Proposition 1.3. Write $c=\operatorname{codim} M:=\operatorname{codim}_{\text {Spec } S} \operatorname{Supp} M$ and $p=\operatorname{pd} M$. For $0 \leq i \leq p$, let $t_{i}=\min \{j \mid$ $\left.\beta_{i, j} \neq 0\right\}$ and $T_{i}=\max \left\{j \mid \beta_{i, j} \neq 0\right\}$. Then $t_{0}<t_{1}<\ldots<t_{p}$ and Then $T_{0}<T_{1}<\ldots<t_{c}$.

Proof. Let F_{\bullet} be a minimal graded free resolution of M. Use minimality to show that $t_{0}<t_{1}<\ldots<t_{p}$. Apply that result to $\operatorname{Hom}_{S}\left(F_{\bullet}, S\right)$ and use the fact that $\operatorname{Ext}_{S}^{i}(M, S)=0$ for all $i<c$ to get the other assertion.

Proposition 1.4. $\operatorname{Tor}_{n}^{S}(M, \mathbb{k}) \simeq(\operatorname{soc} M)(-n)$.
Proof. Let K_{\bullet} be the (graded) Koszul complex on x_{1}, \ldots, x_{n} Then

$$
\left.\operatorname{Tor}_{n}^{S}(M, \mathbb{k})=\operatorname{ker}\left(M(-n) \xrightarrow{\left[\begin{array}{c}
\pm x_{1} \\
\pm x_{2} \\
\vdots \\
\pm x_{n}
\end{array}\right]} M(-n+1)^{n}\right)\right)=(\operatorname{soc} M)(-n)
$$

Example 1.5. Let A be an $(n+1) \times n$ matrix of variables $x_{i, j}$ and $S=\mathbb{k}\left[x_{i, j}, 1 \leq i \leq n+1,1 \leq j \leq n\right]$. Let $I=I_{n}(A)$ the ideal generated by the $n \times n$ minors of A. Then S / I has the minimal resolution

$$
0 \longrightarrow S(-n-1)^{n} \xrightarrow{A} S(-n)^{n+1} \longrightarrow S \longrightarrow 0
$$

This is pure, with degree sequence $(0, n, n+1)$.
Example 1.6. Consider the embedding of $\mathbb{P}^{1} \longrightarrow \mathbb{P}^{d}$ using the complete linear series $\left|\mathscr{O}_{\mathbb{P}}(d)\right|$. Write X for the image. Consider the exact sequence

$$
0 \longrightarrow I_{X} \longrightarrow \mathscr{O}_{\mathbb{P}^{d}} \longrightarrow \mathscr{O}_{X} \longrightarrow 0
$$

and apply the functor $\Gamma_{*}(-):=\oplus_{j} \Gamma\left(\mathbb{P}^{d},-\otimes \mathscr{O}_{\mathbb{P}^{d}}(j)\right)$. Note that $\Gamma_{*}\left(\mathscr{O}_{X}\right)=\oplus_{j} \mathscr{O}_{\mathbb{P}^{1}}(j d)=\mathbb{k}\left[x^{d}, x^{d-1} y, \ldots, y^{d}\right]=$: S_{X}, where x, y are the homogeneous coordinates on \mathbb{P}^{1}. Write $\Gamma_{*} \mathscr{O}_{\mathbb{P}^{d}}=\mathbb{k}\left[z_{0}, \ldots, z_{d}\right]=: S$ Then we have an exact sequence

$$
0 \longrightarrow I_{X} \longrightarrow S \longrightarrow S_{X} \longrightarrow 0
$$

Note that I_{X} is generated by elements of degree ≥ 2. On the other hand, since

$$
\mathrm{H}^{1}\left(X, \mathscr{O}_{X}(m-1)\right)=0 \text { for all } m \geq 1
$$

it follows that the Castelnuovo-Mumford regularity reg \mathscr{O}_{X} of \mathscr{O}_{X} is at most 1 . By a theorem of EisenbudGoto,

$$
\operatorname{reg} \mathscr{O}_{X}=\max \left\{j-i \mid \beta_{i, j}\left(S_{X}\right) \neq 0\right\}
$$

so $\beta_{i, j}\left(S_{X}\right)=0$ for all $j>i+1$. Hence the resolution of S_{X} is pure with degree sequence $(0,2,3, \ldots, d)$.

Example 1.7. Let Γ be an n-cycle, with $n \geq 4$. Think of Γ as a 1 -dimensional simplicial complex. Let I be its Stanley-Reisner ideal inside $S:=\mathbb{k}\left[x_{1}, \ldots, x_{n}\right]$. I.e., if the vertices are labelled cyclically by $1,2, \ldots, n$, I is generated by

$$
\left\{x_{1} x_{3}, x_{1} x_{4}, \ldots, x_{1} x_{n-2}, x_{2} x_{4}, x_{2} x_{5}, \ldots, x_{2} x_{n-1}, \cdots\right\}
$$

Then S / I is a two-dimensional Gorenstein ring. Its resolution is pure with degree sequence $(0,2,3, \ldots, n-$ $2, n$).
Theorem 1.8 (Herzog-Kuhl). Let M be a graded Cohen-Macaulay module with pure resolution with degree sequence $\left(d_{0}, \ldots, d_{c}\right)$. Then there exists C such that

$$
\beta_{i, j}= \begin{cases}0, & j \neq d_{i} \\ C \prod_{i^{\prime} \neq i} \frac{1}{\left|d_{i^{\prime}}-d_{i}\right|}, & \text { otherwise } .\end{cases}
$$

Proof. The Hilbert series $H_{M}(t)$ of M is given by

$$
\frac{\sum_{i=0}^{c}(-1)^{i} \beta_{i, d_{i}} t^{d_{i}}}{(1-t)^{n}}
$$

Hence the numerator $\sum_{i=0}^{c}(-1)^{i} \beta_{i, d_{i}} t^{d_{i}}$ has a zero of order c at $t=1$. Evaluating it at $t=1$, we see that

$$
\sum_{i=0}^{c}(-1)^{i} \beta_{i, d_{i}}=0
$$

Differentiating it once and evaluating at $t=1$, we get

$$
\begin{equation*}
\sum_{i=0}^{c}(-1)^{i} d_{i} \beta_{i, d_{i}}=0 \tag{1.9}
\end{equation*}
$$

Differentiating it once more, evaluating at $t=1$ and using (1.9), we get

$$
\sum_{i=0}^{c}(-1)^{i} d_{i}^{2} \beta_{i, d_{i}}=0
$$

Thus, we get the following c linear relations among the $c+1$ numbers $b_{i, d_{i}}, 0 \leq i \leq c$:

$$
\sum_{i=0}^{c}(-1)^{i} d_{i}^{k} \beta_{i, d_{i}}=0,0 \leq k<c
$$

The $c \times(c+1)$ matrix

$$
D:=\left[(-1)^{i} d_{i}^{k}\right]_{k, i}
$$

has rank c since each $c \times c$ submatrix is a Vandermonde matrix. Hence up to multiplication by a constant, the vector $\left(\beta_{i, d_{i}}\right)_{i}$ is uniquely determined. Let $\delta_{i}, 1 \leq i \leq c+1$ be the maximal minors of D. Then, using Cramer's rule, we see that the vector $\left(\beta_{i, d_{i}}\right)_{i}$ is a multiple of the vector $\left(\delta_{1}, \ldots, \delta_{c+1}\right)$. Note that

$$
\delta_{i}=\prod_{\substack{t<s \\ t \neq i \neq s}}\left(d_{t}-d_{s}\right)
$$

Dividing by $\prod_{t<s}\left(d_{t}-d_{s}\right)$, we get the proposition.
The significance of Cohen-Macaulay modules of pure resolution stems from the following conjectures (since then proved) of Boij-Soderberg [BSO8].

Conjecture 1.10 ([BSO8]). Let M be a graded Cohen-Macaulay S-module. Then the Betti table of M (as an element of $\prod_{j} \mathbb{Q}^{n+1}$) is a positive rational combination of the Betti tables with pure resolution. In other words, the extremal rays of the cone generated by the Betti tables of Cohen-Macaulay modules are those corresponding to pure resolutions.
Conjecture 1.11 ([BSO8]). For every degree sequence $\left(d_{0}, \ldots, d_{c}\right)$, there exists a Cohen-Macaulay module with pure resolution of degree sequence $\left(d_{0}, \ldots, d_{c}\right)$.

Remark 1.12. Conjecture 1.11 was proved by Eisenbud-Floystad-Weyman [EFW11] in characteristic zero, by constructing resolutions using Pieri rules. Then both conjectures were proved in a characteristic-free way by Eisenbud-Schreyer [ESO9]; they discovered an analogous picture for vector bundles on projective spaces. Later Boij-Soderberg extended Conjecture 1.10 to the non-Cohen-Macaulay situation, with suitable changes in the statement [BS12].

2. Determinantal varieties

Let V and $W \mathbb{k}$-vector spaces with $\operatorname{dim} V=n$, $\operatorname{dim} W=m$. Let $0 \leq t \leq \min \{m, n\}$. Write $\mathbb{A}=\mathbb{A}^{m n}=$ $\operatorname{Hom}_{\mathbb{k}}(V, W)=V^{*} \otimes_{\mathbb{k}} W$. Let $X_{t}=\{\phi \in \mathbb{A} \mid \operatorname{rk} \phi \leq t\}$. Let $y_{i, j}, 1 \leq i \leq m, 1 \leq j \leq n$ be indeterminates over \mathbb{k} and $S=\left[\left\{y_{i, j} \mid 1 \leq i \leq m, 1 \leq j \leq n\right\}\right]$. Write Y for the $m \times n$ matrix $\left[y_{i, j}\right]$. By $I_{t+1}(Y)$ we mean the S-ideal generated by the $(t \times t)$-minors of Y.

We list some properties of X_{t} and $I_{t+1}(Y)$, mostly from Bruns-Vetter.
(a) X_{t} is irreducible. For all $\phi \in \mathbb{A}, \phi \in X_{t}$ if and only if $f(\phi)=0$ for all $f \in I_{t+1}(Y)$.
(b) $I_{t+1}(Y)$ is a prime ideal. Hence X_{t} is scheme-theoretically defined by $I_{t+1}(Y)$.
(c) $S / I_{t+1}(Y)$ is a normal and Cohen-Macaulay ring.
(d) If char $\mathbb{k}=0 X_{t}$ has rational singularities. I.e., for every proper and birational map $\mu: Z \longrightarrow X_{t}$ with Z non-singular (we say that μ or Z is desingularization or resolution of singularities), the map $\mathscr{O}_{X_{t}} \longrightarrow \mu_{*} \mathscr{O}_{Z}$ is an isomorphism $\mathrm{R}^{i} \mu_{*} \mathscr{O}_{Z}=0$ for each $i \neq 0$.

A desingularization of X_{t} is as follows: Write $G=\operatorname{Grass}(t, W)$, the Grassmannian of t-dimensional subspaces of W. Let $Z=\left\{\left(\phi, W^{\prime}\right) \in \mathbb{A} \times G \mid \operatorname{Im} \phi \subseteq W^{\prime}\right\}$. Then Z has the structure of a sub-bundle of the trivial bundle $\mathbb{A} \times G$ (over G). Hence Z is non-singular. The image of Z under the projection $\mathbb{A} \times G \longrightarrow \mathbb{A}$ is X_{t}. Write q for this map. It is proper, since it is the restriction of the projection map whose fibres are proper. Moreover, over the open set $X_{t} \backslash X_{t-1}, q$ is a bijective. In characteristic zero, this is enough to show that q is birational. (q is birational in prime characteristic, too.)

3. Kozsul complex

Some information on Koszul complexes that is relevant for these lectures is in my notes (syzSeminar . pdf, Appendix A.2). Here I explain one point that is relevant, but is not included in those notes.

Let V be a vector space and V^{\prime} a subspace. Without loss of generality, $\left\{v_{1}, \ldots, v_{d}\right\}$ is a basis of V^{\prime} and $\left\{v_{1}, \ldots, v_{n}\right\}$ is a basis of V. Let x_{1}, \ldots, x_{n} be the basis of V^{*}, dual to $\left\{v_{1}, \ldots, v_{n}\right\}$. Then V^{\prime} is defined (as an algebraic subset of V) by the equations $x_{d+1}=\cdots=x_{n}=0$. If we write $q: V \longrightarrow V / V^{\prime}$ for the natural map, then $\left\{x_{d+1}, \ldots, x_{n}\right\}$ is a basis of $\operatorname{Im}\left(\left(V / V^{\prime}\right)^{*} \xrightarrow{q^{*}} V^{*}\right)$.

Now suppose we have a vector bundle V on a variety X and a sub-bundle V^{\prime}. (We think of these as spaces.) Write $p: V \longrightarrow X$ be the structure morphism. Then the total space of V^{\prime} is the zero-locus of a section σ of the bundle $p^{*}\left(V / V^{\prime}\right)$. This is the bundle $V \times_{X}\left(V / V^{\prime}\right)$. We get σ uniquely as follows.

4. Free resolutions of determinantal varieties

This is a summary of the arguments in [Wey03, Chapters 5, 6]. The desingularization describe above gives the following diagram

Write \mathcal{R} and Q for the tautological sub-bundle and quotient bundle of G, respectively. Denote the map $Z \longrightarrow G$ by $p . Z$ is the total space of the vector bundle $V^{*} \otimes_{\mathbb{k}} \mathcal{R}$ where \mathcal{R} is the tautological sub-bundle of G. (I.e., for each $W^{\prime} \in G, p^{-1}\left(W^{\prime}\right)$ is the space of maps $V \longrightarrow W^{\prime}$.) Hence there is a section σ of $V^{*} \otimes_{\mathbb{k}} Q$) whose zero locus is Z. Since $\operatorname{codim}_{\mathbb{A} \times G}(Z)=n(m-t)=r k p^{*}\left(V^{*} \otimes_{\mathbb{k}} Q\right)$, it follows that the Koszul complex

$$
K_{\bullet}: 0 \longrightarrow \wedge^{n(m-t)} p^{*}\left(V^{*} \otimes_{\mathbb{K}} Q\right)^{*} \longrightarrow \cdots \longrightarrow \wedge^{2} p^{*}\left(V^{*} \otimes_{\mathbb{K}} Q\right)^{*} \longrightarrow p^{*}\left(V^{*} \otimes_{\mathbb{k}} Q\right)^{*} \longrightarrow 0
$$

given by σ is a locally free resolution of \mathscr{O}_{Z} as an $\mathscr{O}_{\mathbb{A} \times G}$-module.
We then find a suitable double complex $J^{\bullet \bullet \bullet}$ such that
(a) it is a q_{*}-acyclic resolution of K_{\bullet};
(b) $q_{*} J^{\bullet \bullet \bullet}$ is a double complex of free graded R-modules.

Write $G \bullet$ for the total complex of $q_{*} J^{\boldsymbol{\bullet} \bullet \bullet}$. It is a complex offree graded R-modules and is quasi-isomorphic to $\mathrm{R} q_{*} \mathscr{O}_{Z}$.

Notational convention: K_{\bullet} is on the negative horizontal axis; $J^{\bullet \bullet \bullet}$ is in the second quadrant. Hence $G_{i}=\oplus_{j} q_{*} J^{-j-i, j}$. (We freely switch between homological indexing, with subscripts that decrease along the arrows and cohomological indexing, with superscripts that increase along the arrows.)

Then there is a subcomplex F_{\bullet} of G_{\bullet} such that the inclusion map is a quasi-isomorphism and the maps in F_{\bullet} are minimal. Moreover, for all $i \in \mathbb{Z}$,

$$
F_{i}=\oplus_{j} \mathrm{H}^{j}\left(G, \wedge^{i+j} V \otimes_{\mathbb{k}} Q^{*}\right) \otimes_{\mathbb{k}} R(-i-j) .
$$

The groups $\mathrm{H}^{j}\left(G, \wedge^{i+j} V \otimes_{\mathbb{k}} Q^{*}\right)$ can be computed using the Pieri formula for exterior powers

$$
\wedge^{i+j} V \otimes_{\mathbb{k}} Q^{*}=\bigoplus_{\lambda \vdash i+j} L_{\lambda} V \otimes L_{\lambda^{\prime}} Q^{*}
$$

followed by the Borel-Weil-Bott theorem to compute

$$
\mathrm{H}^{j}\left(G, L_{\lambda} V \otimes_{\mathbb{k}} L_{\lambda^{\prime}} Q^{*}\right)=L_{\lambda} V \otimes_{\mathbb{k}} \mathrm{H}^{j}\left(G, L_{\lambda^{\prime}} Q^{*}\right)
$$

Remark 4.1. Since X_{t} has rational singularities, G_{\bullet} is quasi-isomorphic to $\mathscr{O}_{X_{t}}$. Note that since $\mathrm{R}^{i} q_{*} \mathscr{O}_{Z}=$ 0 for all $i>0$, the complex

$$
\longrightarrow G_{-1} \longrightarrow G_{-2} \longrightarrow
$$

(i.e., to the right of G_{0} has no homology. This complex is bounded on the right, so we see that for each $i<0$, the module of cycles and the module of boundaries at i are free and that

$$
\operatorname{rk} G_{i}=\operatorname{rk} \operatorname{Im}\left(G_{i+1} \longrightarrow G_{i}\right)+\operatorname{rk} \operatorname{ker}\left(G_{i} \longrightarrow G_{i-1}\right) .
$$

In particular $F_{i}=0$ for each $i<0$. Similar argument also shows that $F_{0}=R$. Hence

$$
\cdots \longrightarrow F_{2} \longrightarrow F_{0} \longrightarrow F_{0} \longrightarrow 0
$$

is a minimal graded free resolution of $\mathscr{O}_{X_{t}}$.
Remark 4.2. In fact, the prior knowledge that X_{t} has rational singularities is not necessary. One can compute the cohomology groups and conclude that $F_{i}=0$ for each $i<0$ and that $F_{0}=R$. Hence $\mathrm{R}^{i} q_{*} \mathscr{O}_{Z}=0$ for all $i>0$ and $q_{*} \mathscr{O}_{Z}$ is a cyclic $\mathscr{O}_{X_{t}}$-module. Since $q_{*} \mathscr{O}_{Z}$ gives the normalization of X_{t}, it follows that X_{t} is normal and hence the map $\mathscr{O}_{X_{t}} \longrightarrow q_{*} \mathscr{O}_{Z}$ is an isomorphism. Hence X_{t} has rational singularities.

References

[BSO8] M. Boij and J. Söderberg. Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture. J. Lond. Math. Soc. (2), 78(1):85-106, 2008. 3
[BS12] M. Boij and J. Söderberg. Betti numbers of graded modules and the multiplicity conjecture in the non-CohenMacaulay case. Algebra Number Theory, 6(3):437-454, 2012. 4
[EFW11] D. Eisenbud, G. Fløystad, and J. Weyman. The existence of equivariant pure free resolutions. Ann. Inst. Fourier (Grenoble), 61(3):905-926, 2011. 4
[ESO9] D. Eisenbud and F.-O. Schreyer. Betti numbers of graded modules and cohomology of vector bundles. J. Amer. Math. Soc., 22(3):859-888, 2009.4
[Wey03] J. Weyman. Cohomology of vector bundles and syzygies, volume 149 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003. 5

Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India
Email address: mkummini@cmi.ac.in

