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e AdJS/CFT with Big-Bang cosmological singularities
e Holographic gauge theory duals
e Null: towards nonsingularity, bulk point of view ...

e Spacelike Big-Bangs, FRW cosmologies etc.
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Time dependence In string theory

e Usually broken spacetime supersymmesstime dependence.
Metastable/unstable stringy vacua (tachyon dynamics etc)

e Time in string theory ? Beginning/end of time (Big Bang/Cehh
In string theory models ? Good approximations to our Unigérs

e General Relativity breaks down at singularities: so watririgy”
description. Smooth quantum (stringy) completion of akzs
spacetime geometry ? For example, various “stringy phases”
arise ine.q. 2D linear sigma model worldsheet descriptions,
Matrix theory, etc.

Note: Big-bang singularities somewhat different from Blaoles: no
horizon cloaking.
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AdS/CFT, modes, deformations

Type IIB string theory /1
on (AdS5 x S5) Large N SU(N)
(bulk) d=4 maximally.
supersymmetric
Yang-Mills theor

(boundary)

Nice stringy playgroundAdS/CFT. Bulk string theory orddS; x S°
with dilaton (scalar}p = const, and metric

ds? = z%(nuydac“dx” + dz2) + ds?gg, ,
(Poincare coords) with 5-form field strength, dual to bougda= 4
N=4 (largeN) SU(N) Super Yang-Mills theory.

Deformations of AAS'CFT: either growing towards boundary
(non-normalizable) or subleading at boundary (normaleald hese
are dual to either sources for or expectation values of CFeraiprs.
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Time-dependent deformations:
cosmologies

Start with AdSs x S° and turn on non-normalizable deformations for
the metric and dilaton:

1 ~ v
ds? = — (Guda’da” + dz") + dsgs
¢ = Po(zM), also nontrivial 5 — form .

This is a solution in string theory if
~ 1 1 — .
R,uu — §a,uq)al/q) 3 ﬁ a'u(\/ —g g,u (9,,(1)) =0,

i.e. If It IS a solution to a 4-dim Einstein-dilaton system.
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The general solutions

Harmonic functionZ = Z(z™) (and appropriate 5-form)
ds? = Z_1/2§Wdac“dac” + Z12g, dx™dz™, D = O (zH).

gmn (2™) is Ricci flat, andj,, = g, (z#). [ =0123,m =4...9.]
Dilaton satisfies its EOM. And the Type IIB sugra EOM is

1 1
Ryn = EFMABCDFNABCD + 551\4(1’51\7@.

If g, were flat, and dilaton constant, then such solutions are
well-known (e.g. coincident D3-branes at a conical singularity with
base spacg:- ). 5-form effectively acts as 5D cosmological constant.
New contribution toRy; v is Ry, SO

~ 1
R,Uﬂ/ — 5(%(1)8,,(1)
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Time-dependent/Null cosmologies

Spacelike Considerg,, dz*dz” = —dt? + >°0_, tCP)dazide’ and

e® = t*. We obtain solutions generalizing Kasner-like cosmolsdjfie
> .pi=1, 0‘72 =1->_.p?, fromtheRy, R;;, ® EOM. Restrictive.
Can be generalized to othgy,. More later. Contaipacelike
cosmological singularities.

Null: Considerj,, dztdz” = /X7 (=2dX+dX ~ + dz'dz?), and
d = (X 1), whereX ™ = lightlike coord. These are solutions if

1 ~ 1 0,
5(8+¢)2:R++=§(f/)2—f”- (f/:(”é:)

Dilaton EOM 0,,(v/—¢g "0, ®) = 0 automatically satisfied since
® = ®(X 1) = infinite family of solutions parametrized By(X ™) .
Null singularities here. 8 lightcone supercharges preserv
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Prototypical example

Considere/ = tanh? X+

d5> = tanh® X (—2dXTdX™ + dx3 + dz?),
X+ |Ve
e? = g, tanhT

Far past/futureAdSs x S° with dilaton constant. AT — 0,
singularity (at finite affine time) as’ — 0, with Ry, = —5——.
EOM satisfied forX™ # 0 and continuous ak ™ = 0.
With g, small, dilaton can be made small everywhere.
Note: only solution with everywhere constant dilatoneis = ﬁ ,
which is flat spaceg,,, = 7, using

r=X1Y, XT =Y - XN (YP+YP), Xt =—34.
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Nature of null Big-Bang/Crunch
singularity

Embedding
Anti deSitte

These contain null Big-Bang (Crunch) cosmological singties when
the transverse space shrinkseas— 0, at sayX ™ = 0. Then curvature
along infalling null geodesic§" diverges

Rapé%¢" = Ryje 2 — oo,
These are infalling null geodesics at constint, z2, 3. Affine
parametel = const. [ e/(X7)dX* along geodesics. Singularity
reached In finite affine time.
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Nature of singularity cont’d

Other invariants?, R4pR4P etc as inAdSs.

Diverging compressional tidal forces along infalling ngélodesic
congruence: two nearby geodesjés displaced in say’ = z?, 7,
have relative acceleration

o' = —Ri (€7 = -3 G~ /") e
Physical distancé\ = ef/ \/7 between two such geodesics
reflects this tidal force

2A
Sz =3 -1)A
Considefe/ = tanh? X as limit of e/ = (|tanh X | + €)2. Then
e® ~ g4(e)V8. Curvature, affine parameter: continuous, nonsingular.
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The gauge theory duals

e Conjecture Type IIB string theory on these backgrounds is dual

to =4 d = 4 SYM on a base spagg,, with a time dependent

gauge coupling?.,, = e®.

Natural extension of AdS/CFT for small perturbationds, dg,,,
S = [d'z [“ 2 TrE? + 69, )
i.e. the dual isN=4 SYM theory with these sources turned on.

e Analyzing the D-probe DBI action corroborates this. Imagin
building up this spacetime by stacking D3-branes in a
backgroundds? = guyd:p“d:py + dz™dx,, and dilaton®(z*).
This gives ds? = Z~V/2(2)g,,, dxtdx” + Z'/%(z)dx™dx,,,
with dilaton and appropriate 5-form. Now take near horizomtl

Questions. Vanishing absorption cross-sections (near singulatity)
D-brane boundary states in time-dependent backgrounds ?
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The gauge theory duals cont’d.

Reverse questiortime-dependent deformations &f=4 SYM ? Start

in /=4 vacuum in the far past; turn on time-dependent gauge caypli
and a time-dependent initially flat base space. Gauge thesponse ?
Well-posed problem®, g,,, specify gauge theory data completely.

Supergravity dual ? If the dilaton and metric are relatediay(tiB)
equations earlier, then a sugra dual is straightforwardeatify.

Nontrivial sources turned on (for operatdrsF2, 7),,) are dilaton®
and metricg,,,, = then sugra dual is this deformation 4fSs x S°.
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Nonsingular gauge theory dual ?

Is the gauge theory dual to these cosmologies with null Bagd3
singularitiesnonsingular ?

Gauge theory dual lives on base spage = e/(*")y,,,, conformal to
flat space, and has null-time-dependent gauge coupfing = e®@),
These null cosmologies special for two reasons:

e The trace anomaly),* for these theories vanishes after a Wey!
rescaling of the metric, partition function and correlagamf
conformally dressed operatar&®)2/2()(z) are well-behaved.

e The gauge coupling?,, = e¢® vanishes near the singularity.
And there exist new variable$, = e~®*")/24 , which are
weakly coupled near the singularity (and dual to nonlocét bu
operators), and encode a nonsingular description of thersys
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The trace anomaly

The trace anomaly for a field theory on a curved background is
T." o ¢(CapysC°) — a(Roprs R*P1° — 4R35 R + R?)

1
x  —RasR* + §R2.

ForSU(N) N=4 SYM, we havec = a = N24‘1 .
In the time dependent cosmologies, both tebmglz :

Null cases: only nonzer®,, is R4+ = T,* =0 foranyf(X™).
Time-varying dilaton effects: any additional term ifY,* must be
generally covariant involving dilaton derivatives, andders made out
of the metric. These vanish since oy ® nonzero, and no tensor
with two (or more) uppes components.
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CFT in conformally flat bgnd
Consider the partition function (ignore time-dependenipimg)

Z[g,uv] — /[Dgp] [guy]eiS[guv,SOL

S being the action over fields. Under metric variationsg,,,, ,

0Z = [[Dely,. €9 (i [ d*x\/=g 6g,, TH) , T* being the
stress tensor. Thus under Weyl rescalings — e°¥g,,, ,

6log Z = i([ d*z\/—g T,F61).

Consider 1-parameter family of metrigg,, = /X )y, a € [0,1].
Then T, =0 = 0.72[gw]=0 = Zle/nu] = Z[nw.
Similarly for correlation functions

<H€ ’ O 6f77 - HO%Z v ]
1

Cosmologies with Big-Bang Singularities and Their Gaugedrl Duals, K. Narayan, CM+ p.14/3



Varying dilaton effects

For our prototypical example, far past/future state isthe4 SYM
conformal vacuum. In general, time-varying interacticead to
particle production: null backgrounds ?

Consider conformal scalar with null-dependent interarctio
S = [dtzy/=g [5(00)? + :Rp* + J(XT)p%] .

k;2
—i(k;x X+)

Lightcone quantlzatlon modes are positive

= k_ > 0.

frequency k. =

Mode expandlng In the free theory gives
— e 2 fd2

Conformal vacuum: a(k;,k_)[0) = 0.

o2
7, X+)

—i(kix'+k_ X+

k[ \/(% —— [aye + c.c.]
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Varying dilaton effects cont’'d

Vacuum of the non-interacting theory remains unchangel avit
null-dependent source- no particle production.

Essentially, final interaction picture stati.(; null-time ordering)
. +
s) = Tye—i d'z T FDIXT) %10y remains unchanged.

k2
—i(k;x

©=e 2fd2

soe.g. atfirst order, 8y |s) = —i [ d*ze? (X7 (X T)p%0).

kJ, \/ o 3%_ lage + c.c.]

With ¢3 normal ordered, the only term contributing is tfaé)3 term.
But eacha’ term comes witke’*~X " k_ > 0. Then sinceJ(X 1) is

X~ -independent, [ dX~ gives aj-function=- eachk_ must vanish.
For thek_ # 0 sector, this constraint cannot be met.
Can generalize to higher orders.
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Varying dilaton effects cont’'d

Physically: analogous to space-varying source where trareslation
Invariance implies no particle production due to energyseovation.
Here X ~-translation invariance meatts. conserved since source
J(X ™) does not break this symmetry.

Thus the vacuum of the non-interacting theory remains umgée with
a null-dependent souree no particle production.
Caveat: k_ = 0 subtleties.
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Varying dilaton: correlators

In perturbation theory in sourc& X ), correlators with interaction
| d*Xes J(X+)e% ©3(X) can be related to free correlators, and thus
to flat spaceiressed correlatorse. g. 2-pt fn with interaction'

(1) (z9)
G (w1, m) = (0|The = () )e 2= p(ay)e— i) d'ov/aI (XN 0|y,

To leading order

Fz) F(x)

—i(0[Te 2 p(z1)e 2 p(a2) [ dX 2T J(XT)p(X)3|0) =

x+ fle7) fled) +
—i [dXT(X ) 2 (The 2 pla)e 2 plas)e 2 @*(X)).

OperatorO(z) of conformal dimensiom\ dressed as’> O(x). For
sourceJ(Xﬂ coupling toO(x), interaction damped if
J(XT)e 5 /&N L pasXx+ — 0.
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Field redefinitions: toy scalar

With varying dilaton, kinetic terms of gauge fields are nomat. \Want
redefinition to new variables with canonical kinetic terms.

Toy model: scalar field [ d*z e=®X ) (9p)? . Redefingp = e(z) :
[d*z e=® nt (620,00, ¢ + €0,,€0,(p*) + (0,,€0,€)5?) .

Now if e(z) = e®(X)/2 first term canonical kinetic term. Andis
null = (i) the third term vanishes, (ii) the second term is a total
derivatived, (¢2)0_(¢?) = 0_[0, (?)$?], which can be dropped.

Considerinteractions:
— [d*z e *X[(9g)? — — [d*z|( — XX 1),

Thusg-variables have canonical kinetic terms. XS — 0, if

e® — 0, theng-interaction dampees> nonsingular S-matrix. Theory
well-defined, transparent ip-variables used for defining asymptotic
states.
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N =4 SYM: the tilde variables

N=4 SYM: near singularity,e® — 0, so kinetic terms singular:
want well-defined variableg e~ ®trF? + ... — [trF? + ...

For simplicity, work in lightcone gaugd_ = 0 (and flat metric).
Define A, = e=¥/2A,,. Then Sgg = —1 [ d*z e=® Tx[F,, F*] —

d*x ~ 5 : A A VAR AV
B / — [T(0u 4, — 8,A,)° — 2™ Te{(9, 4, — 9, A,)[A", A”]}

—e®Tr([A,, 4,])? — 0_{(0; @) A4; A} ]

The last term is a total derivative and does not affect the EOM
Other interaction terms containing the dilaton:

[ d*ale? J1 A+ e Te([A,, o[ AP, 6°)) +e®Tr([6, 676, ¢7))],
whereJ#* is the gauge current from scalat$ and fermions.

Note: Dilaton couples with positive powers.
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N =4 SYM tilde variables cont'd.

We have imposed! ~ = 0 gauge:A; nondynamical (also therefore
A,). TheA_ EOM gives a constrainb_(d - A) = 0, i.e.
k_(—k_Ay +kAY) =0.Thusifk_ #0,then —k_A, + k;A* = 0.
Now solve forA interms ofA4; , i.e. Ay = 7 (k;4;) .

Note: 9_(0-A) =0 meansd- A= F(X™',2"). Residual

X ~-independent gauge transformatioﬂ% = A, + O\ n# X,
can beusedtofiw - A =0, fork_ £ 0.

Thus fork_ # 0 modes, we can fix gauge completely A, , A; are
gauge-invariant.

In a general gauged,, = e=®/2(A, + 9, x), wherey = -0~ 'A_is
uniquely defined if_ # 0.

Caveat! k_ = 0 subtleties of lightcone gauge.
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Tilde variables cont’d.

Curved metrigj,,, = e/n,,: Dilaton couples to dimensioA = 4
operators, so no dressing factors since dressed sourke i /.

Interaction terms are of the fore¥®(X ) O (z) . From earlier
argumentseq’(Xﬂ IS a lightlike source=- no particle production.
Dilaton couples with positive powers;> all interactions die out when
the dilaton vanishes. Thus &t — 0, the A theory is becoming free.

Note: in the regulated theory! = (|tanh X | + €)?, there is no
singular behaviour at all. Only possible singular behavfoue — 0
arises neaX + — 0. But here, all interactions die.

Thus the gauge theory is nonsingular.
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Other observables, bulk 2pt fn

* Operator relation® = e~ ® Tr 2 = Tr [2 — 20_[(0; @) A; A7 .
Then (O(z)O(y)) = (Tr F2(z) Tr F%(y)) + divergent,

since® ~ v/8log X = 9;® ~ <+ nearX ' = 0, so that
(O(x)O(y)) diverges. However, in our exampl@r F'?(z) Tr F2(y))
etc vanish asxt — 0 sincee® — 0 faster tharo_® diverges.

* For operatoD dual to bulk scalard. g. dilaton), bulk 2-pt function is
f(z)A f)a f@)(A=1) f)(A-1) _
(€75 O@)e 7 0@ =e 2 e <%>1 A

Whenz ~ 2/, thenz3%s ~ &2 = ¢/ gving s

However in singular backgrounds, for bk, X’™ — 0, this
depends on how the limit is taken: in our exampley (X )3, giving

() (@) + o + U (s
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More on dual variables

This disagreement between bulk and gauge theory expatdasmot
surprising: bulk calculation fails near the singularityséthese bulk
modes.e. g. dilaton, couple to operators made outAf variables.

Good gauge theory variables are tﬁle' bulk duals ? Hard to identify
clearly. Operators such d$; = e~®/2F;; are local.

However operators.g. A, or 'y, = e ®/2F,, — 1e7®/2(A,0,9),

are not local in terms aof),,,, sinceA,, cannot be expressed locally in
terms off},,,. A complete set of gauge invariant operators must incluc
these. Thus théiu are possibly nonlocat, e. their duals (good bulk
variables) are stringy (recadlg. Wilson loop).

Also note: in usual AdS/CFTy/ ~ Q%LN = 2% -

This further suggests that (stringy) effects become important near
the singularity (crude bulk worldsheet analysis corrobegdhis).
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Revisiting the bulk: null case

We have seen so far various features of the gauge theorystugge
that it is nonsingular, and in fact lives on a flat spacetimin\ai

time-dependent coupling. Can this be seen directly fronbthle ?
Consider the coordinate transformation

w2f/
4 .

w:ze_f/2, Yy =T —
This transforms the bulk to the form

ds? = L[-2dutdy™ + da? + §(®)?w?(dz")?) + 45

Y

using1(f)? — f” = 3(®')?, the constraint on these solutions.

Now boundary atv = 0 manifestly flat 4D Minkowski spacetime. This
gives further evidence that the gauge theory is in fact sénsi
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Revisiting bulk, cont’d

Note that the conformal factef does not appear at all. This recasting
of the bulk metric in terms of an arbitrary dilaton functi®ns useful.
For example, in the earlier formulation, the constraintéal the

dilaton to be non-analytice(g. e® = | tanh(%)\\/g) If the conformal
factor were analyticd.g. e/ = (tanh(z*))?) — this is generic.

Since the dilaton is the gauge coupligig,, = ¢®, one might worry
about possible ambiguities in time evolution via analybatnuation

pastz™ = 0 in the gauge theory.

With the above new coordinates, one can choose the dilatoa to
analytice.g. e® = (tanh(z™))2. Then the bulk has a singularity at
T = 0 but the gauge theory from our earlier arguments appears
well-behaved.
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PBH transformations, boundary
metrics

These coordinate transformations are in fact a class of
Penrose-Brown-Henneaux transformations: subset of bulk
diffeomorphisms leaving metric invariant (in FeffermanaGam form)
and acting as a Weyl transformation on boundary.

Star wth metric in FG form:
ds? = % + %gij(x,p)dxidxj .
General infinitesimal form of the PBH transformations:
p = pe @) xt =zt + a2, p) .
Demanding that théx'dp’ cross term vanishes gives
D,at = igij(‘?ja :
Thisgives  dgij = o(1 — pd,)gi; + Viay -

Above, we have foundgnite PBH transformations for the null case.
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Cosmologies with spacelike
Big-Bang singularities
We have described cosmologies with null Big-Bang singti&siso far.

We will now describe solutions with spacelike Big-Bang silagities.
More restrictive. However in addition to Kasner cosmolsgarlier

ds? = & |dz? — d? + o3 1) daidat|
e? = [¢|V2-XP), S opi=1,

we find solutions with boundaries being FRW cosmologies with
spacelike Big-Bang singularities, having metric and dmat
ds? = & [de? + /O (—di? + {22 4 12(d0% + sin*0ds?) )|
ef) = ¢ sin(2vVk t) + cp cos(2VE 1),
e® — V3 [dte I

k = 0, %1 corresponds to flat, spherical or hyperbolic FRW universe.
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Spacelike Big-Bangs cont'd

In particular, thek = —1 solution withe/(!) = sinh(2¢) is
ds? = sinh(2t) (—dt2 + fﬁ; + r?(df?* + sz’n26’dgb2)) ,
e® = |tanh¢|V3 .

Thus the dilaton is in fact bounded, approaching constasaidy/late
times: asymptotic spacetime.igiSs x S°. This gives hope that
perhaps these gauge theories admit some interesting [olesTri
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Spacelike Big-Bangs cont'd

Thek = 0 case Is in fact the symmetric Kasner solution
ds* = % [dz* + Z(—dt* + da'da")] ,
e® = [t|V3.
It is possible to find PBH transformations that transforns fltat FRW
case to a spacetime with flat Minkowski boundary, along simihes
as the null cosmologies:

5 2
o 32wT2 1 PR 16T2+5w?2 \ 3
Ve 167?72 —w?? o 1672 —w? ’

4 2
1672 —5w?2)?2 1672 —w?2)3 (16T2+5w?)3 L
ds® = Ly |dw? — WT_5w ) g2 Q6T —w ) S UST0wT)8 gy gy
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Spacelike Big-Bangs cont'd

There are further coordinate transformations that makedoadary
conformally flat for the other FRW solutions too. This suggdbkat
there should again be PBH transformations for these cases.

We have not found exact PBH transformations here, but carttsm
In an expansion about the boundary.

Using these and going to the new coordinates with a flat baynda
metric, we can calculate the stress tensors for these spasatising
holographic RG techniques. These generically diverge thear
singularity for the spacelike Big-Bangs.

However: for thek = 0 flat FRW, the stress tensor vanishes in the
earlier coordinates (with a conformally flat boundary).
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Open questions

e Work in progress: more detailed understandingvof4 SYM
with this time-dependent coupling, loop amplitudes, etc.
Spacelike singularities ?

e What is the bulk resolution of these null singularities ?
Stringy physics near these singularities ?

D-brane dynamics in time-dependent backgrounds ?

e More severe (spacelike) cosmological singularities ? IRal
cosmologies ?
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