ALEXANDER DUALITY AND SERRE’S PROPERTY (S;) FOR
SQUARE-FREE MONOMIAL IDEALS

MANOJ KUMMINI

ABSTRACT. In this note, we study Serre’s property (S;), and its relation to
Alexander duality for monomial ideals in a polynomial ring over a field. We
describe ideals that define the non-Cohen-Macaulay- and the non-(S;)-loci of
finitely generated modules over regular rings, and show that minimal prime
ideals in these loci are homogeneous, in the graded case. We show that a
square-free monomial ideal has property (S;) if and only if its Alexander dual
has a linear resolution up to homological degree i — 1. We prove that for
square-free monomial ideals, having property (S2) is equivalent to being locally
connected in codimension 1.

1. MAIN RESULTS

Let k be a field and R = k[z1, -+, 2,] a polynomial ring in n variables. The
standard grading on R is the grading by N, obtained by setting degz; = 1 for all
1 <1 < n. We can also make R multigraded, i.e., graded by N, with degz; =
e;, 1 <[ < n, e being the Ith standard basis vector for N. For any finitely
generated R-module M, we say that M satisfies Serre’s property (S;) if for all
p € Spec R, depth M, > min{i,dim M,} *. We adopt the convention that the zero
module has property (S;) for all i. The (S;)-locus of M is the set Ug,) (M) =
{p € Spec R : M, has property (S;) }. We know from [EGA, IV, 6.11.2] that this
is an open subset of Spec R. In Proposition 9, we describe an ideal that defines
the complement of U,y (M), following which (Discussion 11) we show that if M is
graded, either by N or by N”, then so are the minimal prime ideals in this closed
set.

For any homogeneous ideal I C R, we say that I satisfies property (N.;) (af-
ter [EGHPO5]) if all the minimal generators of I have degree ¢ and a minimal
graded free resolution of I is linear up to homological degree ¢ — 1. This definition
is independent of the choice of the resolution, because I satisfies property (N, ;) if
and only if Tor;*(k,I); = 0 for all 0 <1 < i—1 and for all j # [ +c. We now relate
the properties (S;) and (Ng;):

Theorem 1. Let I C R be a square-free monomial ideal with ht I = c. Then for
1 > 1, the following are equivalent:

(a) R/I satisfies property (S;) .

(b) The Alexander dual I* satisfies (Ne¢) .

2000 Mathematics Subject Classification. Primary: 13F55, 13D02.

IThis definition follows [EGA, IV, 5.7.2] and [BH93, Section 2.1]. There is another definition of
Serre’s condition (S;), used in [EG85, Section 0.B]: a module M is said to satisfy Serre’s condition
(S;) if depth My > min{é,dim Ry }, for all p € Spec R.
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Remark 2. The Alexander dual of a square-free monomial ideal I, minimally gen-
erated by monomials f1,- -, fs, is the (square-free monomial) ideal N{_;py,, where
for any square-free monomial f = x;, ---x;,, we set py := (xy,,--- ,21,). See [MS05]
for more on Alexander duality, and, also for any unexplained terminology.

Remark 3. The motivation for Theorem 1 is the result of Eagon-Reiner [ER9S§]
(see also [MS05, Theorem 5.56]) that R/I is Cohen-Macaulay if and only if I* has
a linear free resolution. We have that R/I is Cohen-Macaulay if and only if R/
satisfies property (S;) for all i. By Theorem 1, this is equivalent to I* having
property (N.,;) for all 4.

Remark 4. Terai [Ter99] (see Proposition 13 below) gave a generalization of the
Eagon-Reiner theorem; we require this in our proof of Theorem 1. For two other re-
sults generalizing the Eagon-Reiner theorem, see Herzog-Hibi [HH99, Theorem 2.1(a)]
and Herzog-Hibi-Zheng [HHZ04, Theorem 1.2(c)].

Remark 5. We can extend the statement to include the case ¢ = 1 by replacing the
statement (a) by “R/I satisfies property (S;) and I is unmixed” (i.e., for all the
associated primes p of R/I, dim R/p is independent of p). Since R/I is reduced, it
always satisfies property (S7). Hence if I is unmixed, then I'* is generated by mono-
mials of degree c; this is property (N 1) for I*. For larger ¢, the hypothesis that
I is unmixed becomes superfluous: for any ideal I, not necessarily homogeneous, if
R/I satisfies property (S2), then I is unmixed [EGA, IV, 5.10.9].

For a commutative ring A, we say that Spec A is connected in codimension k, if for
all ideals a C A with hta > &, Spec A\ {p € Spec A : a C p} is connected, and that
A is locally connected in codimension k if A, is connected in codimension k for all
p € Spec A. Tt is known [Har62, Corollary 2.4] that for any ideal I, not necessarily
homogeneous, if R/I satisfies property (S2), then Spec R/I is locally connected in
codimension 1. For square-free monomial ideals, we prove the converse, giving the
following equivalence:

Theorem 6. Let R = k[z1,---,2,] be a polynomial ring in n variables and let
I C R be a square-free monomial ideal. Then Spec R/I is locally connected in
codimension 1 if and only if R/I satisfies property (Sa) .

2. FREE RESOLUTIONS AND THE LOCUS OF NON-(S;) POINTS
Many results in this section are part of folklore. We take R to be an arbitrary
regular domain, and M a finitely generated R-module with a finite free resolution

p 1

Fp o 2! F .

]F.: 0 Fp

Let ¢ = codim M. For 1 <[ < p, set 1 := Z?Zl(—l)j_l tk F; and I; := /L, (é1),
where, for a map ¢ of free modules of finite rank, and a natural number ¢, I;(¢)
is ideal generated by the ¢ x ¢ minors of ¢ and va denotes taking the radical of an
ideal.

Remark 7. Since R is a domain, M has a well-defined rank. We apply [BET73,
Lemma 1] to conclude that M is projective if and only if I; = R. We see immedi-
ately that the exact sequence (0—> Im ¢;—F;_1— coker ¢l—>0) ®r Ry
splits — we say that ¢; ®g Ry, splits if this happens — if and only if I; ¢ p. If
¢1 ®r R, splits, then so does every ¢ @ R, for "> Hence ; CI, C---C I
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Additionally, if R is local, with maximal ideal m, and M is not free, then pd M =
max{l:1 <l <pand I Cm}.

First we determine the Cohen-Macaulay locus of M, which is an open subset of
Spec R; see [EGA, IV, 6.11.3]. Let

p
(1) Jom(M):= [ |kt n qf,
- q€min M,
k=c+1 ht q<k

taking Jops (M) = R if the intersection is empty.

Proposition 8. For allp € Spec R, M, is Cohen-Macaulay if and only if Jop (M) €
p.

Proof. Let | = codim M, +1. First, | Iy + N u q | € p for all k < I; otherwise,
g€min M,
ht g<k

we would get an ideal ¢ C p with q € min M and htq < codim M,, which is a
contradiction. We now see that M, is Cohen-Macaulay if and only if pdg M, =

codim M, or, equivalently (by Remark 7), I; € p, or, equivalently (by Remark 7,

again), [ I + quiﬂnM q| € pforall k>, or, equivalently (by above), Joa (M) €
ht q<k '

p. U

In order to determine the (5;)-locus of M, we first define A; = A;(M) to be the
set of all g € Spec R such that ¢ is minimal over I; + Jop (M) for some I > ht g — .
Note that A; is finite. Now let Jis,) (M) =4, 9, taking Jis,) (M) = Rif A; = 0.

Proposition 9. For all p € Spec R, p € U(s,) (M) if and only if Jis,y (M) € p.

Proof. Let p € SpecR and A; Np :={q € A; : ¢ C p}. Since Jig,) (M) ¢ p if and
only if A; Np =), we need to show that p € Ug,) (M) if and only if A; Np = 0.

Let g € A;Np. Let I > ht g — ¢ be such that q is minimal over I; + Jops (M). We
apply Remark 7 to the regular local ring (Rq, qR) to conclude that pd Ry Mq >
dim R4 — 7, and, by the Auslander-Buchsbaum formula, that depth Ry < 7. Since
Jom (M) C q, My is not Cohen-Macaulay. Hence M, does not have property (.5;),
so p & Us,) (M).

Conversely, if p & Us,y (M), then there exists g C p be such that depth M, <
min{¢, dim My }. Then M, is not Cohen-Macaulay, i.e., Joa (M) C g, and pdp, Mq >
dim Rq — i. By Remark 7, there exists [ > htq — i such that I; C q. Let q" be
minimal such that I; + Jop (M) C g’ C g. Since ¢’ is minimal over I; + Jop (M)
and [ > htq' — ¢, we see that ¢ € A; Np. O

Remark 10. Suppose that htp = ¢ for all p € min M, i.e., that Ann M is unmixed.
Then Jop (M) = Iey1 + VAnn M. If M = R/I for some radical ideal I, then
r1=1and I = I, so we get Joar(R/I) = I.+1. Hence A; consists of those primes
g minimal over I; for some [ > ¢+ 1 with htq < — 1.

Discussion 11. Let R = Kk[z1, -+, 2], taken with standard grading, and M a
finitely generated graded R-module. Let F, be a graded free resolution of M,
with maps of degree 0. Then the I,,(¢;) are homogeneous: to show this, it is
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enough to show that if F' and G are graded free modules of same finite rank and
¢ : F — (G is a map of degree 0, then det ¢ is homogeneous. Indeed, giving bases
fi,-+, fr for Fand g1,---,g, for G, we can write ¢ = [aij]. If a;; # 0, then
dega;; = degg; — deg f;. Since det¢ = 3 5 sgn(0)ais1) - ro(r) (Where, S,
is a permutation group of r elements, and sgn(o) is the sign of a permutation o),
it suffices to show that degaiq(1) - - ayro(r) is independent of o, whenever a;,(;) #
0 for all 1 < i < r. This is true, since if a;,(;) # 0 for all 1 < i < r, then
degaio(1) oy = Yoi_yq (deg goi) — deg fi) = Y1, (deg g; — deg f;), which is
independent of o. Radicals of homogeneous ideals are homogeneous. Minimal
prime ideals of M are homogeneous. Therefore the ideals Joas (M) and Jig,y (M)
are homogeneous. Minimal prime ideals of homogeneous ideals are homogeneous,
so the Cohen-Macaulay and (.5;) -loci of M are determined by homogeneous prime
ideals. Hence to determine whether M has property (.5;), (or, is Cohen-Macaulay),
it suffices to check this at homogeneous prime ideals. We remark here that the
above argument carries over mutatis mutandis to the situation of multigrading, for
instance, when M = R/I for a monomial ideal I.

3. PROPERTY (N.;) FOR ALEXANDER DUALS

To every square-free monomial ideal J in R, we can associate a simplicial complex
A, called the Stanley-Reisner complexr of J. See [MS05, Chapter 1]. For any
monomial ideal J, R/J inherits the multigrading of R. For any multigraded R-
module M, we define multigraded Betti numbers 5 ,(M) := dimg TorlR(]k,M)U,
where 1 <[ <n and ¢ C N” is a multidegree. When ¢ is square-free, i.e., when the
every entry in o is 0 or 1, then we identify o with the subset {z; : o; # 0}, and,
by abuse of notation, say that ¢ C {z1, -+ ,z,}. For a simplicial complex A and
square-free multidegree o C {z1, - ,z,}, we define A|, :={F € A: F Co}.

Proposition 12 (Hochster, [MS05, Corollary 5.12]). Let J be a square-free mono-
mial ideal and A its Stanley-Reisner complex. Non-zero multigraded Betti numbers
of R/I occur at square-free multidegrees. Moreover, for a square-free multidegree
o C{zy, -, mn},

Bio(J) = Bi—1,0(R/J) = dimy Hjy|_;_o(A|: k).

An immediate corollary to Hochster’s formula is that depth R/J = 1 if and
only if A is not connected: indeed, the Auslander-Buchsbaum formula implies
that depth R/.J = 1 if and only if Tor? | (k, R/.J) # 0. Since Torf(k, R/J), = 0 if
|o| < 4, Hochster’s formula gives the equivalence with Tory_ (k, R/J) (4, ... 2.} # O,
and, again, with ﬁO(A; k) # 0, which is equivalent to A being disconnected.

Proposition 13 (Terai [Ter99]; [MS05, Theorem 5.59]). For any square-free mono-
mial ideal J, pd R/J = reg J*.

Lemma 14. With notation as above,
(@) Foralll<l<mn, (I:z)*=(I*"Nk[x1, -, %1, ,z,])R.
(b) If R/I satisfies (S;), then, for all1 <1<n, R/(I: x;) satisfies (S;) .

Proof. (a): Associated primes of (I : x;) are exactly those of I not containing x;.

Hence while computing the dual, we take the generators not involving x;.
(b): It suffices to show that J(g,) (R/(I : 2;)) = R. By way of contradiction, if
Jis,y (R/(I = x1)) # R, then let p be a minimal prime ideal over Jig,) (R/(I : x7));
November 11, 2010
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hence (R/(I : z;))p does not have property (S;). Since no monomial minimal
generator of (I : x;) is divisible by z;, p is a monomial ideal not containing x;;
see Discussion 11. Therefore (R/(I : x1)), =~ (R/I),, which has property (S;), a
contradiction. (]

We are now ready to prove Theorem 1.

Theorem 1. Then for i > 1, the following are equivalent:
(a) R/I satisfies property (S;) .
(b) The Alexander dual I* satisfies (Ne) .

Proof. We prove both the directions by induction on n. Let n = 3. For any non-
zero ideal I C R = K[z, 29, x3], if R/I satisfies (S2) (equivalently, since dim R/T <
2, (S;) for all i > 2), then R/I is Cohen-Macaulay, and, hence pd R/I = htI.
By Proposition 13, we see that reg I* = ht I; however, since I* is generated by
monomials of degree ht I, I* has a linear resolution; in particular, I* has property
(N¢2). Conversely, if I* has property (Nc2), and ¢ = 1, then R/I is a complete
intersection, and Cohen-Macaulay. If ¢ = 2, then dim R/I = 1. One-dimensional
reduced Noetherian local rings are Cohen-Macaulay.

(a) = (b): By way of contradiction, assume that I* does not have the property
(Nc,;) . By induction, assume that n is the least integer for which there is such a
counter-example. By Lemma 14(a), (I : x;)* satisfies (N, ;) for all 1 <[ <n. Now,
since I does not have (N, ;), there is a (square-free) multidegree o and j <i—1
such that |o| > j + ¢ and §;,,(I*) # 0. We now claim that ¢ = {x,--- ,z,}:
for, if, say, 1 € o, then let A be the Stanley-Reisner complex of I'*, and A of
(I*Nkl[xg, -+ ,z,])R. Then, by applying Hochster’s formula, we have

ﬂjyg(]—*) = dimk H|U|_j_2(A|g; k) = dimk H|U|_j_2(A|g; k)
= ﬁj,d((I* n k[m% T 7xn])R)
= Bo((L:21)")
contradicting the fact that (I : x1)* satisfies (N.;). Hence o = {x1,---,z,}, and,
therefore, j < n — ¢ = dim R/I. By choice, j < i. Moreover, regI* > n — j. By
Proposition 13, pd R/I > n — j, and, therefore depth R/I < j, contradicting the
hypothesis that R/I satisfies (.5;) .

(b) = (a) : By way of contradiction, assume that R/I does not satisfy (S;).
We may again assume that n is the least number of variables where such a counter-
example exists. Since I'* satisfies (N.;), (I : ;)* has (N.;)for all 1 <1 <n. By
choice of n, R/(I : x;) satisfies (S;) for all 1 <1 < n.

Now let p € Spec R be such that depth(R/I), < min{i,dim(R/I),}. If z; & p,
then, (R/I)p, ~ (R/(I : z;))p. Hence depth(R/I), > min{¢,dim(R/I),}. Therefore
p = m. Hence depth R/I < min{i,dim R/I}. By Auslander-Buchsbaum formula,
pd R/I > n—i. Again, by the result of Terai, reg I* > n —1, i.e., there exists j and
a multidegree o such that §; ,(I*) # 0 and |o| —j > n —i. By Hochster’s theorem,
non-zero Betti numbers are in square-free multidegrees, so, |o| < n. Hence j < 1,
contradicting the hypothesis that I* has (V¢ ;) . O

Before we proceed, we observe that if dim R/I > 2 and R/I is connected in
codimension 1, then Stanley-Reisner complex A of I is connected; in fact, it is
strongly connected, i.e., for any two faces F' and F’ of A of maximal dimension, we
can find a sequence Fy = F, Fy,--- ,F, = F’ of faces of maximal dimension such
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that for all 1 <i<n—1, F; N F;_1 is a face of codimension 1 in F; and F;_;. To
prove this, it suffices, using the correspondence between faces of A and prime ideals
containing I [MS05, Theorem 1.7], to show that for any p,p’ € Ass R/I, there is
a sequence pp = p,p1,---,pr = p’ of associated primes of R/I such that for all
1<i<mn-1,ht(p; +piy1) = htp; + 1 = htp,11 + 1. This follows from setting
d =2 in [EGA, 1V, 5.10.8]. Finally, since R/I is connected in codimension 1, it is
equidimensional; this is the content of the proof of [EGA, IV, 5.10.9]. Hence every
vertex of A is in some face of maximal dimension, so A is connected.

Theorem 6. Let R = K[z, -+ ,z,] be a polynomial ring in n variables and let
I C R be a square-free monomial ideal. Then Spec R/I is locally connected in
codimension 1 if and only if R/I satisfies property (Sa) .

Proof. We will show that if Spec R/I is locally connected in codimension 1, then
R/I has property (S;); the other implication is already known [Har62, Corollary
2.4]. If ¢ > n — 1, then it is clear that R/I is locally connected in codimension 1
and that R/I has property (S2). Therefore we will assume that ¢ <n — 2.

We proceed by induction on n. Let n = 3. It is easy to verify that any unmixed
monomial ideal in three variables in locally connected in codimension 1. Since
¢ =1, R/I is a complete intersection and, hence has property (S2). Now assume
that n > 3.

We first observe that for all 1 <1 < n, Spec R/(I : z;) is locally connected in
codimension 1, because, as topological spaces, Spec R/(I : x;) is homeomorphic to
Spec(R/I),,, which is locally connected in codimension 1, (R/I);, being a local-
ization of R/I. Since x; does not divide any minimal generator of (I : x;), (I : a;)
is extended from the subring klzy, -+ ,Z;, -+ ,z,] € R. By induction R/(I : x;)
has property (S2). Now let p € Spec R,p # m. We can then pick x; & p. Since
(R/I)y ~ (R/(I : x;))p, we see that depth(R/I), > min{2,dim(R/I),}. It re-
mains to show that depth R/I > 2, i.e., that the Stanley-Reisner complex A of I
is connected, which follows from the preceding discussion. ([l
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