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Abstract. In this note, we study Serre’s property (Si) , and its relation to

Alexander duality for monomial ideals in a polynomial ring over a field. We
describe ideals that define the non-Cohen-Macaulay- and the non-(Si) -loci of

finitely generated modules over regular rings, and show that minimal prime

ideals in these loci are homogeneous, in the graded case. We show that a
square-free monomial ideal has property (Si) if and only if its Alexander dual

has a linear resolution up to homological degree i − 1. We prove that for

square-free monomial ideals, having property (S2) is equivalent to being locally
connected in codimension 1.

1. Main Results

Let k be a field and R = k[x1, · · · , xn] a polynomial ring in n variables. The
standard grading on R is the grading by N, obtained by setting deg xl = 1 for all
1 ≤ l ≤ n. We can also make R multigraded, i.e., graded by Nn, with deg xl =
el, 1 ≤ l ≤ n, el being the lth standard basis vector for Nn. For any finitely
generated R-module M , we say that M satisfies Serre’s property (Si) if for all
p ∈ SpecR, depthMp ≥ min{i,dimMp} 1. We adopt the convention that the zero
module has property (Si) for all i. The (Si) -locus of M is the set U(Si) (M) :=
{p ∈ SpecR : Mp has property (Si) }. We know from [EGA, IV, 6.11.2] that this
is an open subset of SpecR. In Proposition 9, we describe an ideal that defines
the complement of U(Si) (M), following which (Discussion 11) we show that if M is
graded, either by N or by Nn, then so are the minimal prime ideals in this closed
set.

For any homogeneous ideal I ⊆ R, we say that I satisfies property (Nc,i) (af-
ter [EGHP05]) if all the minimal generators of I have degree c and a minimal
graded free resolution of I is linear up to homological degree i− 1. This definition
is independent of the choice of the resolution, because I satisfies property (Nc,i) if
and only if TorRl (k, I)j = 0 for all 0 ≤ l ≤ i− 1 and for all j 6= l+ c. We now relate
the properties (Si) and (Nc,i) :

Theorem 1. Let I ⊆ R be a square-free monomial ideal with ht I = c. Then for
i > 1, the following are equivalent:

(a) R/I satisfies property (Si) .
(b) The Alexander dual I? satisfies (Nc,i) .

2000 Mathematics Subject Classification. Primary: 13F55, 13D02.
1This definition follows [EGA, IV, 5.7.2] and [BH93, Section 2.1]. There is another definition of

Serre’s condition (Si) , used in [EG85, Section 0.B]: a module M is said to satisfy Serre’s condition
(Si) if depth Mp ≥ min{i, dim Rp}, for all p ∈ Spec R.

1



2 MANOJ KUMMINI

Remark 2. The Alexander dual of a square-free monomial ideal I, minimally gen-
erated by monomials f1, · · · , fs, is the (square-free monomial) ideal ∩si=1pfi

, where
for any square-free monomial f = xl1 · · ·xlj , we set pf := (xl1 , · · · , xlj ). See [MS05]
for more on Alexander duality, and, also for any unexplained terminology.

Remark 3. The motivation for Theorem 1 is the result of Eagon-Reiner [ER98]
(see also [MS05, Theorem 5.56]) that R/I is Cohen-Macaulay if and only if I? has
a linear free resolution. We have that R/I is Cohen-Macaulay if and only if R/I
satisfies property (Si) for all i. By Theorem 1, this is equivalent to I? having
property (Nc,i) for all i.

Remark 4. Terai [Ter99] (see Proposition 13 below) gave a generalization of the
Eagon-Reiner theorem; we require this in our proof of Theorem 1. For two other re-
sults generalizing the Eagon-Reiner theorem, see Herzog-Hibi [HH99, Theorem 2.1(a)]
and Herzog-Hibi-Zheng [HHZ04, Theorem 1.2(c)].

Remark 5. We can extend the statement to include the case i = 1 by replacing the
statement (a) by “R/I satisfies property (Si) and I is unmixed” (i.e., for all the
associated primes p of R/I, dimR/p is independent of p). Since R/I is reduced, it
always satisfies property (S1) . Hence if I is unmixed, then I? is generated by mono-
mials of degree c; this is property (Nc,1) for I?. For larger i, the hypothesis that
I is unmixed becomes superfluous: for any ideal I, not necessarily homogeneous, if
R/I satisfies property (S2) , then I is unmixed [EGA, IV, 5.10.9].

For a commutative ringA, we say that SpecA is connected in codimension k, if for
all ideals a ⊆ A with ht a > k, SpecA \ {p ∈ SpecA : a ⊆ p} is connected, and that
A is locally connected in codimension k if Ap is connected in codimension k for all
p ∈ SpecA. It is known [Har62, Corollary 2.4] that for any ideal I, not necessarily
homogeneous, if R/I satisfies property (S2) , then SpecR/I is locally connected in
codimension 1. For square-free monomial ideals, we prove the converse, giving the
following equivalence:

Theorem 6. Let R = k[x1, · · · , xn] be a polynomial ring in n variables and let
I ⊆ R be a square-free monomial ideal. Then SpecR/I is locally connected in
codimension 1 if and only if R/I satisfies property (S2) .

2. Free resolutions and the locus of non-(Si) points

Many results in this section are part of folklore. We take R to be an arbitrary
regular domain, and M a finitely generated R-module with a finite free resolution

F• : 0 // Fp
φp // Fp−1 // · · · // F1

φ1 // F0 .

Let c = codimM . For 1 ≤ l ≤ p, set rl :=
∑p
j=l(−1)j−l rkFj and Il :=

√
Irl

(φl),
where, for a map φ of free modules of finite rank, and a natural number t, It(φ)
is ideal generated by the t× t minors of φ and √ denotes taking the radical of an
ideal.

Remark 7. Since R is a domain, M has a well-defined rank. We apply [BE73,
Lemma 1] to conclude that M is projective if and only if I1 = R. We see immedi-
ately that the exact sequence

(
0 // Imφl //Fl−1

// cokerφl //0
)
⊗RRp

splits — we say that φl ⊗R Rp splits if this happens — if and only if Il * p. If
φl ⊗R Rp splits, then so does every φl′ ⊗R Rp for l′ ≥ l. Hence I1 ⊆ I2 ⊆ · · · ⊆ Ip.
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Additionally, if R is local, with maximal ideal m, and M is not free, then pdM =
max{l : 1 ≤ l ≤ p and Il ⊆ m}.

First we determine the Cohen-Macaulay locus of M , which is an open subset of
SpecR; see [EGA, IV, 6.11.3]. Let

(1) JCM (M) :=
p⋂

k=c+1

Ik + ∩
q∈minM,

ht q<k

q

 ,

taking JCM (M) = R if the intersection is empty.

Proposition 8. For all p ∈ SpecR, Mp is Cohen-Macaulay if and only if JCM (M) 6⊆
p.

Proof. Let l = codimMp + 1. First,

Ik + ∩
q∈minM,

ht q<k

q

 * p for all k < l; otherwise,

we would get an ideal q ⊆ p with q ∈ minM and ht q < codimMp, which is a
contradiction. We now see that Mp is Cohen-Macaulay if and only if pdRp

Mp =
codimMp, or, equivalently (by Remark 7), Il * p, or, equivalently (by Remark 7,

again),

Ik + ∩
q∈minM,

ht q<k

q

 * p for all k ≥ l, or, equivalently (by above), JCM (M) *

p. �

In order to determine the (Si) -locus of M , we first define Λi = Λi(M) to be the
set of all q ∈ SpecR such that q is minimal over Il +JCM (M) for some l > ht q− i.
Note that Λi is finite. Now let J(Si) (M) =

⋂
q∈Λi

q, taking J(Si) (M) = R if Λi = ∅.

Proposition 9. For all p ∈ SpecR, p ∈ U(Si) (M) if and only if J(Si) (M) 6⊆ p.

Proof. Let p ∈ SpecR and Λi ∩ p := {q ∈ Λi : q ⊆ p}. Since J(Si) (M) * p if and
only if Λi ∩ p = ∅, we need to show that p ∈ U(Si) (M) if and only if Λi ∩ p = ∅.

Let q ∈ Λi ∩ p. Let l > ht q− i be such that q is minimal over Il + JCM (M). We
apply Remark 7 to the regular local ring (Rq, qRq) to conclude that pdRq

Mq >
dimRq − i, and, by the Auslander-Buchsbaum formula, that depthRq < i. Since
JCM (M) ⊆ q, Mq is not Cohen-Macaulay. Hence Mq does not have property (Si) ,
so p 6∈ U(Si) (M).

Conversely, if p 6∈ U(Si) (M), then there exists q ⊆ p be such that depthMq <
min{i,dimMq}. ThenMq is not Cohen-Macaulay, i.e., JCM (M) ⊆ q, and pdRq

Mq >

dimRq − i. By Remark 7, there exists l > ht q − i such that Il ⊆ q. Let q′ be
minimal such that Il + JCM (M) ⊆ q′ ⊆ q. Since q′ is minimal over Il + JCM (M)
and l > ht q′ − i, we see that q′ ∈ Λi ∩ p. �

Remark 10. Suppose that ht p = c for all p ∈ minM , i.e., that AnnM is unmixed.
Then JCM (M) = Ic+1 +

√
AnnM . If M = R/I for some radical ideal I, then

r1 = 1 and I1 = I, so we get JCM (R/I) = Ic+1. Hence Λi consists of those primes
q minimal over Il for some l ≥ c+ 1 with ht q < l − i.

Discussion 11. Let R = k[x1, · · · , xn], taken with standard grading, and M a
finitely generated graded R-module. Let F• be a graded free resolution of M ,
with maps of degree 0. Then the Irl

(φl) are homogeneous: to show this, it is
November 11, 2010
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enough to show that if F and G are graded free modules of same finite rank and
φ : F → G is a map of degree 0, then detφ is homogeneous. Indeed, giving bases
f1, · · · , fr for F and g1, · · · , gr for G, we can write φ =

[
aij
]
. If aij 6= 0, then

deg aij = deg gj − deg fi. Since detφ =
∑
σ∈Sr

sgn(σ)a1σ(1) · · · arσ(r) (where, Sr
is a permutation group of r elements, and sgn(σ) is the sign of a permutation σ),
it suffices to show that deg a1σ(1) · · · arσ(r) is independent of σ, whenever aiσ(i) 6=
0 for all 1 ≤ i ≤ r. This is true, since if aiσ(i) 6= 0 for all 1 ≤ i ≤ r, then
deg a1σ(1) · · · arσ(r) =

∑r
i=1

(
deg gσ(i) − deg fi

)
=
∑r
i=1 (deg gi − deg fi), which is

independent of σ. Radicals of homogeneous ideals are homogeneous. Minimal
prime ideals of M are homogeneous. Therefore the ideals JCM (M) and J(Si) (M)
are homogeneous. Minimal prime ideals of homogeneous ideals are homogeneous,
so the Cohen-Macaulay and (Si) -loci of M are determined by homogeneous prime
ideals. Hence to determine whether M has property (Si) , (or, is Cohen-Macaulay),
it suffices to check this at homogeneous prime ideals. We remark here that the
above argument carries over mutatis mutandis to the situation of multigrading, for
instance, when M = R/I for a monomial ideal I.

3. Property (Nc,i) for Alexander Duals

To every square-free monomial ideal J in R, we can associate a simplicial complex
∆, called the Stanley-Reisner complex of J . See [MS05, Chapter 1]. For any
monomial ideal J , R/J inherits the multigrading of R. For any multigraded R-
module M , we define multigraded Betti numbers βl,σ(M) := dimk TorRl (k,M)σ,
where 1 ≤ l ≤ n and σ ⊆ Nn is a multidegree. When σ is square-free, i.e., when the
every entry in σ is 0 or 1, then we identify σ with the subset {xi : σi 6= 0}, and,
by abuse of notation, say that σ ⊆ {x1, · · · , xn}. For a simplicial complex ∆ and
square-free multidegree σ ⊆ {x1, · · · , xn}, we define ∆|σ := {F ∈ ∆ : F ⊆ σ}.

Proposition 12 (Hochster, [MS05, Corollary 5.12]). Let J be a square-free mono-
mial ideal and ∆ its Stanley-Reisner complex. Non-zero multigraded Betti numbers
of R/I occur at square-free multidegrees. Moreover, for a square-free multidegree
σ ⊆ {x1, · · · , xn},

βi,σ(J) = βi−1,σ(R/J) = dimk H̃|σ|−i−2(∆|σ; k).

An immediate corollary to Hochster’s formula is that depthR/J = 1 if and
only if ∆ is not connected: indeed, the Auslander-Buchsbaum formula implies
that depthR/J = 1 if and only if TorRn−1(k, R/J) 6= 0. Since TorRi (k, R/J)σ = 0 if
|σ| ≤ i, Hochster’s formula gives the equivalence with TorRn−1(k, R/J){x1,··· ,xn} 6= 0,
and, again, with H̃0(∆; k) 6= 0, which is equivalent to ∆ being disconnected.

Proposition 13 (Terai [Ter99]; [MS05, Theorem 5.59]). For any square-free mono-
mial ideal J , pdR/J = reg J?.

Lemma 14. With notation as above,
(a) For all 1 ≤ l ≤ n, (I : xl)? = (I? ∩ k[x1, · · · , x̂l, · · · , xn])R.
(b) If R/I satisfies (Si) , then, for all 1 ≤ l ≤ n, R/(I : xl) satisfies (Si) .

Proof. (a): Associated primes of (I : xl) are exactly those of I not containing xl.
Hence while computing the dual, we take the generators not involving xl.

(b): It suffices to show that J(Si) (R/(I : xl)) = R. By way of contradiction, if
J(Si) (R/(I : xl)) 6= R, then let p be a minimal prime ideal over J(Si) (R/(I : xl));
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hence (R/(I : xl))p does not have property (Si) . Since no monomial minimal
generator of (I : xl) is divisible by xl, p is a monomial ideal not containing xl;
see Discussion 11. Therefore (R/(I : xl))p ' (R/I)p, which has property (Si) , a
contradiction. �

We are now ready to prove Theorem 1.

Theorem 1. Then for i > 1, the following are equivalent:
(a) R/I satisfies property (Si) .
(b) The Alexander dual I? satisfies (Nc,i) .

Proof. We prove both the directions by induction on n. Let n = 3. For any non-
zero ideal I ⊆ R = k[x1, x2, x3], if R/I satisfies (S2) (equivalently, since dimR/I ≤
2, (Si) for all i ≥ 2), then R/I is Cohen-Macaulay, and, hence pdR/I = ht I.
By Proposition 13, we see that reg I? = ht I; however, since I? is generated by
monomials of degree ht I, I? has a linear resolution; in particular, I? has property
(Nc,2) . Conversely, if I? has property (Nc,2) , and c = 1, then R/I is a complete
intersection, and Cohen-Macaulay. If c = 2, then dimR/I = 1. One-dimensional
reduced Noetherian local rings are Cohen-Macaulay.

(a) =⇒ (b): By way of contradiction, assume that I? does not have the property
(Nc,i) . By induction, assume that n is the least integer for which there is such a
counter-example. By Lemma 14(a), (I : xl)? satisfies (Nc,i) for all 1 ≤ l ≤ n. Now,
since I does not have (Nc,i) , there is a (square-free) multidegree σ and j ≤ i − 1
such that |σ| > j + c and βj,σ(I?) 6= 0. We now claim that σ = {x1, · · · , xn}:
for, if, say, x1 6∈ σ, then let ∆ be the Stanley-Reisner complex of I?, and ∆̃ of
(I? ∩ k[x2, · · · , xn])R. Then, by applying Hochster’s formula, we have

βj,σ(I?) = dimk H̃|σ|−j−2(∆|σ; k) = dimk H̃|σ|−j−2(∆̃|σ; k)

= βj,σ((I? ∩ k[x2, · · · , xn])R)

= βj,σ((I : x1)?)

contradicting the fact that (I : x1)? satisfies (Nc,i) . Hence σ = {x1, · · · , xn}, and,
therefore, j < n − c = dimR/I. By choice, j < i. Moreover, reg I? ≥ n − j. By
Proposition 13, pdR/I ≥ n − j, and, therefore depthR/I ≤ j, contradicting the
hypothesis that R/I satisfies (Si) .

(b) =⇒ (a) : By way of contradiction, assume that R/I does not satisfy (Si) .
We may again assume that n is the least number of variables where such a counter-
example exists. Since I? satisfies (Nc,i) , (I : xl)? has (Nc,i) for all 1 ≤ l ≤ n. By
choice of n, R/(I : xl) satisfies (Si) for all 1 ≤ l ≤ n.

Now let p ∈ SpecR be such that depth(R/I)p < min{i,dim(R/I)p}. If xl 6∈ p,
then, (R/I)p ' (R/(I : xl))p. Hence depth(R/I)p ≥ min{i,dim(R/I)p}. Therefore
p = m. Hence depthR/I < min{i,dimR/I}. By Auslander-Buchsbaum formula,
pdR/I > n− i. Again, by the result of Terai, reg I? > n− i, i.e., there exists j and
a multidegree σ such that βj,σ(I?) 6= 0 and |σ| − j > n− i. By Hochster’s theorem,
non-zero Betti numbers are in square-free multidegrees, so, |σ| ≤ n. Hence j < i,
contradicting the hypothesis that I? has (Nc,i) . �

Before we proceed, we observe that if dimR/I ≥ 2 and R/I is connected in
codimension 1, then Stanley-Reisner complex ∆ of I is connected; in fact, it is
strongly connected, i.e., for any two faces F and F ′ of ∆ of maximal dimension, we
can find a sequence F0 = F, F1, · · · , Fr = F ′ of faces of maximal dimension such
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that for all 1 ≤ i ≤ n− 1, Fi ∩ Fi−1 is a face of codimension 1 in Fi and Fi−1. To
prove this, it suffices, using the correspondence between faces of ∆ and prime ideals
containing I [MS05, Theorem 1.7], to show that for any p, p′ ∈ AssR/I, there is
a sequence p0 = p, p1, · · · , pr = p′ of associated primes of R/I such that for all
1 ≤ i ≤ n − 1, ht(pi + pi+1) = ht pi + 1 = ht pi+1 + 1. This follows from setting
d = 2 in [EGA, IV, 5.10.8]. Finally, since R/I is connected in codimension 1, it is
equidimensional; this is the content of the proof of [EGA, IV, 5.10.9]. Hence every
vertex of ∆ is in some face of maximal dimension, so ∆ is connected.

Theorem 6. Let R = k[x1, · · · , xn] be a polynomial ring in n variables and let
I ⊆ R be a square-free monomial ideal. Then SpecR/I is locally connected in
codimension 1 if and only if R/I satisfies property (S2) .

Proof. We will show that if SpecR/I is locally connected in codimension 1, then
R/I has property (Si) ; the other implication is already known [Har62, Corollary
2.4]. If c ≥ n − 1, then it is clear that R/I is locally connected in codimension 1
and that R/I has property (S2) . Therefore we will assume that c ≤ n− 2.

We proceed by induction on n. Let n = 3. It is easy to verify that any unmixed
monomial ideal in three variables in locally connected in codimension 1. Since
c = 1, R/I is a complete intersection and, hence has property (S2) . Now assume
that n > 3.

We first observe that for all 1 ≤ l ≤ n, SpecR/(I : xl) is locally connected in
codimension 1, because, as topological spaces, SpecR/(I : xl) is homeomorphic to
Spec(R/I)xl

, which is locally connected in codimension 1, (R/I)xl
being a local-

ization of R/I. Since xl does not divide any minimal generator of (I : xl), (I : xl)
is extended from the subring k[x1, · · · , x̂l, · · · , xn] ⊆ R. By induction R/(I : xl)
has property (S2) . Now let p ∈ SpecR, p 6= m. We can then pick xl 6∈ p. Since
(R/I)p ' (R/(I : xl))p, we see that depth(R/I)p ≥ min{2,dim(R/I)p}. It re-
mains to show that depthR/I ≥ 2, i.e., that the Stanley-Reisner complex ∆ of I
is connected, which follows from the preceding discussion. �
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