1 WORKING NOTES

2 MANO] KUMMINI

ABSTRACT. These are (incomplete) notes from the workshop on Representation Theory and syzygies, held in
CMI in Dec 2023.

3 1. PURE RESOLUTIONS (MK)

IS

Throughout this lecture, k is a field, S = k[x;,...,x,] a polynomial ring in n variables over k with
degx; = 1for each i. Write m = (x,...,xy). Every finitely generated graded R-module has a minimal
graded free resolution, i.e., a complex

o o

n On-1 9 9
F, : O—F, —F,;— -—F—>DF—0

7 such that
8 (@) Foreach0 < i < n, F; is a graded free S-module and 9; preserves degrees.
9 (b) cokero; ~ M.
10 (c) Foreachl < i < n,kerd; = Im 9;41.
11 (d) Foreachl <i < n,Ima; C mF;_1.
12 The first three conditions make F, a graded free resolution of M and the last condition makes it minimal.
13 Let F, be a minimal graded free resolution of M. Write

Fi = @;S(—j)fw

14 for non-negative integers f; ; (that depend on M). These are called the graded Betti numbers of M. They
15 do not depend on the choice of F, since

Bij = tky Tor; (M, k).

16 Definition1.1. Let p = pd M. Say that M has a pure resolution if for each 0 < i < p, there exists a unique
17 d; such that ;; # Oifand onlyif j = d;. The (strictly increasing) sequence (do, ..., d,) is called the
18 degree sequence of M.

19 Example1.2. M = S/m* for some k > 1. The output of a Macaulay2 output for n = 6 and k = 4. In
20 general, the length of the resolution is n and the degree sequence is (0,k,k +1,...,n + k — 1) which we
21 can prove using Propositions 1.3 and 1.4. (Note that soc S/mF = m*~1/m¥, so B,; # 0 if and only if
2 j=n+k-1)

23

24 il : 8 = kk[a..f]

25

26 ol
27

28 ol : PolynomialRing

29

30 12 : betti res power(ideal vars S, 4)
31

32 0 1 2 3 4 5 6

33 02 = total: 1 126 504 840 720 315 56

S
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0
1:
2: . . . . .
3 126 504 840 720 315 56

02 : BettiTally

m}

Proposition1.3. Writec = codim M := codimspec s Supp M and p = pd M. For0 < i < p, lett; = min{j |
Pij # OYandT; = max{j | fij # 0}. Thento < t; < ... <tyandThenTo < Ty < ... < t.

Proof. Let F, be a minimal graded free resolution of M. Use minimality to show that o < #; < ... < t,.
Apply that result to Homg(F,, S) and use the fact that Extj(M,S) = Oforalli < c to get the other
assertion. O

Proposition1.4. Tor5 (M, k) ~ (soc M)(—n).
Proof. Let K, be the (graded) Koszul complex on xj, . . ., x, Then

+Xx7
+Xx;

Torﬁ(M,k) = ker| M(-n) i—x’; M(-n+D") | = (soc M)(—n).

|
Example1.5. Let Abean (n+1) X n matrix of variables x; jand S = k[x; ;,1 < i <n+11< j < n]. Let
I = I,(A) the ideal generated by the n X n minors of A. Then S/I has the minimal resolution
A
0—S(-n-1)" —= S(-n)"! — S —o0.
This is pure, with degree sequence (0,n,n +1). |

Example 1.6. Consider the embedding of P! — P9 using the complete linear series |0p(d)|. Write X
for the image. Consider the exact sequence

0—Ix — Opa — Ox —0

and apply the functor . (-) = eajr(IPd, —®0pa(j)). NotethatT.(Ox) = ;O (jd) = k(x4 x4y, ..., y¢] =
Sx, where x, y are the homogeneous coordinates on P'. Write I, 0pa = k|[zo, ..., z4] =: S Then we have
an exact sequence

00— Ix—S— Sy — 0.
Note that Iy is generated by elements of degree > 2. On the other hand, since
HY(X, Ox(m—1)) =0 forallm > 1

it follows that the Castelnuovo-Mumford regularity reg Ox of Ox isat most 1. By a theorem of Eisenbud-
Goto,
reg Ox = max{j —i| f;(Sx) # 0}
s0 B j(Sx) = 0forall j > i + 1. Hence the resolution of Sx is pure with degree sequence (0,2,3,...,d).
i
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WORKING NOTES 3

Example1.7. LetT be an n-cycle, with n > 4. Think of T as a I-dimensional simplicial complex. Let I be
its Stanley-Reisner ideal inside S := k[xy, ..., x,]. Le., if the vertices are labelled cyclically by 1,2, .. ., n,
I is generated by

{X1%3, X1X4, + .+, X1Xn—2, X2X4, X2X5, . . ., X2Xn—1, " * }.
Then S/Iisatwo-dimensional Gorenstein ring. Its resolutionis pure with degree sequence (0,2, 3, ..., n—
2,n). O

Theorem 1.8 (Herzog-Kuhl). Let M be a graded Cohen-Macaulay module with pure resolution with degree se-
quence (do, . . ., d;). Then there exists C such that

o, j#di
ﬁi,j = {

Cllipi gy otherwise.
Proof. The Hilbert series Hy(t) of M is given by
Zg:O(_I)iﬁi,ditdi
a-nm

Hence the numerator Y5, (~1)!B; 4,t% has a zero of order c at t = 1. Evaluating it at t = 1, we see that

ch(—l)iﬁi,d,- =0.
i=0

Differentiating it once and evaluating at ¢t = 1, we get

(1.9) Z(—l)”d,—ﬁi,di -o.
i=0

Differentiating it once more, evaluating at t = 1 and using (1.9), we get
c
D (D pia, =o0.
i=0

Thus, we get the following c linear relations among the ¢ + I numbers b; 4,0 < i < c:

C

Z(_I)idlkﬂi,di =0,0<k<c

i=0
The ¢ X (¢ + 1) matrix
i 1k
D = [(—1)1{1,. ] |
k,i
hasrank c since each cx¢ submatrix is a Vandermonde matrix. Hence up to multiplication by a constant,
the vector (f; 4,); is uniquely determined. Let §;,1 < i < ¢ + 1 be the maximal minors of D. Then, using

Cramer’s rule, we see that the vector (f; 4,); is a multiple of the vector (8, . . ., dc41). Note that
i=[]d-d)
t<s
t#i#s
Dividing by [,.,(d; — ds), we get the proposition. ]

The significance of Cohen-Macaulay modules of pure resolution stems from the following conjectures
(since then proved) of Boij-Soderberg [BSO8].

Conjecture1.10 ([BS08]). Let M be a graded Cohen-Macaulay S-module. Then the Betti table of M (as an
element of []; Q™) is a positive rational combination of the Betti tables with pure resolution. In other
words, the extremal rays of the cone generated by the Betti tables of Cohen-Macaulay modules are those
corresponding to pure resolutions.

Conjecture 1.11 ([BS08]). For every degree sequence (do, . .., d.), there exists a Cohen-Macaulay module
with pure resolution of degree sequence (do, . . ., d.).
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87 Remark1.12. Conjecture 1.11was proved by Eisenbud-Floystad-Weyman [EFW11] in characteristic zero,
88 by constructing resolutions using Pieri rules. Then both conjectures were proved in a characteristic-free
8o way by Eisenbud-Schreyer [ES09]; they discovered an analogous picture for vector bundles on projec-
90 tive spaces. Later Boij-Soderberg extended Conjecture 1.10 to the non-Cohen-Macaulay situation, with
o1 suitable changes in the statement [BS12]. O

92 2. DETERMINANTAL VARIETIES

93 Let V and W k-vector spaces withdimV = n, dim W = m. Let O < t < min{m, n}. Write A = A™" =
04 Homy(V,W) =V*"® W.LetX; = {¢p € A |rk¢p <t}. Lety;;,1 <i <m,1< j< nbeindeterminates
o5 overkandS = [{y;; |1<i<m1< j<n}]. WriteY for the m X n matrix [y; ;]. By I;4s1(Y) we mean
96 the S-ideal generated by the (¢ X t)-minorsof Y.

97 We list some properties of X; and I,4;(Y), mostly from Bruns-Vetter.

98 (@) X; isirreducible. Forall¢ € A, ¢ € X; ifand only if f(¢) = Oforall f € I;41(Y).
99 (b) I;41(Y) is a prime ideal. Hence X; is scheme-theoretically defined by I,,;(Y).

100 (¢) S/I;41(Y) is a normal and Cohen-Macaulay ring.
101 (d) If chark = 0 X; has rational singularities. ILe., for every proper and birational map y : Z — X;
102 with Z non-singular (we say that p or Z is desingularization or resolution of singularities), the map

103 Ox, — 1.0z is an isomorphism Ry, 07 = 0 for each i # 0.

t

104 A desingularization of X; is as follows: Write G = Grass(t, W), the Grassmannian of ¢-dimensional
105 subspaces of W. Let Z = {(§,W’) € AX G | Im¢ C W’}. Then Z has the structure of a sub-bundle
106 of the trivial bundle A X G (over G). Hence Z is non-singular. The image of Z under the projection
107 A X G — Ais X;. Write q for this map. It is proper, since it is the restriction of the projection map
108 whose fibres are proper. Moreover, over the open set X; \ X;_i, q is a bijective. In characteristic zero,
100 this is enough to show that g is birational. (q is birational in prime characteristic, too.)

110 3. KozsuL COMPLEX

111 Some information on Koszul complexes thatis relevant for these lectures is in my notes (syzSeminar . pdf,
112 Appendix A.2). Here I explain one point that is relevant, but is not included in those notes.

113 Let V be a vector space and V' a subspace. Without loss of generality, {vy,...,v4} is a basis of V/ and

114 {o1,...,0,}isabasisof V. Letxy, ..., x, be the basis of V*, dual to {vy, ..., 0,}. Then V' is defined (as an

115 algebraic subset of V) by the equations x44; = - - - = x,, = 0. If we write ¢ : V. — V/V" for the natural

116 map, then {xg,1,...,x,}isabasisof Im | (V/V")* 4, V*).

117 Now suppose we have a vector bundle V on a variety X and a sub-bundle V’. (We think of these as
118 spaces.) Write p : V — X be the structure morphism. Then the total space of V” is the zero-locus of a
119 section o of the bundle p*(V/V”). This is the bundle V xx (V/V’). We get o uniquely as follows.

VW Vv
;]

X
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WORKING NOTES 5

4. FREE RESOLUTIONS OF DETERMINANTAL VARIETIES

This is a summary of the arguments in [Wey03, Chapters 5, 6]. The desingularization describe above
gives the following diagram
Z——AXG——=G

Lq lprl
X, — A

Write R and Q for the tautological sub-bundle and quotient bundle of G, respectively. Denote the map
Z — G by p. Z is the total space of the vector bundle V* ®, R where R is the tautological sub-bundle
of G. (Le., foreach W € G, p~1(W’) is the space of maps V. — W’.) Hence there is a section o of
V* Q¢ Q) whose zero locus is Z. Since codimaxg(Z) = n(m — t) = tkp*(V* & Q), it follows that the
Koszul complex

Ko : 0— AMM D (V @, Q) — - — A (V@ Q) — p" (V@ Q) — 0
given by o is a locally free resolution of &7 as an O «g-module.
We then find a suitable double complex J** such that
() itisa g.-acyclic resolution of K,;
(b) ¢.J** is a double complex of free graded R-modules.
Write G, for the total complex of g..J**. Itis a complex of free graded R-modules and is quasi-isomorphic
to Rq* 17 7.

Notational convention: K, is on the negative horizontal axis; J** is in the second quadrant. Hence
G; = ®;q.] /7", (We freely switch between homological indexing, with subscripts that decrease along
the arrows and cohomological indexing, with superscripts that increase along the arrows.)

Then there is a subcomplex F, of G, such that the inclusion map is a quasi-isomorphism and the maps
in F, are minimal. Moreover, foralli € Z,

F; = ®; H (G, A™V & Q) ® R(=i — j).
The groups H/ (G, A"V ®; Q*) can be computed using the Pieri formula for exterior powers
AV @, Q' = (P LV e L@
Ari+j
followed by the Borel-Weil-Bott theorem to compute
H/(G,LV & Ly Q%) = L,V & H/ (G, Ly Q").

Remark4.1. Since X; hasrational singularities, G, is quasi-isomorphicto &, . Note thatsince R'q, 07 =
Oforalli > 0O, the complex

— G —> G, —

(i.e., to the right of G, has no homology. This complex is bounded on the right, so we see that for each
i < 0, the module of cycles and the module of boundaries at i are free and that

rk G; = rtkIm(Giyy — Gj) + rkker(G; — G;_y).
In particular F; = O for each i < 0. Similar argument also shows that F, = R. Hence
-—>F — Fy— Fp—0
is a minimal graded free resolution of O .

Remark 4.2. In fact, the prior knowledge that X, has rational singularities is not necessary. One can
compute the cohomology groups and conclude that F; = 0 for each i < 0 and that F, = R. Hence
Riq.07 = Oforalli > 0and q.0 is a cyclic Ox,-module. Since q. 0’ gives the normalization of X;, it
follows that X; is normal and hence the map Ox, — ¢.07 is an isomorphism. Hence X; has rational
singularities.
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