $X^{m} \text{ modes:} \quad i\partial_{\tau}\Psi_{m}[X^{m},\tau] = \int \frac{d\sigma}{4\pi\alpha'} \Big[-(2\pi\alpha')^{2}\tau^{a-b} \frac{\delta^{2}}{\delta X^{m}[\sigma]^{2}} + \tau^{a+b}(\partial_{\sigma}X^{m})^{2} \Big] \Psi^{m}[X^{m},\tau].$

b > 0: kinetic term dominates giving

 $i\partial_{\lambda}\Psi_m[X^m,\lambda] = -\pi\alpha'\int d\sigma \frac{\delta^2}{\delta X^m[\sigma]^2}\Psi^m[X^m,\lambda],$

Flat space Schrodinger eqn in time variable $\lambda = \int d\tau \ \tau^{a-b} = \frac{\tau^{2\nu}}{2\nu}$. Alternatively $\Psi[X^m, \tau] \sim e^{i\pi\alpha' \frac{\tau^{2\nu}}{2\nu} \int d\sigma \frac{\delta^2}{\delta X^m[\sigma]^2}} \Psi[X^m]$, well-defined for $2\nu = a + 1 - b \ge 0$.

b < 0: potential term dominates, $i\partial_{\lambda}\Psi_m = \frac{1}{4\pi\alpha'}\int d\sigma(\partial_{\sigma}X^m)^2\Psi^m$. Flat space Schrodinger equation in time variable $\lambda = \frac{\tau^{a-|b|+1}}{a+b+1} = \frac{\tau^{2\nu}}{2\nu}$. Or $\Psi[X^m, \tau] \sim e^{-i\frac{\tau^{2\nu}}{8\pi\nu\alpha'}\int d\sigma(\partial_{\sigma}X^m)^2}\Psi[X^m]$ well-defined if $2\nu \ge 0$. Wavefunctional nonsingular near $x^+ = 0$ for spacetimes with $2\nu \ge 0$.

Wavefunctional in other variables

 $ds^{2} = -2d\lambda dx^{-} + \lambda^{A_{I}} (dx^{I})^{2}, \quad A_{I} = \frac{a_{I}}{a+1}, \quad \lambda = \frac{(x^{+})^{a+1}}{a+1} \text{ (affine)}.$ Hamiltonian $H = \int \frac{d\sigma}{4\pi\alpha'} ((2\pi\alpha')^{2} \frac{(\Pi^{I})^{2}}{\tau^{A_{I}}} + \tau^{A_{I}} (\partial_{\sigma}X^{I})^{2}).$ Wavefunctional $\Psi[X^{I}, \tau] \sim e^{-i\pi\alpha' \frac{\tau^{1-A_{I}}}{1-A_{I}} \int d\sigma \frac{\delta^{2}}{\delta x^{I^{2}}}} \Psi[X^{I}], \text{ as } \tau \to 0$

(for *e.g.* $A_i > 0$), with well-defined phase if $A_I < 1$.

Brinkman coordinates: $x^{I} = (x^{+})^{-a_{I}/2}y^{I}, y^{-} = x^{-} + \left(\frac{\sum_{I} a_{I}(y^{I})^{2}}{4(x^{+})^{a+1}}\right),$ $ds^{2} = -2d\lambda dy^{-} + \sum_{I} \chi_{I}(y^{I})^{2} \frac{d\lambda^{2}}{\lambda^{2}} + (dy^{I})^{2}, \quad \chi_{I} = \frac{A_{I}}{4}(A_{I} - 2).$

Anisotropic plane waves with singularities. Hamiltonian $H = \int \frac{d\sigma}{4\pi\alpha'} ((2\pi\alpha')^2 (\Pi_y^I)^2 + (\partial_\sigma y^I)^2 - \sum_I \frac{\chi_I}{\tau^2} (y^I)^2),$ Wavefunctional: $\Psi[y^I, \tau] \sim e^{-\frac{i}{\tau} \sum_I \chi_I (y^I)^2} \Psi[y^I].$ Divergent mass term gives "wildly" oscillating phase as $\tau \to 0$. Wavefunctional difficult to interpret in Brinkman variables. Earlier Rosen coords better.

String mode functions

Classical string modes can be exactly solved for from worldsheet EOM:

 $f_n^I(\tau) = \sqrt{n\tau^{d_I}} \Big(c_{n1}^I J_{\frac{d_I}{2a+2}}(\frac{n\tau^{a+1}}{a+1}) + c_{n2}^I Y_{\frac{d_I}{2a+2}}(\frac{n\tau^{a+1}}{a+1}) \Big),$ with $d_I = 1, 2\nu$, for I = i, m, resp., $\nu = \frac{a+1-b}{2}$, and consts c_{n1}^I, c_{n2}^I . Using basis modes $f_n^I(\tau)e^{in\sigma}$, mode expand worldsheet fields $X^{I}(\tau,\sigma)$. This gives the Hamiltonian $\left(k_{n}^{I}=\frac{i}{n}\sqrt{\frac{\pi\alpha'}{2|c_{n}^{I}|(a+1)}}\right)$ $H = \frac{1}{2\alpha'} \left((\dot{X}_0^i)^2 + \tau^{b-a} (\dot{X}_0^m)^2 \right)$ $+ \sum_{m} \frac{|k_{n}^{i}|^{2}}{2n!} ((\{a_{n}^{i}, a_{-n}^{i}\} + \{\tilde{a}_{n}^{i}, \tilde{a}_{-n}^{i}\}) (|\dot{f}_{n}^{i}|^{2} + n^{2}\tau^{2a}|f_{n}^{i}|^{2})$ $-\{a_{m}^{i},\tilde{a}_{n}^{i}\}((\dot{f}_{n}^{i})^{2}+n^{2}\tau^{2a}(f_{m}^{i})^{2})+c.c.)$ $+\sum_{m} \frac{|k_{n}^{m}|^{2}}{2\alpha'} ((\{a_{n}^{m}, a_{-n}^{m}\} + \{\tilde{a}_{n}^{m}, \tilde{a}_{-n}^{m}\})(\tau^{b-a}|\dot{f}_{n}^{m}|^{2} + n^{2}\tau^{b+a}|f_{n}^{m}|^{2})$ $- \{a_n^m, \tilde{a}_n^m\}(\tau^{b-a}(\dot{f}_n^m)^2 + n^2\tau^{b+a}(f_n^m)^2) + c.c.\}.$

Oscillator algebra: $[a_n^I, a_{-m}^J] = [\tilde{a}_n^I, \tilde{a}_{-m}^J] = n\delta^{IJ}\delta_{nm}$.

Mode asymptotics

Cutoff null surface $x^+ \equiv \tau = \tau_c$: Low-lying (small n): $f_n^I \to \lambda_{n0}^I + \lambda_{n\tau}^I \tau_c^{d_I}$, $\frac{n\tau_c^{a+1}}{(a+1)} \lesssim 1$. Highly stringy (large n): $\frac{n\tau_c^{a+1}}{(a+1)} \gg 1$, $f_n^i \sim \frac{1}{\tau_c^{a/2}} e^{-in\tau_c^{a+1}/l(a+1)}$, $f_n^m \sim \frac{1}{\tau_c^{b/2}} e^{-in\tau_c^{a+1}/(a+1)}$. These ultra-high frequency modes exist for any infinitesimal

regularization of near-singularity region.

Then Hamiltonian for low-lying, highly stringy modes:

$$\begin{split} H_{<} &= \pi \alpha' ((p_{i0})^{2} + \tau^{a-b} (p_{m0})^{2}) + \sum_{n} \frac{\pi}{2(a+1)n^{2}} \left(\frac{1}{|c_{n0}^{i}|} (b_{n\tau}^{i\dagger} b_{n\tau}^{i} \\ &+ n^{2} \tau^{2a} b_{n0}^{i\dagger} b_{n0}^{i}) + \frac{1}{|c_{n0}^{m}|} ((2\nu)^{2} \tau^{a-b} b_{n\tau}^{m\dagger} b_{n\tau}^{m} + n^{2} \tau^{b+a} b_{n0}^{m\dagger} b_{n0}^{m}) \right) \\ & [\text{with} \quad b_{n0}^{I} = \lambda_{n0}^{I} a_{n}^{I} - \lambda_{n0}^{I*} \tilde{a}_{-n}^{I}, \ b_{n\tau}^{I} = \lambda_{n\tau}^{I} a_{n}^{I} - \lambda_{n\tau}^{I*} \tilde{a}_{-n}^{I}], \\ H_{>} \sim \tau^{a} \sum_{I; \ n \gg n_{c}} \frac{1}{a+1} \ (a_{-n}^{I} a_{n}^{I} + \tilde{a}_{-n}^{I} \tilde{a}_{n}^{I} + n), \end{split}$$

Oscillators and wavefunctional

The Schrodinger equation becomes $i \frac{\partial}{\partial \tau} |\Psi_i^{<}\rangle = H_i^{<} |\Psi_i^{<}\rangle$ $\sim \left(\pi \alpha'(p_{i0})^2 + \sum_{n \leq n_c} \frac{\pi}{2(a+1)|c_{\pi 0}^i|n^2} b_{n\tau}^{i\dagger} b_{n\tau}^i\right) |\Psi_i^<\rangle$ $i\frac{\partial}{\partial z}|\Psi_m^<\rangle = H_m^<|\Psi_m^<\rangle$ [b > 0] $\sim \tau^{a-b} \Big(\pi \alpha'(p_{m0})^2 + \sum_{n \leq n_c} \frac{(2\nu)^2 \pi}{2(a+1)|c_{\pi 0}^m|n^2} b_{n\tau}^{m\dagger} b_{n\tau}^m \Big) |\Psi_m^< \rangle, ,$ $\sim au^{a+b} \left(\sum_{n \leq n_c} \frac{\pi}{2(a+1)|c_{m0}^m|} b_{n0}^{m\dagger} b_{n0}^m \right) |\Psi_m^< \rangle, \ [b < 0],$ $i\frac{\partial}{\partial \tau}|\Psi_I^{>}\rangle = H_I^{>}|\Psi_I^{>}\rangle$ $\sim \tau^a \Big(\sum_{I; n \gg n_c} \frac{1}{a+1} \left(a_{-n}^I a_n^I + \tilde{a}_{-n}^I \tilde{a}_n^I + n \right) \Big) |\Psi_I^> \rangle.$

Recovers earlier general Schrodinger wavefunctional analysis.

Length scales

No-scale property of these spacetimes manifest in Brinkman coords. Then Rosen coords should have nontrivial length dimensions to maintain no-scale property: $\dim \lambda \equiv L$, $\dim x^+ \equiv L^{1/(a+1)}$ $\Rightarrow \dim x^i \equiv L^{1-a/(2(a+1))}, \dim x^m \equiv L^{1-b/(2(a+1))}.$ Lightcone gauge: $\dim \tau^{a+1} = \dim \sigma = L$. String coord length *l*: $\int d\sigma \equiv \int_{0}^{2\pi l} d\sigma$. Lightcone momentum $p_{-} = -\frac{l}{2\pi\alpha'} < 0 \implies l = 2\pi |p_{-}|\alpha'$. $\dim H = \dim \frac{1}{\tau} = L^{-1/(a+1)}.$ A mode is highly stringy if $n \gg \frac{l}{\tau^{a+1}} \sim \frac{p-\alpha'}{\tau^{a+1}}$. Highly stringy state (instantaneous) masses: $m^2 \sim \frac{1}{n'} (a_n^{i\dagger} a_n^i + ...)$ (Can also calculate low-lying spectrum) Thus highly stringy oscillator states satisfying $\frac{p-\alpha'}{\tau_c^{a+1}} \ll n \ll \frac{\alpha'}{\tau_c^{2a+2}}$ are light relative to typical energy scales $(a^i \sim \frac{1}{(x^+)^{2a+2}})$ near singularity.

Regulating the singularity

Some natural regulators bad, violate energy conditions: *e.g.* 4D scale factor $e^f = L^a ((\frac{x^+}{L})^2 + \epsilon^2)^{a/2}$

$$\Rightarrow R_{++}^{(4)} = \frac{1}{2} (f')^2 - f'' \longrightarrow^{x^+ \to 0} -\frac{a}{(L\epsilon)^2} < 0.$$

In terms of D-dim system, no natural solution to $R_{++}^{(D)} = 0$ whose 4D scale factor e^f is as above.

This is a universal near singularity $x^+ \to 0$ limit of many regulators $e.g. e^f = L^a [1 - (1 - \epsilon)e^{-(\frac{x^+}{L})^2}]^{a/2}$. Basic problem of regulators.

Consider $e^f = L^a (\frac{|x^+|}{L} + \epsilon)^a$, $e^h = L^b (\frac{|x^+|}{L} + \epsilon)^b$. Now accelerations a^i , $a^m \sim \frac{1}{L^{2a+2}(\frac{|x^+|}{L} + \epsilon)^{2a+2}}$. Curvature scale: $L_c = (L\epsilon)^{a+1}$.

Although apparently non-analytic, the geodesics, affine parameter, curvature continuous.

Strings and regulated singularities

Primarily interested in approach to $x^+ = 0$ from early times Worldsheet theory can again be exactly solved for mode functions

$$\begin{split} f_n^I(\tau) &= \sqrt{\frac{nL^{d_I}}{l^{d_I/(a+1)}} (\frac{\tau}{L} + \epsilon)^{d_I}} \left[c_{n1}^I J_{\frac{d_I}{2a+2}} \left(\frac{nL^{a+1}(\frac{\tau}{L} + \epsilon)^{a+1}}{l(a+1)} \right) \\ &+ c_{n2}^I Y_{\frac{d_I}{2a+2}} \left(\frac{nL^{a+1}(\frac{\tau}{L} + \epsilon)^{a+1}}{l(a+1)} \right) \right]. \end{split}$$

Can solve for Hamiltonian, string spectrum, (instantaneous) masses etc.

Highly string oscillators light if $\frac{p_-\alpha'}{L_c} \ll n \ll \frac{\alpha'}{L_c^2}$. Implicitly requires $p_- \ll \frac{1}{L_c}$. Number of such levels: $\frac{\alpha'}{L_c^2}(1-p_-L_c)$.

Strings and regulated singularities

For any finite $p_{-} \ll \frac{1}{L_c}$, only finite set of highly stringy oscillators excited in regulated near singularity region. In singular limit $L_c \rightarrow 0$, all oscillator states light, number of excited oscillator states diverges.

With $L_c \sim l_s$, no highly stringy oscillators turned on in regulated region (*i.e.* $n \sim 1$ already not light).

With $L_c \sim l_p$, highest level oscillator is $n \sim (\frac{l_s}{l_p})^2$.

Large proliferation of light string states in near singularity region. As $L_c \rightarrow 0$, we recover original no-scale spacetime. Now number of light oscillator levels diverges, all oscillators light.

Conclusions, open questions

*Spacelike: If $g_{YM}^2(t) \to 0$ strictly, then gauge theory response singular: energy diverges. Deform g_{YM}^2 to be small but nonzero near t = 0. Now finite but large phase oscillation and energy production. $\dot{\Phi} \sim \frac{\dot{g}_{YM}}{g_{YM}}$ finite now, so bulk also nonsingular. Sugra may still not be valid of course.

* Explore AdS BKL-cosmologies/duals further.

*Null: Free string wavefunctional nonsingular for spacetimes with $2\nu \ge 0$. However, light string state production could be large. Also backreaction of modes could be divergent.

String states being light in near-singularity region suggests that interactions are non-negligible: dual to renormalization effects (for corresponding AdS cosmologies)?

2nd quantized (string field theory) framework?

. . .

* Energy divergence

Analyzing KE terms shows they are indeed subleading near t = 0.

This means energy pumped in by time-dep source diverges as

$$\langle H \rangle \simeq e^{-\Phi} \langle V \rangle = \frac{1}{(-t)^p} \; \int D \tilde{X} \; V[\tilde{X}] \; |\psi_0[\tilde{X}(x)]|^2 \;$$
 ,

since no time-dep in $\langle V \rangle$. Oscillating phase cancels in $|\psi_0|^2$. This holds for generic states. For special states with $\langle V \rangle = 0$, energy may be finite (subleading KE terms do not diverge unless p > 2). Even for these special states, $\langle H^2 \rangle$ will diverge (if $\langle V \rangle = 0$,

generically $\langle V^2 \rangle$ does not vanish).

Thus fluctuations non-negligible about states with $\langle V\rangle=0$.

Note: this is not perturbation theory. Interactions important. Diverging energy since coupling strictly vanishes near t = 0.

* Time-dep quantum mechanics

In more detail: first ignore interactions, quantize quadratic theory. For a single momentum-k mode, this is time-dep quantum mechanics: $S_k = \int dt \left(\frac{1}{2}\dot{X}^2 - \omega^2(t)X^2\right), \quad \omega^2(t) = k^2 + m^2(t) \longrightarrow^{t \to -\infty} \omega_0^2.$ Generic classical solutions: $X = \sqrt{-t} \left[AJ_{\nu}(-t) + BN_{\nu}(-t)\right],$ $\nu = \frac{p+1}{2}$. Diverge as $t \to 0$: i.e. generic trajectory driven to large X. Take $f(t) = \sqrt{\frac{\pi\omega_0}{2}}\sqrt{-t}H^1_{\nu}(-\omega_0 t)$ as the solution of $\ddot{f} + \omega^2 f = 0$, with $f \to e^{-i\omega_0 t}, \quad t \to -\infty$. Expand $X = \frac{1}{\sqrt{2\omega_0}}[af(t) + a^{\dagger}f^*(t)]$.

Using the Schrodinger equation: the ground state wave-function is $\psi(t,x) = \frac{A}{\sqrt{f^*(t)}} e^{i(\frac{f^*}{f^*})\frac{x^2}{2}}.$

* Time-dep quantum mechanics

X: wave-fn
$$\psi(t, x) = \frac{A}{\sqrt{f^*(t)}} e^{i(\frac{\dot{f}^*}{f^*})\frac{x^2}{2}}$$
,

Wave-fn phase $\sim \frac{1}{t}$, "wildly" oscillating near t = 0.

 $t \to 0^-$: $f \sim (-t)^{-p/2}$.

Probability density: $|\psi(t,x)|^2 = \frac{|A|^2}{|f|}e^{-\frac{\omega_0 x^2}{|f|^2}}$. Gaussian, width $|f|^2 \to \infty$ as $t \to 0$. Wave packet infinitely spread out as $t \to 0$.

X variables spread out infinitely: need extra information at $X \sim \infty$. X description not good.

* Time-dep quantum mechanics

Original $\tilde{X} = e^{\Phi/2} X$ variables better defined: finite near t = 0. $\tilde{X} = e^{\Phi/2} \sqrt{-t} [AJ_{\nu}(-t) + BN_{\nu}(-t)] \sim^{t \to 0} t^{p/2} t^{1/2} t^{-\nu/2}$.

Wave-fn, probability:

$$\begin{split} \psi(t,\tilde{x}) &= \frac{A}{\sqrt{f^*(t)e^{\Phi/2}}} e^{i(\frac{\dot{f}^*}{f^*} + \frac{\dot{\Phi}}{2})\frac{\tilde{x}^2}{2e^{\Phi}}} , \quad |\psi(t,\tilde{x})|^2 = \frac{|A|^2}{|f|e^{\Phi/2}} e^{-\frac{\omega_0 \tilde{x}^2}{|f|^2 e^{\Phi}}} .\\ t \to 0^-: \ f \sim \ (-t)^{-p} , \quad |f|^2 e^{\Phi} \sim \ const .\\ \tilde{X}: \ \text{wave-fn phase} \sim \ \frac{1}{(-t)^{p-1}} , \quad \text{prob. width } const . \end{split}$$

p > 1: wave-fn ill-defined near $t \sim 0$. "Wildly" oscillating phase. p < 1: \tilde{X} wave fn phase regular near $t \sim 0$, $|\psi(t, \tilde{x})|^2$ finite.

Quadratic approximation shows interactions are important near t = 0. Perturbation theory insufficient.

* More on AdS BKL-cosmologies

Bianchi IX: symmetry algebra of $X_a = e_a^{\alpha} \partial_{\alpha}$ is SU(2). Spatial Ricci, decomposing along triad $R_{(a)}^a = R_{\alpha}^a e_a^{\alpha}$: $R_{(1)}^1 = \frac{\partial_t (\eta_2 \eta_3 \partial_t \eta_1)}{\eta_1 \eta_2 \eta_3} - \frac{1}{2(\eta_1 \eta_2 \eta_3)^2} [(\eta_2^2 - \eta_3^2)^2 - \eta_1^4] = 0$, Say $p_1 < 0$: then $\eta_1^4 \sim t^{-4|p_1|}$ non-negligible at some time. This forces metric to transit from one Kasner regime to another. As long as some $p_i < 0$, these bounces continue as: $p_i^{(n+1)} = \frac{-p_{-}^{(n)}}{2} = p_{+}^{(n+1)} + p_{+}^{(n)} + 2p_{-}^{(n)}$

 $p_i^{(n+1)} = \frac{-p_-^{(n)}}{1+2p_-^{(n)}}, \quad p_j^{(n+1)} = \frac{p_+^{(n)}+2p_-^{(n)}}{1+2p_-^{(n)}}, \quad \alpha_{(n+1)} = \frac{\alpha_n}{1+2p_-^{(n)}},$ for the bounce from the (n)-th to the (n+1)-th Kasner regime. If $p_- < 0$, then $\alpha_{n+1} > \alpha_n$. Also $\alpha_{n+1} - \alpha_n = \alpha_n \left(\frac{-2p_-}{1+2p_-}\right),$ i.e., α increases slowly for small α : attractor-like behaviour. Finite number of bounces. If all $p_i > 0$, no bounce: cosmology "stable". For no dilaton ($\alpha = 0$), BKL bounces purely oscillatory.

* More on AdS BKL-cosmologies

Parametrization: $p_1 = x$, $p_{2,3} = \frac{1-x}{2} \pm \frac{\sqrt{1-\alpha^2+2x-3x^2}}{2}$. Lower bound: $p_1 \ge \frac{1-\sqrt{4-3\alpha^2}}{3}$. Solution existence forces $\alpha^2 \le \frac{4}{3}$. Under bounces, α increases, window of allowed p_i shrinks. Lower bound hits $p_1 \ge 0 \Rightarrow \alpha^2 \ge 1$. Bounces stop, cosmology "stabilizes". Attractor-like behaviour: e.g.: $\{p_1^0 = x_0 = 0.3, \alpha_0 = 0.001\}$, flows (initially slowly) to $\{p_i > 0\}$ after 15 oscillations ($\alpha_{15} = 1.0896$).

E.g.: $\left(-\frac{1}{5}, \frac{9}{35}, \frac{33}{35}\right) \rightarrow \left(-\frac{5}{21}, \frac{7}{21}, \frac{19}{21}\right) \rightarrow \left(-\frac{3}{11}, \frac{5}{11}, \frac{9}{11}\right) \rightarrow \left(-\frac{1}{5}, \frac{3}{5}, \frac{3}{5}\right) \rightarrow \left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. [multiple flows with same endpoint]

Chaotic behaviour: 7% change to smallest exponent $-\frac{1}{5}$ gives $\left(-\frac{13}{70}, \frac{9}{35}, \frac{65}{70}\right) \rightarrow \left(-\frac{2}{11}, \frac{13}{44}, \frac{39}{44}\right) \rightarrow \left(-\frac{3}{28}, \frac{2}{7}, \frac{23}{28}\right) \rightarrow \left(\frac{1}{11}, \frac{3}{22}, \frac{17}{22}\right)$, drastically different endpoint.

Note also that dilatonic ($\alpha \neq 0$) [attractor-like] and non-dilatonic ($\alpha = 0$) [oscillatory] flows drastically different.