ALEXANDER DUALITY AND SERRE'S PROPERTY (S_i) FOR SQUARE-FREE MONOMIAL IDEALS

MANOJ KUMMINI

ABSTRACT. In this note, we study Serre's property (S_i) , and its relation to Alexander duality for monomial ideals in a polynomial ring over a field. We describe ideals that define the non-Cohen-Macaulay- and the non- (S_i) -loci of finitely generated modules over regular rings, and show that minimal prime ideals in these loci are homogeneous, in the graded case. We show that a square-free monomial ideal has property (S_i) if and only if its Alexander dual has a linear resolution up to homological degree i - 1. We prove that for square-free monomial ideals, having property (S_2) is equivalent to being locally connected in codimension 1.

1. Main Results

Let k be a field and $R = k[x_1, \dots, x_n]$ a polynomial ring in n variables. The standard grading on R is the grading by \mathbb{N} , obtained by setting deg $x_l = 1$ for all $1 \leq l \leq n$. We can also make R multigraded, *i.e.*, graded by \mathbb{N}^n , with deg $x_l = \mathbf{e}_l, 1 \leq l \leq n$, \mathbf{e}_l being the *l*th standard basis vector for \mathbb{N}^n . For any finitely generated R-module M, we say that M satisfies Serre's property (S_i) if for all $\mathfrak{p} \in \operatorname{Spec} R$, depth $M_{\mathfrak{p}} \geq \min\{i, \dim M_{\mathfrak{p}}\}^{-1}$. We adopt the convention that the zero module has property (S_i) for all i. The (S_i) -locus of M is the set $\mathcal{U}_{(S_i)}(M) := \{\mathfrak{p} \in \operatorname{Spec} R : M_{\mathfrak{p}} \text{ has property } (S_i)\}$. We know from [EGA, IV, 6.11.2] that this is an open subset of Spec R. In Proposition 9, we describe an ideal that defines the complement of $\mathcal{U}_{(S_i)}(M)$, following which (Discussion 11) we show that if M is graded, either by \mathbb{N} or by \mathbb{N}^n , then so are the minimal prime ideals in this closed set.

For any homogeneous ideal $I \subseteq R$, we say that I satisfies property $(N_{c,i})$ (after [EGHP05]) if all the minimal generators of I have degree c and a minimal graded free resolution of I is linear up to homological degree i - 1. This definition is independent of the choice of the resolution, because I satisfies property $(N_{c,i})$ if and only if $\operatorname{Tor}_{l}^{R}(\Bbbk, I)_{j} = 0$ for all $0 \leq l \leq i - 1$ and for all $j \neq l + c$. We now relate the properties (S_{i}) and $(N_{c,i})$:

Theorem 1. Let $I \subseteq R$ be a square-free monomial ideal with ht I = c. Then for i > 1, the following are equivalent:

- (a) R/I satisfies property (S_i) .
- (b) The Alexander dual I^* satisfies $(N_{c,i})$.

²⁰⁰⁰ Mathematics Subject Classification. Primary: 13F55, 13D02.

¹This definition follows [EGA, IV, 5.7.2] and [BH93, Section 2.1]. There is another definition of Serre's condition (S_i) , used in [EG85, Section 0.B]: a module M is said to satisfy Serre's condition (S_i) if depth $M_{\mathfrak{p}} \geq \min\{i, \dim R_{\mathfrak{p}}\}$, for all $\mathfrak{p} \in \operatorname{Spec} R$.

Remark 2. The Alexander dual of a square-free monomial ideal I, minimally generated by monomials f_1, \dots, f_s , is the (square-free monomial) ideal $\bigcap_{i=1}^{s} \mathfrak{p}_{f_i}$, where for any square-free monomial $f = x_{l_1} \cdots x_{l_j}$, we set $\mathfrak{p}_f := (x_{l_1}, \cdots, x_{l_j})$. See [MS05] for more on Alexander duality, and, also for any unexplained terminology.

Remark 3. The motivation for Theorem 1 is the result of Eagon-Reiner [ER98] (see also [MS05, Theorem 5.56]) that R/I is Cohen-Macaulay if and only if I^* has a linear free resolution. We have that R/I is Cohen-Macaulay if and only if R/I satisfies property (S_i) for all *i*. By Theorem 1, this is equivalent to I^* having property $(N_{c,i})$ for all *i*.

Remark 4. Terai [Ter99] (see Proposition 13 below) gave a generalization of the Eagon-Reiner theorem; we require this in our proof of Theorem 1. For two other results generalizing the Eagon-Reiner theorem, see Herzog-Hibi [HH99, Theorem 2.1(a)] and Herzog-Hibi-Zheng [HHZ04, Theorem 1.2(c)].

Remark 5. We can extend the statement to include the case i = 1 by replacing the statement (a) by "R/I satisfies property (S_i) and I is unmixed" (*i.e.*, for all the associated primes \mathfrak{p} of R/I, dim R/\mathfrak{p} is independent of \mathfrak{p}). Since R/I is reduced, it always satisfies property (S_1) . Hence if I is unmixed, then I^* is generated by monomials of degree c; this is property $(N_{c,1})$ for I^* . For larger i, the hypothesis that I is unmixed becomes superfluous: for any ideal I, not necessarily homogeneous, if R/I satisfies property (S_2) , then I is unmixed [EGA, IV, 5.10.9].

For a commutative ring A, we say that Spec A is *connected in codimension* k, if for all ideals $\mathfrak{a} \subseteq A$ with ht $\mathfrak{a} > k$, Spec $A \setminus \{\mathfrak{p} \in \text{Spec } A : \mathfrak{a} \subseteq \mathfrak{p}\}$ is connected, and that A is *locally connected in codimension* k if $A_{\mathfrak{p}}$ is connected in codimension k for all $\mathfrak{p} \in \text{Spec } A$. It is known [Har62, Corollary 2.4] that for any ideal I, not necessarily homogeneous, if R/I satisfies property (S_2) , then Spec R/I is locally connected in codimension the following equivalence:

Theorem 6. Let $R = \Bbbk[x_1, \dots, x_n]$ be a polynomial ring in n variables and let $I \subseteq R$ be a square-free monomial ideal. Then Spec R/I is locally connected in codimension 1 if and only if R/I satisfies property (S_2) .

2. Free resolutions and the locus of non- (S_i) points

Many results in this section are part of folklore. We take R to be an arbitrary regular domain, and M a finitely generated R-module with a finite free resolution

$$\mathbb{F}_{\bullet}: \qquad 0 \longrightarrow F_p \xrightarrow{\phi_p} F_{p-1} \longrightarrow \cdots \longrightarrow F_1 \xrightarrow{\phi_1} F_0 .$$

Let $c = \operatorname{codim} M$. For $1 \leq l \leq p$, set $r_l := \sum_{j=l}^p (-1)^{j-l} \operatorname{rk} F_j$ and $I_l := \sqrt{I_{r_l}(\phi_l)}$, where, for a map ϕ of free modules of finite rank, and a natural number t, $I_t(\phi)$ is ideal generated by the $t \times t$ minors of ϕ and $\sqrt{}$ denotes taking the radical of an ideal.

Remark 7. Since R is a domain, M has a well-defined rank. We apply [BE73, Lemma 1] to conclude that M is projective if and only if $I_1 = R$. We see immediately that the exact sequence $(0 \longrightarrow \operatorname{Im} \phi_l \longrightarrow F_{l-1} \longrightarrow \operatorname{coker} \phi_l \longrightarrow 0) \otimes_R R_{\mathfrak{p}}$ splits — we say that $\phi_l \otimes_R R_{\mathfrak{p}}$ splits if this happens — if and only if $I_l \not\subseteq \mathfrak{p}$. If $\phi_l \otimes_R R_{\mathfrak{p}}$ splits, then so does every $\phi_{l'} \otimes_R R_{\mathfrak{p}}$ for $l' \geq l$. Hence $I_1 \subseteq I_2 \subseteq \cdots \subseteq I_p$. November 11, 2010

Additionally, if R is local, with maximal ideal \mathfrak{m} , and M is not free, then $\operatorname{pd} M = \max\{l : 1 \leq l \leq p \text{ and } I_l \subseteq \mathfrak{m}\}.$

First we determine the Cohen-Macaulay locus of M, which is an open subset of Spec R; see [EGA, IV, 6.11.3]. Let

(1)
$$J_{CM}(M) := \bigcap_{\substack{k=c+1}}^{p} \left(I_k + \bigcap_{\substack{\mathfrak{q}\in\min M,\\ \operatorname{ht}\mathfrak{q}\leqslant k}} \mathfrak{q} \right),$$

taking $J_{CM}(M) = R$ if the intersection is empty.

Proposition 8. For all $\mathfrak{p} \in \operatorname{Spec} R$, $M_{\mathfrak{p}}$ is Cohen-Macaulay if and only if $J_{CM}(M) \not\subseteq \mathfrak{p}$.

Proof. Let $l = \operatorname{codim} M_{\mathfrak{p}} + 1$. First, $\left(I_k + \bigcap_{\substack{\mathfrak{q} \in \min M, \\ \operatorname{ht} \mathfrak{q} < k}} \mathfrak{q}\right) \not\subseteq \mathfrak{p}$ for all k < l; otherwise,

we would get an ideal $\mathfrak{q} \subseteq \mathfrak{p}$ with $\mathfrak{q} \in \min M$ and $\operatorname{ht} \mathfrak{q} < \operatorname{codim} M_{\mathfrak{p}}$, which is a contradiction. We now see that $M_{\mathfrak{p}}$ is Cohen-Macaulay if and only if $\operatorname{pd}_{R_{\mathfrak{p}}} M_{\mathfrak{p}} = \operatorname{codim} M_{\mathfrak{p}}$, or, equivalently (by Remark 7), $I_l \not\subseteq \mathfrak{p}$, or, equivalently (by Remark 7,

again),
$$\begin{pmatrix} I_k + \bigcap_{\substack{\mathfrak{q} \in \min M, \\ ht \mathfrak{q} < k}} \mathfrak{q} \end{pmatrix} \not\subseteq \mathfrak{p} \text{ for all } k \ge l, \text{ or, equivalently (by above), } J_{CM}(M) \not\subseteq \mathfrak{p}.$$

In order to determine the (S_i) -locus of M, we first define $\Lambda_i = \Lambda_i(M)$ to be the set of all $\mathfrak{q} \in \operatorname{Spec} R$ such that \mathfrak{q} is minimal over $I_l + J_{CM}(M)$ for some $l > \operatorname{ht} \mathfrak{q} - i$. Note that Λ_i is finite. Now let $J_{(S_i)}(M) = \bigcap_{\mathfrak{q} \in \Lambda_i} \mathfrak{q}$, taking $J_{(S_i)}(M) = R$ if $\Lambda_i = \emptyset$.

Proposition 9. For all $\mathfrak{p} \in \operatorname{Spec} R$, $\mathfrak{p} \in \mathcal{U}_{(S_i)}(M)$ if and only if $J_{(S_i)}(M) \not\subseteq \mathfrak{p}$.

Proof. Let $\mathfrak{p} \in \operatorname{Spec} R$ and $\Lambda_i \cap \mathfrak{p} := \{\mathfrak{q} \in \Lambda_i : \mathfrak{q} \subseteq \mathfrak{p}\}$. Since $J_{(S_i)}(M) \not\subseteq \mathfrak{p}$ if and only if $\Lambda_i \cap \mathfrak{p} = \emptyset$, we need to show that $\mathfrak{p} \in \mathcal{U}_{(S_i)}(M)$ if and only if $\Lambda_i \cap \mathfrak{p} = \emptyset$.

Let $\mathbf{q} \in \Lambda_i \cap \mathfrak{p}$. Let $l > \operatorname{ht} \mathbf{q} - i$ be such that \mathbf{q} is minimal over $I_l + J_{CM}(M)$. We apply Remark 7 to the regular local ring $(R_{\mathfrak{q}}, \mathfrak{q}R_{\mathfrak{q}})$ to conclude that $\operatorname{pd}_{R_{\mathfrak{q}}} M_{\mathfrak{q}} >$ $\dim R_{\mathfrak{q}} - i$, and, by the Auslander-Buchsbaum formula, that depth $R_{\mathfrak{q}} < i$. Since $J_{CM}(M) \subseteq \mathfrak{q}, M_{\mathfrak{q}}$ is not Cohen-Macaulay. Hence $M_{\mathfrak{q}}$ does not have property (S_i) , so $\mathfrak{p} \notin \mathcal{U}_{(S_i)}(M)$.

Conversely, if $\mathfrak{p} \notin \mathcal{U}_{(S_i)}(M)$, then there exists $\mathfrak{q} \subseteq \mathfrak{p}$ be such that depth $M_{\mathfrak{q}} < \min\{i, \dim M_{\mathfrak{q}}\}$. Then $M_{\mathfrak{q}}$ is not Cohen-Macaulay, *i.e.*, $J_{CM}(M) \subseteq \mathfrak{q}$, and $\mathrm{pd}_{R_{\mathfrak{q}}}M_{\mathfrak{q}} > \dim R_{\mathfrak{q}} - i$. By Remark 7, there exists $l > \operatorname{ht} \mathfrak{q} - i$ such that $I_l \subseteq \mathfrak{q}$. Let \mathfrak{q}' be minimal such that $I_l + J_{CM}(M) \subseteq \mathfrak{q}' \subseteq \mathfrak{q}$. Since \mathfrak{q}' is minimal over $I_l + J_{CM}(M)$ and $l > \operatorname{ht} \mathfrak{q}' - i$, we see that $\mathfrak{q}' \in \Lambda_i \cap \mathfrak{p}$.

Remark 10. Suppose that $\operatorname{ht} \mathfrak{p} = c$ for all $\mathfrak{p} \in \min M$, *i.e.*, that Ann M is unmixed. Then $J_{CM}(M) = I_{c+1} + \sqrt{\operatorname{Ann} M}$. If M = R/I for some radical ideal I, then $r_1 = 1$ and $I_1 = I$, so we get $J_{CM}(R/I) = I_{c+1}$. Hence Λ_i consists of those primes \mathfrak{q} minimal over I_l for some $l \geq c+1$ with $\operatorname{ht} \mathfrak{q} < l-i$.

Discussion 11. Let $R = \Bbbk[x_1, \dots, x_n]$, taken with standard grading, and M a finitely generated graded R-module. Let \mathbb{F}_{\bullet} be a graded free resolution of M, with maps of degree 0. Then the $I_{r_l}(\phi_l)$ are homogeneous: to show this, it is November 11, 2010

enough to show that if F and G are graded free modules of same finite rank and $\phi: F \to G$ is a map of degree 0, then det ϕ is homogeneous. Indeed, giving bases f_1, \dots, f_r for F and g_1, \dots, g_r for G, we can write $\phi = [a_{ij}]$. If $a_{ij} \neq 0$, then deg $a_{ij} = \deg g_j - \deg f_i$. Since det $\phi = \sum_{\sigma \in S_r} \operatorname{sgn}(\sigma) a_{1\sigma(1)} \cdots a_{r\sigma(r)}$ (where, S_r is a permutation group of r elements, and $\operatorname{sgn}(\sigma)$ is the sign of a permutation σ), it suffices to show that deg $a_{1\sigma(1)} \cdots a_{r\sigma(r)}$ is independent of σ , whenever $a_{i\sigma(i)} \neq 0$ for all $1 \leq i \leq r$. This is true, since if $a_{i\sigma(i)} \neq 0$ for all $1 \leq i \leq r$, then deg $a_{1\sigma(1)} \cdots a_{r\sigma(r)} = \sum_{i=1}^{r} (\deg g_{\sigma(i)} - \deg f_i) = \sum_{i=1}^{r} (\deg g_i - \deg f_i)$, which is independent of σ . Radicals of homogeneous ideals are homogeneous. Minimal prime ideals of M are homogeneous. Therefore the ideals $J_{CM}(M)$ and $J_{(S_i)}(M)$ are homogeneous. Minimal prime ideals of homogeneous ideals are homogeneous prime ideals. Hence to determine whether M has property (S_i) , (or, is Cohen-Macaulay), it suffices to check this at homogeneous prime ideals. We remark here that the above argument carries over *mutatis mutandis* to the situation of multigrading, for instance, when M = R/I for a monomial ideal I.

3. PROPERTY $(N_{c,i})$ FOR ALEXANDER DUALS

To every square-free monomial ideal J in R, we can associate a simplicial complex Δ , called the *Stanley-Reisner complex* of J. See [MS05, Chapter 1]. For any monomial ideal J, R/J inherits the multigrading of R. For any multigraded R-module M, we define multigraded Betti numbers $\beta_{l,\sigma}(M) := \dim_{\mathbb{K}} \operatorname{Tor}_{l}^{R}(\mathbb{k}, M)_{\sigma}$, where $1 \leq l \leq n$ and $\sigma \subseteq \mathbb{N}^{n}$ is a *multidegree*. When σ is square-free, *i.e.*, when the every entry in σ is 0 or 1, then we identify σ with the subset $\{x_{i} : \sigma_{i} \neq 0\}$, and, by abuse of notation, say that $\sigma \subseteq \{x_{1}, \cdots, x_{n}\}$. For a simplicial complex Δ and square-free multidegree $\sigma \subseteq \{x_{1}, \cdots, x_{n}\}$, we define $\Delta|_{\sigma} := \{F \in \Delta : F \subseteq \sigma\}$.

Proposition 12 (Hochster, [MS05, Corollary 5.12]). Let J be a square-free monomial ideal and Δ its Stanley-Reisner complex. Non-zero multigraded Betti numbers of R/I occur at square-free multidegrees. Moreover, for a square-free multidegree $\sigma \subseteq \{x_1, \dots, x_n\},\$

$$\beta_{i,\sigma}(J) = \beta_{i-1,\sigma}(R/J) = \dim_{\mathbb{k}} \mathrm{H}_{|\sigma|-i-2}(\Delta|_{\sigma}; \mathbb{k}).$$

An immediate corollary to Hochster's formula is that depth R/J = 1 if and only if Δ is not connected: indeed, the Auslander-Buchsbaum formula implies that depth R/J = 1 if and only if $\operatorname{Tor}_{n-1}^{R}(\Bbbk, R/J) \neq 0$. Since $\operatorname{Tor}_{i}^{R}(\Bbbk, R/J)_{\sigma} = 0$ if $|\sigma| \leq i$, Hochster's formula gives the equivalence with $\operatorname{Tor}_{n-1}^{R}(\Bbbk, R/J)_{\{x_1, \dots, x_n\}} \neq 0$, and, again, with $\widetilde{H}_0(\Delta; \Bbbk) \neq 0$, which is equivalent to Δ being disconnected.

Proposition 13 (Terai [Ter99]; [MS05, Theorem 5.59]). For any square-free monomial ideal J, pd $R/J = \operatorname{reg} J^*$.

Lemma 14. With notation as above,

- (a) For all $1 \leq l \leq n$, $(I:x_l)^{\star} = (I^{\star} \cap \Bbbk[x_1, \cdots, \widehat{x_l}, \cdots, x_n])R$.
- (b) If R/I satisfies (S_i) , then, for all $1 \le l \le n$, $R/(I:x_l)$ satisfies (S_i) .

Proof. (a): Associated primes of $(I : x_l)$ are exactly those of I not containing x_l . Hence while computing the dual, we take the generators not involving x_l .

(b): It suffices to show that $J_{(S_i)}(R/(I:x_l)) = R$. By way of contradiction, if $J_{(S_i)}(R/(I:x_l)) \neq R$, then let \mathfrak{p} be a minimal prime ideal over $J_{(S_i)}(R/(I:x_l))$; November 11, 2010 hence $(R/(I : x_l))_{\mathfrak{p}}$ does not have property (S_i) . Since no monomial minimal generator of $(I : x_l)$ is divisible by x_l , \mathfrak{p} is a monomial ideal not containing x_l ; see Discussion 11. Therefore $(R/(I : x_l))_{\mathfrak{p}} \simeq (R/I)_{\mathfrak{p}}$, which has property (S_i) , a contradiction.

We are now ready to prove Theorem 1.

Theorem 1. Then for i > 1, the following are equivalent:

- (a) R/I satisfies property (S_i) .
- (b) The Alexander dual I^* satisfies $(N_{c,i})$.

Proof. We prove both the directions by induction on n. Let n = 3. For any nonzero ideal $I \subseteq R = \Bbbk[x_1, x_2, x_3]$, if R/I satisfies (S_2) (equivalently, since dim $R/I \leq$ 2, (S_i) for all $i \geq 2$), then R/I is Cohen-Macaulay, and, hence $\operatorname{pd} R/I = \operatorname{ht} I$. By Proposition 13, we see that $\operatorname{reg} I^* = \operatorname{ht} I$; however, since I^* is generated by monomials of degree $\operatorname{ht} I$, I^* has a linear resolution; in particular, I^* has property $(N_{c,2})$. Conversely, if I^* has property $(N_{c,2})$, and c = 1, then R/I is a complete intersection, and Cohen-Macaulay. If c = 2, then dim R/I = 1. One-dimensional reduced Noetherian local rings are Cohen-Macaulay.

(a) \implies (b): By way of contradiction, assume that I^* does not have the property $(N_{c,i})$. By induction, assume that n is the least integer for which there is such a counter-example. By Lemma 14(a), $(I:x_l)^*$ satisfies $(N_{c,i})$ for all $1 \le l \le n$. Now, since I does not have $(N_{c,i})$, there is a (square-free) multidegree σ and $j \le i-1$ such that $|\sigma| > j + c$ and $\beta_{j,\sigma}(I^*) \ne 0$. We now claim that $\sigma = \{x_1, \dots, x_n\}$: for, if, say, $x_1 \notin \sigma$, then let Δ be the Stanley-Reisner complex of I^* , and $\widetilde{\Delta}$ of $(I^* \cap \Bbbk[x_2, \dots, x_n])R$. Then, by applying Hochster's formula, we have

$$\beta_{j,\sigma}(I^{\star}) = \dim_{\Bbbk} \mathbf{H}_{|\sigma|-j-2}(\Delta|_{\sigma}; \Bbbk) = \dim_{\Bbbk} \mathbf{H}_{|\sigma|-j-2}(\Delta|_{\sigma}; \Bbbk)$$
$$= \beta_{j,\sigma}((I^{\star} \cap \Bbbk[x_{2}, \cdots, x_{n}])R)$$
$$= \beta_{j,\sigma}((I:x_{1})^{\star})$$

contradicting the fact that $(I:x_1)^*$ satisfies $(N_{c,i})$. Hence $\sigma = \{x_1, \dots, x_n\}$, and, therefore, $j < n - c = \dim R/I$. By choice, j < i. Moreover, reg $I^* \ge n - j$. By Proposition 13, pd $R/I \ge n - j$, and, therefore depth $R/I \le j$, contradicting the hypothesis that R/I satisfies (S_i) .

(b) \implies (a): By way of contradiction, assume that R/I does not satisfy (S_i) . We may again assume that n is the least number of variables where such a counterexample exists. Since I^* satisfies $(N_{c,i})$, $(I:x_l)^*$ has $(N_{c,i})$ for all $1 \le l \le n$. By choice of n, $R/(I:x_l)$ satisfies (S_i) for all $1 \le l \le n$.

Now let $\mathfrak{p} \in \operatorname{Spec} R$ be such that $\operatorname{depth}(R/I)_{\mathfrak{p}} < \min\{i, \dim(R/I)_{\mathfrak{p}}\}$. If $x_l \notin \mathfrak{p}$, then, $(R/I)_{\mathfrak{p}} \simeq (R/(I:x_l))_{\mathfrak{p}}$. Hence $\operatorname{depth}(R/I)_{\mathfrak{p}} \ge \min\{i, \dim(R/I)_{\mathfrak{p}}\}$. Therefore $\mathfrak{p} = \mathfrak{m}$. Hence $\operatorname{depth} R/I < \min\{i, \dim R/I\}$. By Auslander-Buchsbaum formula, $\operatorname{pd} R/I > n-i$. Again, by the result of Terai, $\operatorname{reg} I^* > n-i$, *i.e.*, there exists j and a multidegree σ such that $\beta_{j,\sigma}(I^*) \neq 0$ and $|\sigma| - j > n-i$. By Hochster's theorem, non-zero Betti numbers are in square-free multidegrees, so, $|\sigma| \leq n$. Hence j < i, contradicting the hypothesis that I^* has $(N_{c,i})$.

Before we proceed, we observe that if $\dim R/I \ge 2$ and R/I is connected in codimension 1, then Stanley-Reisner complex Δ of I is connected; in fact, it is strongly connected, *i.e.*, for any two faces F and F' of Δ of maximal dimension, we can find a sequence $F_0 = F, F_1, \dots, F_r = F'$ of faces of maximal dimension such November 11, 2010

MANOJ KUMMINI

that for all $1 \leq i \leq n-1$, $F_i \cap F_{i-1}$ is a face of codimension 1 in F_i and F_{i-1} . To prove this, it suffices, using the correspondence between faces of Δ and prime ideals containing I [MS05, Theorem 1.7], to show that for any $\mathfrak{p}, \mathfrak{p}' \in \operatorname{Ass} R/I$, there is a sequence $\mathfrak{p}_0 = \mathfrak{p}, \mathfrak{p}_1, \cdots, \mathfrak{p}_r = \mathfrak{p}'$ of associated primes of R/I such that for all $1 \leq i \leq n-1$, $\operatorname{ht}(\mathfrak{p}_i + \mathfrak{p}_{i+1}) = \operatorname{ht} \mathfrak{p}_i + 1 = \operatorname{ht} \mathfrak{p}_{i+1} + 1$. This follows from setting d = 2 in [EGA, IV, 5.10.8]. Finally, since R/I is connected in codimension 1, it is equidimensional; this is the content of the proof of [EGA, IV, 5.10.9]. Hence every vertex of Δ is in some face of maximal dimension, so Δ is connected.

Theorem 6. Let $R = \Bbbk[x_1, \dots, x_n]$ be a polynomial ring in n variables and let $I \subseteq R$ be a square-free monomial ideal. Then Spec R/I is locally connected in codimension 1 if and only if R/I satisfies property (S_2) .

Proof. We will show that if Spec R/I is locally connected in codimension 1, then R/I has property (S_i) ; the other implication is already known [Har62, Corollary 2.4]. If $c \ge n-1$, then it is clear that R/I is locally connected in codimension 1 and that R/I has property (S_2) . Therefore we will assume that $c \le n-2$.

We proceed by induction on n. Let n = 3. It is easy to verify that any unmixed monomial ideal in three variables in locally connected in codimension 1. Since c = 1, R/I is a complete intersection and, hence has property (S_2) . Now assume that n > 3.

We first observe that for all $1 \leq l \leq n$, $\operatorname{Spec} R/(I:x_l)$ is locally connected in codimension 1, because, as topological spaces, $\operatorname{Spec} R/(I:x_l)$ is homeomorphic to $\operatorname{Spec}(R/I)_{x_l}$, which is locally connected in codimension 1, $(R/I)_{x_l}$ being a localization of R/I. Since x_l does not divide any minimal generator of $(I:x_l)$, $(I:x_l)$ is extended from the subring $\Bbbk[x_1, \dots, \hat{x_l}, \dots, x_n] \subseteq R$. By induction $R/(I:x_l)$ has property (S_2) . Now let $\mathfrak{p} \in \operatorname{Spec} R, \mathfrak{p} \neq \mathfrak{m}$. We can then pick $x_l \notin \mathfrak{p}$. Since $(R/I)_{\mathfrak{p}} \simeq (R/(I:x_l))_{\mathfrak{p}}$, we see that $\operatorname{depth}(R/I)_{\mathfrak{p}} \geq \min\{2, \dim(R/I)_{\mathfrak{p}}\}$. It remains to show that $\operatorname{depth} R/I \geq 2$, *i.e.*, that the Stanley-Reisner complex Δ of I is connected, which follows from the preceding discussion.

Acknowledgments

The author thanks C. Huneke for suggesting this result and helpful discussions.

References

- [BE73] David A. Buchsbaum and David Eisenbud, What makes a complex exact?, J. Algebra 25 (1973), 259–268. MR MR0314819 (47 #3369)
- [BH93] Winfried Bruns and Jürgen Herzog, Cohen-Macaulay rings, Cambridge Studies in Advanced Mathematics, vol. 39, Cambridge University Press, Cambridge, 1993. MR 95h:13020
- [EG85] E. Graham Evans and Phillip Griffith, Syzygies, London Mathematical Society Lecture Note Series, vol. 106, Cambridge University Press, Cambridge, 1985. MR MR811636 (87b:13001)
- [EGHP05] David Eisenbud, Mark Green, Klaus Hulek, and Sorin Popescu, Restricting linear syzygies: algebra and geometry, Compos. Math. 141 (2005), no. 6, 1460–1478. MR MR2188445 (2006m:14072)
- [ER98] John A. Eagon and Victor Reiner, Resolutions of Stanley-Reisner rings and Alexander duality, J. Pure Appl. Algebra 130 (1998), no. 3, 265–275. MR MR1633767 (99h:13017)
- [EGA] A. Grothendieck, Éléments de géométrie algébrique, Inst. Hautes Études Sci. Publ. Math. (1960–1967). MR MR0238860 (39 #220)

November 11, 2010

- [Har62] Robin Hartshorne, Complete intersections and connectedness, Amer. J. Math. 84 (1962), 497–508. MR MR0142547 (26 #116)
- [HH99] Jürgen Herzog and Takayuki Hibi, Componentwise linear ideals, Nagoya Math. J. 153 (1999), 141–153. MR MR1684555 (2000i:13019)
- [HHZ04] Jürgen Herzog, Takayuki Hibi, and Xinxian Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25 (2004), no. 7, 949–960. MR MR2083448 (2005f:05086)
- [MS05] Ezra Miller and Bernd Sturmfels, Combinatorial commutative algebra, Graduate Texts in Mathematics, vol. 227, Springer-Verlag, New York, 2005. MR MR2110098 (2006d:13001)
- [Ter99] Naoki Terai, Alexander duality theorem and Stanley-Reisner rings, Sūrikaisekikenkyūsho Kōkyūroku (1999), no. 1078, 174–184, Free resolutions of coordinate rings of projective varieties and related topics (Japanese) (Kyoto, 1998). MR MR1715588 (2001f:13033)

UNIVERSITY OF KANSAS, LAWRENCE, KS 66045, USA. *E-mail address:* kummini@math.ku.edu