WORKING NOTES

MANOJ KUMMINI

ABSTRACT. These are (incomplete) notes from the workshop on *Representation Theory and syzygies*, held in CMI in Dec 2023.

1. Pure resolutions (MK)

Throughout this lecture, \Bbbk is a field, $S = \Bbbk[x_1, ..., x_n]$ a polynomial ring in *n* variables over \Bbbk with deg $x_i = 1$ for each *i*. Write $\mathfrak{m} = (x_1, ..., x_n)$. Every finitely generated graded *R*-module has a *minimal graded free resolution*, i.e., a complex

$$F_{\bullet}: \qquad 0 \longrightarrow F_n \xrightarrow{\partial_n} F_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \longrightarrow 0$$

7 such that

- 8 (a) For each $0 \le i \le n$, F_i is a graded free *S*-module and ∂_i preserves degrees.
- 9 (b) coker $\partial_1 \simeq M$.
- 10 (c) For each $1 \le i \le n$, ker $\partial_i = \operatorname{Im} \partial_{i+1}$.
- 11 (d) For each $1 \le i \le n$, Im $\partial_i \subseteq \mathfrak{m}F_{i-1}$.

¹² The first three conditions make *F*• a *graded free resolution* of *M* and the last condition makes it *minimal*.

Let F_{\bullet} be a minimal graded free resolution of M. Write

$$F_i = \bigoplus_i S(-i)^{\beta_{i,j}}$$

for non-negative integers $\beta_{i,j}$ (that depend on *M*). These are called the *graded Betti numbers* of *M*. They do not depend on the choice of F_{\bullet} since

$$\beta_{i,i} = \operatorname{rk}_{\Bbbk} \operatorname{Tor}_{i}(M, \Bbbk)_{i}.$$

Definition 1.1. Let p = pd M. Say that M has a *pure resolution* if for each $0 \le i \le p$, there exists a unique d_i such that $\beta_{i,j} \ne 0$ if and only if $j = d_i$. The (strictly increasing) sequence (d_0, \ldots, d_p) is called the *degree sequence* of M.

Example 1.2. $M = S/\mathfrak{m}^k$ for some $k \ge 1$. The output of a Macaulay2 output for n = 6 and k = 4. In general, the length of the resolution is n and the degree sequence is (0, k, k + 1, ..., n + k - 1) which we can prove using Propositions 1.3 and 1.4. (Note that $\operatorname{soc} S/\mathfrak{m}^k = \mathfrak{m}^{k-1}/\mathfrak{m}^k$, so $\beta_{n,j} \ne 0$ if and only if j = n + k - 1.)

```
23
   i1 : S = kk[a..f]
24
25
   o1 = S
26
27
   o1 : PolynomialRing
28
29
   i2 : betti res power(ideal vars S, 4)
30
31
                 0
                          2
                              3
                                   4
                                        5 6
                      1
32
   o2 = total: 1 126 504 840 720 315 56
33
```

1

2

^{24/12/2023 22:46.}

```
MANOJ KUMMINI
```

0: 1 34 . . . 1: . . 35 . 2: . 36 3: . 126 504 840 720 315 56 37 38 o2 : BettiTally 39 40

41 **Proposition 1.3.** Write $c = \operatorname{codim} M := \operatorname{codim}_{\operatorname{Spec} S} \operatorname{Supp} M$ and $p = \operatorname{pd} M$. For $0 \le i \le p$, let $t_i = \min\{j \mid 42 \quad \beta_{i,j} \ne 0\}$ and $T_i = \max\{j \mid \beta_{i,j} \ne 0\}$. Then $t_0 < t_1 < \ldots < t_p$ and Then $T_0 < T_1 < \ldots < t_c$.

⁴³ *Proof.* Let F_{\bullet} be a minimal graded free resolution of M. Use minimality to show that $t_0 < t_1 < \ldots < t_p$.

Apply that result to $\text{Hom}_S(F_{\bullet}, S)$ and use the fact that $\text{Ext}_S^i(M, S) = 0$ for all i < c to get the other assertion.

- 46 **Proposition 1.4.** $\operatorname{Tor}_{n}^{S}(M, \Bbbk) \simeq (\operatorname{soc} M)(-n).$
- ⁴⁷ *Proof.* Let K_{\bullet} be the (graded) Koszul complex on x_1, \ldots, x_n Then

$$\operatorname{Tor}_{n}^{S}(M, \mathbb{k}) = \ker \left(M(-n) \xrightarrow{\begin{bmatrix} \pm x_{1} \\ \pm x_{2} \\ \vdots \\ \pm x_{n} \end{bmatrix}} M(-n+1)^{n} \right) = (\operatorname{soc} M)(-n).$$

48

2

49 **Example 1.5.** Let *A* be an $(n + 1) \times n$ matrix of variables $x_{i,j}$ and $S = \Bbbk[x_{i,j}, 1 \le i \le n + 1, 1 \le j \le n]$. Let 50 $I = I_n(A)$ the ideal generated by the $n \times n$ minors of *A*. Then *S*/*I* has the minimal resolution

$$0 \longrightarrow S(-n-1)^n \xrightarrow{A} S(-n)^{n+1} \longrightarrow S \longrightarrow 0.$$

⁵¹ This is pure, with degree sequence (0, n, n + 1).

52 **Example 1.6.** Consider the embedding of $\mathbb{P}^1 \longrightarrow \mathbb{P}^d$ using the complete linear series $|\mathscr{O}_{\mathbb{P}}(d)|$. Write X 53 for the image. Consider the exact sequence

$$0 \longrightarrow I_X \longrightarrow \mathscr{O}_{\mathbb{P}^d} \longrightarrow \mathscr{O}_X \longrightarrow 0$$

and apply the functor $\Gamma_*(-) := \bigoplus_j \Gamma(\mathbb{P}^d, -\otimes \mathscr{O}_{\mathbb{P}^d}(j))$. Note that $\Gamma_*(\mathscr{O}_X) = \bigoplus_j \mathscr{O}_{\mathbb{P}^1}(jd) = \Bbbk[x^d, x^{d-1}y, \dots, y^d] =: S$ S_X , where x, y are the homogeneous coordinates on \mathbb{P}^1 . Write $\Gamma_* \mathscr{O}_{\mathbb{P}^d} = \Bbbk[z_0, \dots, z_d] =: S$ Then we have an exact sequence

 $0 \longrightarrow I_X \longrightarrow S \longrightarrow S_X \longrightarrow 0.$

⁵⁷ Note that I_X is generated by elements of degree ≥ 2 . On the other hand, since

$$\mathrm{H}^{1}(X, \mathscr{O}_{X}(m-1)) = 0 \text{ for all } m \geq 1$$

it follows that the Castelnuovo-Mumford regularity reg \mathcal{O}_X of \mathcal{O}_X is at most 1. By a theorem of Eisenbud-Goto,

$$\operatorname{reg} \mathscr{O}_X = \max\{j - i \mid \beta_{i,j}(S_X) \neq 0\}$$

so $\beta_{i,j}(S_X) = 0$ for all j > i + 1. Hence the resolution of S_X is pure with degree sequence (0, 2, 3, ..., d).

- 62 **Example 1.7.** Let Γ be an *n*-cycle, with $n \ge 4$. Think of Γ as a 1-dimensional simplicial complex. Let *I* be
- its Stanley-Reisner ideal inside $S := k[x_1, ..., x_n]$. I.e., if the vertices are labelled cyclically by 1, 2, ..., *n*, *I* is generated by

$$\{x_1x_3, x_1x_4, \ldots, x_1x_{n-2}, x_2x_4, x_2x_5, \ldots, x_2x_{n-1}, \cdots\}$$

- ⁶⁵ Then S/I is a two-dimensional Gorenstein ring. Its resolution is pure with degree sequence (0, 2, 3, ..., n-66, 2, n).
- ⁶⁷ **Theorem 1.8** (Herzog-Kuhl). Let *M* be a graded Cohen-Macaulay module with pure resolution with degree se-
- quence (d_0, \ldots, d_c) . Then there exists C such that

$$\beta_{i,j} = \begin{cases} 0, & j \neq d_i \\ C \prod_{i' \neq i} \frac{1}{|d_{i'} - d_i|}, & otherwise. \end{cases}$$

⁶⁹ *Proof.* The Hilbert series $H_M(t)$ of M is given by

$$\frac{\sum_{i=0}^{c} (-1)^{i} \beta_{i,d_{i}} t^{d_{i}}}{(1-t)^{n}}.$$

⁷⁰ Hence the numerator $\sum_{i=0}^{c} (-1)^{i} \beta_{i,d_{i}} t^{d_{i}}$ has a zero of order *c* at t = 1. Evaluating it at t = 1, we see that

$$\sum_{i=0}^{c} (-1)^i \beta_{i,d_i} = 0.$$

Differentiating it once and evaluating at t = 1, we get

(1.9)
$$\sum_{i=0}^{c} (-1)^{i} d_{i} \beta_{i,d_{i}} = 0.$$

⁷² Differentiating it once more, evaluating at t = 1 and using (1.9), we get

$$\sum_{i=0}^{c} (-1)^{i} d_{i}^{2} \beta_{i,d_{i}} = 0.$$

Thus, we get the following *c* linear relations among the c + 1 numbers b_{i,d_i} , $0 \le i \le c$:

$$\sum_{i=0}^{c} (-1)^{i} d_{i}^{k} \beta_{i,d_{i}} = 0, \ 0 \le k < c.$$

74 The $c \times (c+1)$ matrix

$$D := \left[(-1)^i d_i^k \right]_{k,i}$$

- has rank c since each $c \times c$ submatrix is a Vandermonde matrix. Hence up to multiplication by a constant,
- ⁷⁶ the vector $(\beta_{i,d_i})_i$ is uniquely determined. Let $\delta_i, 1 \le i \le c+1$ be the maximal minors of *D*. Then, using
- ⁷⁷ Cramer's rule, we see that the vector $(\beta_{i,d_i})_i$ is a multiple of the vector $(\delta_1, \ldots, \delta_{c+1})$. Note that

$$\delta_i = \prod_{\substack{t < s \\ t \neq i \neq s}} (d_t - d_s)$$

78 Dividing by $\prod_{t < s} (d_t - d_s)$, we get the proposition.

The significance of Cohen-Macaulay modules of pure resolution stems from the following conjectures
 (since then proved) of Boij-Soderberg [BS08].

81 **Conjecture 1.10** ([BSO8]). Let *M* be a graded Cohen-Macaulay *S*-module. Then the Betti table of *M* (as an 82 element of $\prod_{j} \mathbb{Q}^{n+1}$) is a positive rational combination of the Betti tables with pure resolution. In other 83 words, the extremal rays of the cone generated by the Betti tables of Cohen-Macaulay modules are those 84 corresponding to pure resolutions.

Conjecture 1.11 ([BS08]). For every degree sequence (d_0, \ldots, d_c) , there exists a Cohen-Macaulay module with pure resolution of degree sequence (d_0, \ldots, d_c) .

MANOI KUMMINI

Remark 1.12. Conjecture 1.11 was proved by Eisenbud-Floystad-Weyman [EFW11] in characteristic zero, 87

by constructing resolutions using Pieri rules. Then both conjectures were proved in a characteristic-free 88

way by Eisenbud-Schreyer [ES09]; they discovered an analogous picture for vector bundles on projec-89

tive spaces. Later Boij-Soderberg extended Conjecture 1.10 to the non-Cohen-Macaulay situation, with 90

suitable changes in the statement [BS12]. 91

92

4

2. DETERMINANTAL VARIETIES

Let *V* and *W* k-vector spaces with dim V = n, dim W = m. Let $0 \le t \le \min\{m, n\}$. Write $\mathbb{A} = \mathbb{A}^{mn} =$ 93 $\operatorname{Hom}_{\Bbbk}(V, W) = V^* \otimes_{\Bbbk} W$. Let $X_t = \{\phi \in \mathbb{A} \mid \operatorname{rk} \phi \leq t\}$. Let $y_{i,j}, 1 \leq i \leq m, 1 \leq j \leq n$ be indeterminates 94 over \Bbbk and $S = [\{y_{i,j} \mid 1 \le i \le m, 1 \le j \le n\}]$. Write *Y* for the $m \times n$ matrix $[y_{i,j}]$. By $I_{t+1}(Y)$ we mean 95 the *S*-ideal generated by the $(t \times t)$ -minors of *Y*. 96

We list some properties of X_t and $I_{t+1}(Y)$, mostly from Bruns-Vetter. 97

(a) X_t is irreducible. For all $\phi \in \mathbb{A}$, $\phi \in X_t$ if and only if $f(\phi) = 0$ for all $f \in I_{t+1}(Y)$. 98

(b) $I_{t+1}(Y)$ is a prime ideal. Hence X_t is scheme-theoretically defined by $I_{t+1}(Y)$. 99

(c) $S/I_{t+1}(Y)$ is a normal and Cohen-Macaulay ring. 100

(d) If char $\Bbbk = O X_t$ has rational singularities. I.e., for every proper and birational map $\mu : Z \longrightarrow X_t$ 101

with Z non-singular (we say that μ or Z is desingularization or resolution of singularities), the map 102

 $\mathscr{O}_{X_t} \longrightarrow \mu_* \mathscr{O}_Z$ is an isomorphism $\mathbb{R}^i \mu_* \mathscr{O}_Z = 0$ for each $i \neq 0$. 103

A desingularization of X_t is as follows: Write G = Grass(t, W), the Grassmannian of t-dimensional 104 subspaces of W. Let $Z = \{(\phi, W') \in \mathbb{A} \times G \mid \text{Im } \phi \subseteq W'\}$. Then Z has the structure of a sub-bundle 105 of the trivial bundle $\mathbb{A} \times G$ (over G). Hence Z is non-singular. The image of Z under the projection 106 $\mathbb{A} \times G \longrightarrow \mathbb{A}$ is X_t . Write q for this map. It is proper, since it is the restriction of the projection map 107 whose fibres are proper. Moreover, over the open set $X_t \setminus X_{t-1}$, q is a bijective. In characteristic zero, 108 this is enough to show that q is birational. (q is birational in prime characteristic, too.) 109

110

3. KOZSUL COMPLEX

Some information on Koszul complexes that is relevant for these lectures is in my notes (syzSeminar.pdf, 111 Appendix A.2). Here I explain one point that is relevant, but is not included in those notes. 112

Let V be a vector space and V' a subspace. Without loss of generality, $\{v_1, \ldots, v_d\}$ is a basis of V' and 113 $\{v_1, \ldots, v_n\}$ is a basis of V. Let x_1, \ldots, x_n be the basis of V^* , dual to $\{v_1, \ldots, v_n\}$. Then V' is defined (as an 114 algebraic subset of V) by the equations $x_{d+1} = \cdots = x_n = 0$. If we write $q: V \longrightarrow V/V'$ for the natural 115

map, then $\{x_{d+1}, \ldots, x_n\}$ is a basis of $\operatorname{Im}\left((V/V')^* \xrightarrow{q^*} V^*\right)$. 116

Now suppose we have a vector bundle V on a variety X and a sub-bundle V'. (We think of these as 117 spaces.) Write $p: V \longrightarrow X$ be the structure morphism. Then the total space of V' is the zero-locus of a 118 section σ of the bundle $p^*(V/V')$. This is the bundle $V \times_X (V/V')$. We get σ uniquely as follows. 119

WORKING NOTES

This is a summary of the arguments in [Wey03, Chapters 5, 6]. The desingularization describe above 121 gives the following diagram 122

Write \mathcal{R} and \mathcal{Q} for the tautological sub-bundle and quotient bundle of G, respectively. Denote the map 123 $Z \longrightarrow G$ by p. Z is the total space of the vector bundle $V^* \otimes_{\Bbbk} \mathcal{R}$ where \mathcal{R} is the tautological sub-bundle 124 of G. (I.e., for each $W' \in G$, $p^{-1}(W')$ is the space of maps $V \longrightarrow W'$.) Hence there is a section σ of 125 $V^* \otimes_{\Bbbk} Q$ whose zero locus is Z. Since $\operatorname{codim}_{\mathbb{A}\times G}(Z) = n(m-t) = \operatorname{rk} p^*(V^* \otimes_{\Bbbk} Q)$, it follows that the 126

Koszul complex 127

$$K_{\bullet} : 0 \longrightarrow \wedge^{n(m-t)} p^* (V^* \otimes_{\Bbbk} Q)^* \longrightarrow \cdots \longrightarrow \wedge^2 p^* (V^* \otimes_{\Bbbk} Q)^* \longrightarrow p^* (V^* \otimes_{\Bbbk} Q)^* \longrightarrow 0$$

given by σ is a locally free resolution of \mathcal{O}_Z as an $\mathcal{O}_{\mathbb{A}\times G}$ -module. 128

We then find a suitable double complex $J^{\bullet,\bullet}$ such that 129

(a) it is a q_* -acyclic resolution of K_{\bullet} ; 130

(b) $q_*J^{\bullet,\bullet}$ is a double complex of *free* graded *R*-modules. 131

Write G_{\bullet} for the total complex of $q_*J^{\bullet,\bullet}$. It is a complex of free graded *R*-modules and is quasi-isomorphic 132 to $\mathbf{R}q_*\mathscr{O}_Z$. 133

Notational convention: K_{\bullet} is on the negative horizontal axis; $J^{\bullet,\bullet}$ is in the second quadrant. Hence 134 $G_i = \bigoplus_i q_* J^{-j-i,j}$. (We freely switch between homological indexing, with subscripts that decrease along 135 the arrows and cohomological indexing, with superscripts that increase along the arrows.) 136

Then there is a subcomplex F_{\bullet} of G_{\bullet} such that the inclusion map is a quasi-isomorphism and the maps 137 in F_{\bullet} are minimal. Moreover, for all $i \in \mathbb{Z}$, 138

$$F_i = \bigoplus_j \mathrm{H}^j(G, \wedge^{i+j} V \otimes_{\Bbbk} \mathbf{Q}^*) \otimes_{\Bbbk} R(-i-j).$$

The groups $\mathrm{H}^{j}(G, \wedge^{i+j}V \otimes_{\mathbb{K}} Q^{*})$ can be computed using the Pieri formula for exterior powers 139

$$\wedge^{i+j}V\otimes_{\Bbbk} Q^* = \bigoplus_{\lambda \vdash i+j} L_{\lambda}V\otimes L_{\lambda'}Q^*$$

followed by the Borel-Weil-Bott theorem to compute 140

$$\mathrm{H}^{j}(G, L_{\lambda}V \otimes_{\Bbbk} L_{\lambda'}Q^{*}) = L_{\lambda}V \otimes_{\Bbbk} \mathrm{H}^{j}(G, L_{\lambda'}Q^{*}).$$

Remark 4.1. Since X_t has rational singularities, G_{\bullet} is quasi-isomorphic to \mathscr{O}_{X_t} . Note that since $\mathbf{R}^i q_* \mathscr{O}_Z =$ 141 0 for all i > 0, the complex 142

$$\rightarrow G_{-1} \longrightarrow G_{-2} \longrightarrow$$

(i.e., to the right of G_0 has no homology. This complex is bounded on the right, so we see that for each 143 i < 0, the module of cycles and the module of boundaries at *i* are free and that 144

$$k G_i = \mathrm{rk} \mathrm{Im}(G_{i+1} \longrightarrow G_i) + \mathrm{rk} \mathrm{ker}(G_i \longrightarrow G_{i-1})$$

In particular $F_i = 0$ for each i < 0. Similar argument also shows that $F_0 = R$. Hence 145

 $\cdots \longrightarrow F_2 \longrightarrow F_0 \longrightarrow F_0 \longrightarrow 0$

is a minimal graded free resolution of \mathcal{O}_{X_t} . 146

Remark 4.2. In fact, the prior knowledge that X_t has rational singularities is not necessary. One can 147 compute the cohomology groups and conclude that $F_i = 0$ for each i < 0 and that $F_0 = R$. Hence 148 $\mathbf{R}^i q_* \mathscr{O}_Z = 0$ for all i > 0 and $q_* \mathscr{O}_Z$ is a cyclic \mathscr{O}_{X_t} -module. Since $q_* \mathscr{O}_Z$ gives the normalization of X_t , it follows that X_t is normal and hence the map $\mathscr{O}_{X_t} \longrightarrow q_* \mathscr{O}_Z$ is an isomorphism. Hence X_t has rational 149

150

singularities. 151

	6	MANOJ KUMMINI
152		References
153	[BS08]	M. Boij and J. Söderberg. Graded Betti numbers of Cohen-Macaulay modules and the multiplicity conjecture. J. Lond.
154		Math. Soc. (2), 78(1):85–106, 2008. 3
155	[BS12]	M. Boij and J. Söderberg. Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen-
156		Macaulay case. Algebra Number Theory, 6(3):437–454, 2012. 4
157	[EFW11]	D. Eisenbud, G. Fløystad, and J. Weyman. The existence of equivariant pure free resolutions. Ann. Inst. Fourier (Greno-
158		<i>ble</i>), 61(3):905–926, 2011. 4
159	[ES09]	D. Eisenbud and FO. Schreyer. Betti numbers of graded modules and cohomology of vector bundles. J. Amer. Math.

- 163 Chennai Mathematical Institute, Siruseri, Tamilnadu 603103. India
- 164 Email address: mkummini@cmi.ac.in

<sup>Soc., 22(3):859–888, 2009. 4
[Wey03] J. Weyman. Cohomology of vector bundles and syzygies, volume 149 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 2003. 5</sup>