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1 Introduction

We take the base field to be the field of complex numbers in these lectures.
The varieties are, by definition, quasi-projective, reduced (but not necessarily
irreducible) schemes.

Let G be a semisimple, simply-connected, complex algebraic group with
a fixed Borel subgroup B, a maximal torus H ⊂ B, and associated Weyl
group W . (Recall that a Borel subgroup is any maximal connected, solvable
subgroup; any two of which are conjugate to each other.) For any w ∈ W ,
we have the Schubert variety Xw := BwB/B ⊂ G/B. Also, let X(H) be the
group of characters of H and X(H)+ the semigroup of dominant characters.
For any λ ∈ X(H), we have the homogeneous line bundle L(λ) on G/B (cf.
Section 5) and its restriction (denoted by the same symbol) to any Xw.

The Lie algebras of G, B, andH are given by g, b, and h, respectively. For
a fixed B, any subgroup P ⊂ G containing B is called a standard parabolic.

The aim of these talks is to prove the following well-known results on the
geometry and cohomology of Schubert varieties. Extension of these results
to a connected reductive group is fairly straight forward.

(1) Borel-Weil theorem and its generalization to the Borel-Weil-Bott the-
orem.

(2) Any Schubert variety Xw is normal, and has rational singularities (in
particular, is Cohen-Macaulay).

(3) For any λ ∈ X(H)+, the linear system on Xw given by L(λ+ρ) embeds
Xw as a projectively normal and projectively Cohen-Macaulay variety, where
ρ is the half sum of positive roots.
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(4) For any λ ∈ X(H)+, we have

Hp(Xw,L(λ)) = 0, for all p > 0.

(5) For any λ ∈ X(H)+ and v ≤ w ∈ W , the canonical restriction map

H0(Xw,L(λ))→ H0(Xv,L(λ))
is surjective.

(6) The Demazure character formula holds for the Demazure submodules
(cf. Theorem 33 for the precise statement).

Proof of (1) is given in Sections (6)-(7).
One uniform and beautiful proof of the above results (2)-(6) was obtained

via using the characteristic p > 0 methods (specifically the Frobenius split-
ting methods; cf. [BK, Chapters 2 and 3]).

Another uniform proof of the above results (including in the Kac-Moody
setting) using only characteristic 0 methods was obtained by Kumar [K1].
There are various other proofs of these results including in characteristic
p > 0 (see Remark 36). Kumar’s proof of the above results relied on the
following fundamental cohomology vanishing. (In fact, his result was more
general and also worked in the Kac-Moody setting, but the following weaker
version is enough for our applications in this note.)

For any sequence of simple reflections w = (si1 , . . . , sin) (called a word),
let Zw be the associated Bott-Samelson-Demazure-Hansen variety, and for
any 1 ≤ j ≤ n, let Zw(j) be the divisor of Zw defined in Section 10. Also, for
any λ ∈ X(H), we have the line bundle Lw(λ) on Zw (cf. Section 10).

Theorem 1. For any word w = (si1 , . . . , sin) and any λ ∈ X(H)+,

(a) Hp
(
Zw,OZw

[
−Zw(n)

]
⊗ Lw(λ)

)
= 0, for all p > 0.

Also,
(b) Hp(Zw,Lw(λ)) = 0, for all p > 0.

Following Brion [B], we give a very short and simple proof of the above
theorem using the Kawamata-Viehweg vanishing theorem (cf. Theorem 17).
Once we have the above theorem, all the above stated results (2) - (6) follow
by fairly standard arguments, which we give in Sections (11)- (12). Thus,
we have made this note self-contained. We should mention that apart from
the original proof of the above theorem (rather a generalization of it) due to
Kumar (cf. [K1, Proposition 2.3]), there is another proof (of the generaliza-
tion valid in characteristic p > 0 as well) due to Lauritzen-Thomsen using
the Frobenius splitting methods (cf. [BK, Theorem 3.1.4]).
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2 Representations of G

Let R ⊂ h∗ denote the set of roots of g. Recall,

g = h⊕
⊕
α∈R

gα, where gα := {x ∈ g : [h, x] = α(h)x for all h ∈ h}.

Our choice of B gives rise to R+, the set of positive roots, such that

b = h⊕
⊕
α∈R+

gα.

We let {α1, . . . , αℓ} ⊂ h∗ be the simple roots and let {α∨
1 , . . . , α

∨
ℓ } ⊂ h be

the simple coroots, where ℓ := dim h (called the rank of g).
Elements of X(H) := Hom(H,C∗) are called integral weights, and can be

identified with
h∗Z = {λ ∈ h∗ : λ(α∨

i ) ∈ Z, ∀ i},
by taking derivatives. The dominant integral weights X(H)+ are those inte-
gral weights λ ∈ X(H) such that λ(α∨

i ) ≥ 0, for all i.
We let V (λ) denote the irreducible G-module with highest weight λ ∈

X(H)+. Then, V (λ) has a unique B-stable line such that H acts on this line
by λ. This gives a one-to-one correspondence between the set of isomorphism
classes of irreducible finite dimensional algebraic representations of G and
X(H)+.

3 Tits system

Let N = NG(H) be the normalizer of H in G, and let W = N/H be the
Weyl group, which acts on H by conjugation. For each i = 1, . . . , ℓ, consider
the subalgebra

sl2(i) := gαi
⊕ g−αi

⊕ Cα∨
i ⊂ g.

There is an isomorphism of Lie algebras sl2 → sl2(i), taking

(
0 1
0 0

)
to

gαi
,

(
0 0
1 0

)
to g−αi

, and

(
1 0
0 −1

)
to α∨

i . This isomorphism gives rise

to a homomorphism SL2 → G. Let si denote the image of

(
0 1
−1 0

)
in G.

Then, si ∈ N and S = {si}ℓi=1 generates W as a group, where si denotes the
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image of si under N → N/H. These {si} are called simple reflections. For
details about the Weyl group, see [Hu, §24,27].

The conjugation action of W on H gives rise to an action on h via taking
derivatives and also on h∗ by taking duals. Below are explicit formulae for
these induced actions:

sj : h→ h : h 7→ h− αj(h)α
∨
j

sj : h
∗ → h∗ : β 7→ β − β(α∨

j )αj.

Theorem 2. The quadruple (G,B,N, S) forms a Tits system (also called a
BN-pair), i.e., the following are true:

(a) H = B ∩N and S generates W as a group;

(b) B and N generate G as a group;

(c) For every i, siBsi * B;

(d) For every 1 ≤ i ≤ ℓ and w ∈ W , (BsiB)(BwB) ⊂ (BsiwB) ∪ (BwB).

There are many consequences of this theorem. For example, (W,S) is a
Coxeter group. In particular, there is a length function on W , denoted by
ℓ : W → Z+. For any w ∈ W , ℓ(w) is defined to be the minimal k ∈ Z+

such that w = si1 . . . sik with each sij ∈ S. A decomposition w = si1 . . . sik
is called a reduced decomposition if ℓ(w) = k.

We also have the Bruhat-Chevalley ordering : v ≤ w if v can be obtained
by deleting some simple reflections from a reduced decomposition of w.

Axiom (d) above can be refined:

(BsiB)(BwB) ⊂ BsiwB if siw > w. (d′)

Thus, if we have a reduced decomposition w = si1 . . . sik , then

BwB = (Bsi1B) . . . (BsikB), (1)

which can be obtained from (d′) by inducting on k = ℓ(w).
We also have the Bruhat decomposition:

G =
⊔
w∈W

BwB.
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Theorem 3. The set of standard parabolics are in one-to-one correspondence
with subsets of the set [ℓ] = {1, . . . , ℓ}. Specifically, if I ⊂ [ℓ], let

PI =
⊔

w∈⟨si:i∈I⟩

BwB,

where ⟨si : i ∈ I⟩ denotes the subgroup of W generated by the enclosed
elements. Then, I 7→ PI is the bijection.

Sketch of the proof. By (1) and (d), PI is clearly a subgroup containing B.
Conversely, if P ⊃ B, then, by the Bruhat decomposition,

P =
⊔

w∈SP

BwB,

for some subset SP ⊂ W . Let I be the following set:

{i ∈ [ℓ] : si occurs in a reduced decomposition of some w ∈ SP}.

From the above (specifically Axiom (d) and (d′)), one can prove PI = P .

4 A fibration

We begin with a technical theorem.

Theorem 4. Let F be a closed, algebraic subgroup of G and X be an F -
variety. Then, E = G×F X is a G-variety, where

G×F X := G×X/ ∼ with (gf, x) ∼ (g, fx)

for all g ∈ G, f ∈ F , and x ∈ X. The equivalence class of (g, x) is denoted
by [g, x]. Then, G acts on E by:

g′ · [g, x] = [g′g, x].

In particular, G ×F {pt} = G/F is a variety. Furthermore, the map
π : E → G/F given by [g, x] 7→ gF is a G-equivariant isotrivial fibration
with fiber X.

5



The variety structure on G/F can be characterized by the following uni-
versal property: if Y is any variety, then G/F → Y is a morphism if and
only if the composition G→ G/F → Y is a morphism.

Now, B is a closed subgroup. To see this, we only need to show that B is
solvable (B being a maximal solvable subgroup, it will follow that B = B).
Since the commutator G×G→ G is a continuous map, we have that [F , F ] ⊂
[F, F ], for any F ⊂ G. Using this fact and induction, Dn(F ) ⊂ Dn(F ) for
all n, where Dn(F ) denotes the n–th term in the derived series of F . Since
Dn(B) is trivial for large n, Dn(B) becomes trivial for large n, and B is
solvable. Thus, G/B is a variety. We wish to give an explicit realization of
this variety structure. In the process, we will show that G/B is a projective
variety.

Take any regular λ ∈ X(H)+, so that λ(α∨
i ) > 0 for all i. The represen-

tation G→ Aut(V (λ)) gives rise to a map

π : G/B → PV (λ), g 7→ [g · v],

since [v] is fixed by B, where v is a highest weight vector of V (λ).

Claim. π is a morphism and injective.

Proof. π is a morphism since the composition G → G/B → PV (λ) is a
morphism. To prove injectivity, it suffices to show that the stabilizer of [v] is
exactly B. Let P be the stabilizer. Now, B ⊂ P , so P is parabolic and hence
P = PI for some I ⊂ [ℓ]. If I = ∅, then P = B. Towards a contradiction,
assume si ∈ P . Then, si stabilizes λ, but

si(λ) = λ− λ(α∨
i )αi ̸= λ,

since λ is regular.

We claim X = π(G/B) is closed. We will need the following theorem:

Theorem 5 (Borel fixed–point theorem, see §21 in [Hu]). Let Z be a projec-
tive variety with an action of a solvable group. Then, Z has a fixed point.

Clearly, X is G-stable as a subspace of PV (λ). It follows that X rX is
G-stable. Thus, X rX has a B-fixed point which contradicts the existence
of a unique highest weight vector. Thus, X rX = ∅ and X is closed.

Lastly, to show X and G/B are isomorphic varieties, we use the following
proposition from algebraic geometry:
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Proposition 6 (Theorem A.11 in [K2]). If f : Y → Z is a bijective morphism
between irreducible varieties and Z is normal, then f is an isomorphism.

Observe that X is smooth because it is a G-orbit (G takes smooth points
to smooth points and any variety has at least one smooth point). In partic-
ular, X is normal and π : G/B → X is an isomorphism.

5 Line bundles on G/B

For any λ ∈ X(H), we define a line bundle L(λ) on G/B. Recall that
B = H ⋉ U , where U = [B,B] is the unipotent radical. Extend λ : H → C∗

to λ : B → C∗ by letting λ map U to 1. Consider C = Cλ as a B-module,
where b · z = λ(b)z. Then, L(λ) is the line bundle: π : G ×B C−λ → G/B.
Note that λ is made negative in the definition of L(λ).

The space of global sections

H0(G/B,L(λ)) := {σ : G/B → G×B C−λ : π ◦ σ = id}

is a G-module, where the G-action is given by

(g · σ)(g′B) = gσ(g−1g′B).

Also, this module is finite dimensional since G/B is projective and any co-
homology of coherent sheaves on projective varieties is finite dimensional.

6 Borel–Weil theorem

Theorem 7 (Borel–Weil theorem). If λ ∈ X(H)+, then there is a G-module
isomorphism

H0(G/B,L(λ)) ≃ V (λ)∗.

Proof. If we pull back the line bundle L = L(λ) (given by π : G ×B C−λ →
G/B) under G → G/B, we get the bundle L̂, which is π̂ : G × C−λ → G.
We wish to compare sections of these two bundles.

Sections of L̂ are of the form σ(g) = (g, f(g)), for some map f : G→ C−λ,
so we can identify H0(G, L̂) with k[G] ⊗ C−λ. There is a B-action on k[G]
given by (b·f)(g) = f(gb). Acting diagonally, we get an action on k[G]⊗C−λ.
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Since k[G]⊗C−λ is naturally isomorphic to k[G] (make the second coordinate
1), we get a new B-action on k[G] given by

(b · f)(g) = λ(b)−1f(gb). (2)

Use this action to make H0(G, L̂) a B-module.
Sections of L are of the form σ(gB) = [g, f(g)], for some map f : G →

C−λ. In order to insure that σ is well-defined, we require that for any b ∈ B:

[g, f(g)] = [gb, f(gb)] = [g, b · f(gb)] = [g, λ(b)−1f(gb)].

Therefore, f must have the property that f(g) = λ(b)−1f(gb) for all b ∈ B.
It follows that [

H0(G, L̂)
]B

= H0(G/B,L).

Now, it suffices to show
[
H0(G, L̂)

]B
≃ V (λ)∗.

Consider the following two (G×G)-modules. First, k[G] has a (G×G)-
action given by ((g1, g2) · f)(g) = f(g−1

1 gg2). Second, acting coordinate-wise,
we have:

M :=
⊕

µ∈X(H)+

V (µ)∗ ⊗ V (µ).

It follows from the Peter–Weyl theorem and Tanaka–Krein duality that these
are isomorphic as (G×G)-modules. The explicit isomorphism is Φ =

∑
µ Φµ :

M→ k[G], where Φµ : V (µ)∗ ⊗ V (µ)→ k[G] is given by

Φµ(f ⊗ v)(g) = f(gv).

Furthermore, k[G] ⊗ C−λ has a (G × B)-action given diagonally, where
G is forgotten when G × B acts on the second coordinate C−λ, and the
action of G × B on k[G] is the restriction of the G × G action given above.
Since H0(G, L̂) ≃ k[G]⊗C−λ as (left) G-modules, where G acts on k[G] via
(g · f)(x) = f(g−1x), for g, x ∈ G and f ∈ k[G]. Since the action of G on
k[G] ⊗ C−λ commutes with the B-action given by equation (2), we get an
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induced G-action on the space of B-invariants:[
H0(G, L̂)

]B
≃ [k[G]⊗ C−λ]

B

≃
⊕

µ∈X(H)+

[V (µ)∗ ⊗ V (µ)⊗ C−λ]
B

≃
⊕

µ∈X(H)+

V (µ)∗ ⊗ [V (µ)⊗ C−λ]
B

≃
⊕

µ∈X(H)+

V (µ)∗ ⊗ [Cµ ⊗ C−λ]
H

≃ V (λ)∗,

since Cµ ⊗ C−λ will only have H-invariants if µ = λ.

It follows from the next section that the higher cohomology vanishes; that
is, for λ ∈ X(H)+ and i ≥ 1, H i(G/B,L(λ)) = 0.

7 Borel–Weil–Bott theorem

Let ρ be half the sum of the positive roots. Since G is simply-connected,
ρ ∈ X(H)+. Also, ρ has the property that ρ(α∨

i ) = 1 for all i. We will need
a shifted action of the Weyl group on h∗ given by:

w ⋆ λ = w(λ+ ρ)− ρ.

Theorem 8 (Borel–Weil–Bott). If λ ∈ X(H)+ and w ∈ W , then

Hp(G/B,L(w ⋆ λ)) =

{
V (λ)∗ if p = ℓ(w)

0 if p ̸= ℓ(w)
.

Before we prove this theorem, we need to establish a number of results.
For any i, let Pi denote the minimal parabolic subgroup Pi = B ⊔ BsiB. In
what follows, if M is a B-module, the notation Hp(G/B,M) is the p-th sheaf
cohomology for the sheaf of sections of the bundle G×B M → G/B.

Lemma 9. If M is a Pi-module, then Hp(G/B,M ⊗ Cµ) = 0, for all p ≥ 0
and any µ ∈ X(H) such that µ(α∨

i ) = 1.
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Proof. Apply the Leray–Serre spectral sequence to the fibration G/B →
G/Pi with fiber Pi/B and the vector bundle on G/B corresponding to the
B-module M ⊗ Cµ. Thus,

Ep,q
2 = Hp(G/Pi, H

q (Pi/B,M ⊗ Cµ)) =⇒ H∗(G/B,M ⊗ Cµ).

If we can show Ep,q
2 = 0, then we are done.

It suffices to show Hq(Pi/B,M ⊗Cµ) vanishes for all q ≥ 0. By the next
exercise, we have

Hq(Pi/B,M ⊗ Cµ) ≃M ⊗Hq(Pi/B,Cµ),

since M is a Pi-module by assumption. Since Pi/B ≃ SL2(i)/B(i) ≃ P1,
where SL2(i) is the subgroup of Pi with Lie algebra sl2(i) and B(i) is the
standard Borel subgroup of SL2(i), we have that

Hq(Pi/B,Cµ) ≃ Hq(P1,O(−µ(α∨
i ))) = Hq(P1,O(−1)),

which is known to be zero (for example, [H, Ch. III, Theorem 5.1]).

Exercise 10. For any closed subgroup F ⊂ G, if M is a G-module, then
G×F M → G/F is a trivial vector bundle.

Proposition 11. If for some i, µ ∈ X(H) has the property that µ(α∨
i ) ≥ −1,

then for all p ≥ 0,

Hp(G/B,L(µ)) ≃ Hp+1(G/B,L(si ⋆ µ)).

Proof. First, consider the case where µ(α∨
i ) ≥ 0. Let Xi := Pi/B ≃ P1 and

H := H0(Xi,L(µ + ρ)). It can easily be seen (by using the definition of the
action of Pi onH) that the action of the unipotent radical Ui of Pi is trivial on

H. Moreover, Pi/Ui is isomorphic with the subgroup ŜL2(i) of G generated

by SL2(i) and H. Thus, by the Borel-Weil theorem for G = ŜL2(i), we get

H ≃ Vi(µ+ρ)∗, as ŜL2(i)-modules, where Vi(µ+ρ) is the irreducible ŜL2(i)-
module with highest weight µ + ρ. (Even though we stated the Borel-Weil
theorem for semisimple, simply-connected groups, the same proof gives the
result for any connected, reductive group.) Thus, we have the weight space
decomposition (as H-modules):

H ≃ Vi(µ+ ρ)∗ =

(µ+ρ)(α∨
i )⊕

j=0

C−(µ+ρ)+jαi
.

10



There is a short exact sequence of B-modules:

0 −→ K −→ H −→ C−(µ+ρ) −→ 0,

where K, by definition, is the kernel of the projection. Tensoring with Cρ,
we get the following exact sequence of B-modules:

0 −→ K ⊗ Cρ −→ H⊗ Cρ −→ C−µ −→ 0.

Passing to the long exact cohomology sequence, we get:

· · · → Hp (G/B,H⊗ Cρ)→ Hp(G/B,C−µ)→
Hp+1(G/B,K ⊗ Cρ)→ Hp+1 (G/B,H⊗ Cρ)→ · · · .

By the previous lemma, Hp(G/B,H⊗ Cρ) = 0 for all p. Thus,

Hp(G/B,L(µ)) = Hp(G/B,C−µ) ≃ Hp+1(G/B,K ⊗ Cρ). (3)

Consider another short exact sequence of B-modules:

0 −→ C−si(µ+ρ) −→ K −→M −→ 0,

where M is just the cokernal of the inclusion. In particular, as H-modules,

M =

(µ+ρ)(α∨
i )−1⊕

j=1

C−(µ+ρ)+jαi
,

so it may be regarded as a Pi-module. Then, as B-modules, we can tensor
with Cρ to arrive at the following exact sequence:

0 −→ C−si⋆µ −→ K ⊗ Cρ −→M ⊗ Cρ −→ 0.

Again, passing to the long exact sequence, we see:

· · · → Hp(G/B,M ⊗ Cρ)→ Hp+1(G/B,C−si⋆µ)→
Hp+1(G/B,K ⊗ Cρ)→ Hp+1(G/B,M ⊗ Cρ)→ · · · .

By the previous lemma, Hp(G/B,M ⊗ Cρ) = 0 for all p. Thus,

Hp+1(G/B,L(si ⋆ µ)) = Hp+1(G/B,C−si⋆µ) ≃ Hp+1(G/B,K ⊗ Cρ). (4)
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Combining equations (3) and (4), we get the proposition in the case where
µ(α∨

i ) ≥ 0.
For the case that µ(α∨

i ) = −1, we have that si ⋆ µ = µ, so the statement
reduces to proving that Hp(G/B,L(µ)) = 0, for all p. In this case, K =
0. From the isomorphism H ⊗ Cρ ≃ C−µ, we conclude Hp(G/B,L(µ)) ≃
Hp(G/B,H⊗ Cρ) which vanishes by the previous lemma.

Corollary 12. If µ ∈ X(H)+ and w ∈ W , then for all p ∈ Z, as G-modules:

Hp(G/B,L(µ)) ≃ Hp+ℓ(w)(G/B,L(w ⋆ µ)).

Proof. We induct on ℓ(w). Assume the above for all v ∈ W such that
ℓ(v) < ℓ(w), and write w = siv for some v < w. Then,

Hp(G/B,L(µ)) ≃ Hp+ℓ(v)(G/B,L(v ⋆ µ)).

Now (v ⋆ µ)(α∨
i ) = (µ+ ρ)(v−1α∨

i )− 1 ≥ −1, since v−1α∨
i is a positive coroot

and µ+ ρ is dominant. So, applying Proposition 11, we get:

Hp(G/B,L(µ)) ≃ Hp+ℓ(v)+1(G/B,L(si ⋆ (v ⋆ µ))) = Hp+ℓ(w)(G/B,L(w ⋆µ)),

which is our desired result.

We are now ready to prove the Borel–Weil–Bott theorem.

Proof of the Borel–Weil–Bott theorem. From the above corollary,

Hp(G/B,L(w ⋆ λ)) ≃ Hp−ℓ(w)(G/B,L(λ)).

We claim that Hj(G/B,L(λ)) = 0 if j ̸= 0. Indeed, if j < 0, this is true.
Let w0 denote the unique longest word in the Weyl group, so that ℓ(w0) =
dim(G/B). If j > 0, then by Corollary 12,

Hj(G/B,L(λ)) ≃ Hj+dim(G/B)(G/B,L(w0 ⋆ λ)) = 0.

This implies

Hp(G/B,L(w ⋆ λ)) =

{
H0(G/B,L(λ)) if p = ℓ(w)

0 if p ̸= ℓ(w)
,

which is our desired result, by the Borel–Weil theorem.

Exercise 13. Show that for any µ not contained inW⋆(X(H)+),H
p(G/B,L(µ)) =

0, for all p ≥ 0.
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8 Schubert varieties

For any w ∈ W , let Xw := BwB/B ⊂ G/B denote the corresponding
Schubert variety. This variety is projective and irreducible of dimension
ℓ(w). By the Bruhat decomposition, we have the following decomposition of
Xw:

Xw =
⊔
v≤w

BvB/B.

9 Bott–Samelson–Demazure–Hansen variety

Let W be the set of all ordered sequences w = (si1 , . . . , sin), n ≥ 0, of simple
reflections, called words. For any such word, define the Bott–Samelson–
Demazure–Hansen variety (for short BSDH variety) as follows: if n = 0
(thus, w is the empty sequence), Zw is a point. For w = (si1 , . . . , sin), with
n ≥ 1, define

Zw = Pi1 × · · · × Pin/B
n,

where the product group Bn acts on Pw := Pi1 ×· · ·×Pin from the right via:

(p1, . . . , pn) · (b1, . . . , bn) = (p1b1, b
−1
1 p2b2, . . . , b

−1
n−1pnbn).

We denote the B×n orbit of (p1, . . . , pn) by [p1, . . . , pn]. This action is free and
proper. The group Pi1 (in particular, B) acts on Zw via its left multiplication
on the first factor.

Lemma 14. Zw is a smooth projective variety.

Sketch of the proof. Induct on the length of w, where length refers to the
number of terms in the sequence. Let v be the last n − 1 terms in the
sequence w, so that w = (si1) ∪ v, where order is preserved when taking the
union.

Let
π : Zw ≃ Pi1 ×B Zv −→ Z(si1 )

= Pi1/B ≃ P1

be the map [p1, . . . , pn] 7→ p1B. This map has fiber Zv and since it is a
fibration, we get that Zw is smooth. Furthermore, Zw is complete since P1 is
complete and the fibers of π are complete by induction.

Furthermore, it is a trivial fibration restricted to P1r{x}, for any x ∈ P1.
Hence, projectivity follows from the Chevalley–Kleiman criterion asserting
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that a smooth complete variety is projective if and only if any finite set of
points is contained in an affine open subset.

There is a map ξ : W→ W given by w = (si1 , . . . , sin) 7→ si1 · · · sin . For
any w ∈ W, we say w is reduced if si1 · · · sin is a reduced decomposition of
ξ(w).

For w ∈ W, consider the map θw : Zw → G/B given by [p1, . . . , pn] 7→
p1 · · · pnB.

Lemma 15. If w is reduced, then θw(Zw) = Xξ(w). Moreover, θw is a desin-
gularization of Xξ(w); that is, it is birational and proper.

If w is not reduced, then θw(Zw) is NOT equal to Xξ(w) in general.

Sketch of the proof. The open subset of Zw given by

(Bsi1B)× · · · × (BsinB)/Bn

maps isomorphically to the open cell BwB/B by (1) of Section (3).

10 A fundamental cohomology vanishing the-

orem

For any 1 ≤ j ≤ n, define w(j) = (si1 , . . . , ŝij , . . . , sin). The variety Zw(j)

embeds into Zw via:

[p1, . . . , pj−1, pj+1, . . . , pn] 7→ [p1, . . . , pj−1, 1, pj+1, . . . , pn].

Denote also by Zw(j) the image of this map. These are divisors in Zw.
For λ ∈ X(H), let Lw(λ) = θ∗w(L(λ)) be the pull-back of L(λ) under the

map θw.
The following result is fundamental to the notes. This is a special case

of a more general result proved by Kumar (cf. [K1, Proposition 2.3] or [K2,
Theorem 8.1.8]).

Theorem 16. For any word w = (si1 , . . . , sin) and any λ ∈ X(H)+,

(a) Hp
(
Zw,OZw

[
−Zw(n)

]
⊗ Lw(λ)

)
= 0, for all p > 0.

Also,
(b) Hp(Zw,Lw(λ)) = 0, for all p > 0.

14



To prove the above theorem, we make use of the following Kawamata-
Viehweg vanishing theorem (cf. [D, Theorem 7.21]).

Theorem 17. Let X be a smooth projective variety. Let D be a nef and
big Q-divisor on X and ∆ =

∑
aiXi a Q-divisor on X with simple normal

crossings such that 0 ≤ ai < 1. Assume further that D + ∆ is an integral
divisor. Then,

Hp(X,KX +D +∆) = 0, for all p > 0,

where KX is a canonical divisor of X.

We recall the following from [BK, Proposition 2.2.2]. Various properties
of Zw are summarized in [BK, §2.2.1]; in particular, it is smooth.

Proposition 18. The canonical line bundle of Zw is given by:

ωZw ≃ OZw

[
−

n∑
j=1

Zw(j)

]
⊗ Lw(−ρ),

where ρ is the usual half sum of positive roots.

Now, we are ready to prove Theorem 16 (cf. [B, Proof of Theorem 2.3.1]).

Proof of Theorem 16. We first prove (a). Consider the projection

π : Zw → Zw(n), [p1, . . . , pn] 7→ [p1, . . . , pn−1].

By [BK, Exercise 3.1.E.3(f)], there exist positive integers a1, . . . , an−1 such

that OZv

[∑n−1
j=1 ajZv(j)

]
is an ample line bundle on Zv, where v := w(n).

Moreover, Lw(ρ) has degree 1 along the fibers of π. Thus, there exists a large
enough positive integer a such that

OZw

[
n−1∑
j=1

aajZw(j)

]
⊗ Lw(ρ)

is an ample line bundle on Zw.
Take any integer N bigger than each aaj and take

D =
n−1∑
j=1

aaj
N

Zw(j)+
1

N
L̂w(ρ)+L̂w(λ)+(1− 1

N
)L̂w(ρ), ∆ =

n−1∑
j=1

(1−aaj
N

)Zw(j),

15



where L̂w(λ) denotes a divisor on Zw representing the line bundle Lw(λ).
Since

∑n−1
j=1 aajZw(j) + L̂w(ρ) is an ample divisor and Lw(λ) is globally

generated for any dominant weight λ, we get that ND is an ample divisor (cf.
[H, Exercise 7.5(a), Chap. II]). In particular, D is a nef and big Q-divisor.
Moreover, by [BK, §2.2.1], {Zw(j)}1≤j≤n are nonsingular prime divisors with
simple normal crossings in Zw. Hence, ∆ satisfies the assumptions of Theo-
rem 17.

Finally, by Proposition 18,

KZw +D +∆ = −Zw(n) + L̂w(λ).

Thus, by Theorem 17, the (a)-part of Theorem 16 follows.
To prove the (b)-part, take an ample line bundle OZw [

∑n
j=1 bjZw(j)] for

some bj > 0. Now, take N larger than each bj and define

D =
n∑

j=1

bj
N
Zw(j) + L̂w(ρ+ λ), ∆ =

n∑
j=1

(1− bj
N
)Zw(j).

Again use Theorem 17 to conclude the (b)-part.

As an immediate corollary of Theorem 16 (a), we get the following:

Corollary 19. For any word w = (si1 , . . . , sin), and any λ ∈ X(H)+, the
canonical restriction map

H0(Zw,Lw(λ))→ H0(Zw(n),Lw(n)(λ))

is surjective.

11 Geometry of Schubert varieties

In this section we show that Schubert varieties are normal and have rational
singularities (in particular, they are Cohen-Macaulay).

We recall the Zariski’s Main Theorem, see, e.g., [H, Chap. III, Corollary
11.4 and its proof].

Theorem 20. If f : X → Y is a birational projective morphism between
irreducible varieties and X is smooth, then Y is normal if and only if f∗OX =
OY .
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Lemma 21. If f : X → Y is a surjective morphism between projective
varieties and L is an ample line bundle on Y such that H0(Y,L⊗d) →
H0(X, (f ∗L)⊗d) is an isomorphism for all large d, then f∗OX = OY .

For a proof see [K2, Lemma A.32].
For any w ∈ W , choose a reduced decomposition w = si1 · · · sin , with

each sij ∈ S, and take w = (si1 , . . . , sin). Such a w is called a reduced word.
Then, θw : Zw → Xw is a desingularization (cf. Lemma 15).

By the last two results, in order to show that Xw is normal, it suffices to
prove the following theorem:

Theorem 22. If λ ∈ X(H)+ and w ∈ W , then H0(Xw,L(λ))→ H0(Zw,Lw(λ))
is an isomorphism.

Before we give the proof, we recall the following Projection formula (cf.
[H, Exercise 8.3 of Chap. III]:

Lemma 23. If f : X → Y is any morphism of varieties, η is a vector bundle
on Y , S is a quasi-coherent sheaf on X, then for all i:

Rif∗(S ⊗ f ∗η) ≃ (Rif∗S)⊗ η.

Proof of Theorem 22. This map is clearly injective since Zw � Xw. Choose
a reduced decomposition of the longest element w0 ∈ W , w0 = si1 · · · siN ,
each sij ∈ S, N = dim(G/B) = |R+|, and let w = (si1 , . . . , siN ). For
0 ≤ j ≤ N , let wj = si1 · · · sij and wj = (si1 , . . . , sij). Consider the following
diagram:

ZwN

θwN−−−→ XwN
= G/Bx x

ZwN−1

θwN−1−−−−→ XwN−1x x
ZwN−2

θwN−2−−−−→ XwN−2x x
...

...

17



In this diagram, the horizontal arrows are surjective and the vertical arrows
(which are the canonical inclusions) are injective. Passing to global sections,
we get:

H0(ZwN
,LwN

(λ)) ←−−− H0(XwN
,L(λ))y y

H0(ZwN−1
,LwN−1

(λ)) ←−−− H0(XwN−1
,L(λ))y y

H0(ZwN−2
,LwN−2

(λ)) ←−−− H0(XwN−2
,L(λ))y y

...
...

In this diagram, the horizontal arrows are of course injective and the vertical
arrows on the left are surjective by Corollary 19. Furthermore, by Lemma 23
(with S = OZwN

and η = L(λ)) and Theorem 20, the top horizontal arrow
is an isomorphism. Then, by a standard diagram chase, all of the horizontal
arrows are isomorphisms.

Since w0 = w(w−1w0) and ℓ(w−1w0) = ℓ(w0) − ℓ(w), a reduced decom-
position of w0 can always be obtained so that the first ℓ(w) terms of the
decomposition give the word w. This completes the proof.

Thus, using Theorems 20, 22 and Lemma 21, we get the following:

Corollary 24. Any Schubert variety Xw is normal.

Corollary 25. For any v ≤ w and λ ∈ X(H)+, the restriction map

H0(Xw,L(λ))→ H0(Xv,L(λ))

is surjective.

Proof. By the above proof, H0(G/B,L(λ))→ H0(Xv,L(λ)) is surjective and
hence so is H0(Xw,L(λ))→ H0(Xv,L(λ)).

An irreducible projective variety Y has rational singularities if for some
desingularization f : X → Y we have that f∗OX = OY and Rif∗OX = 0 for
all i > 0. This definition does not depend on the choice of a desingularization.
(In characteristic p > 0, we also need to assume that Rif∗ωX = 0, for the
canonical bundle ωX .) To prove that Xw has rational singularities, we use
the following theorem of Kempf (cf. [K2, Lemma A.31]:
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Theorem 26. Let f : X → Y be a morphism of projective varieties such
that f∗OX = OY . Assume there exists an ample line bundle L on Y such
that H i(X, (f ∗L)⊗d) = 0 for all i > 0 and all large d. Then, Rif∗OX = 0 for
i > 0.

Corollary 27. Any Schubert variety Xw has rational singularities.

Proof. In view of Corollary 24, it suffices to prove H i(Zw,Lw(dλ)) = 0 for
all large d, for all i > 0, and some regular λ ∈ X(H)+, which follows from
Theorem 16.

We recall the following general theorem (cf. [K2, Lemma A.38]:

Theorem 28. Any projective variety Y which has rational singularities is
Cohen-Macaulay.

In fact, in this case, for any ample line bundle L on Y ,

Hp(Y,L−n) = 0, for all p < dimY and n > 0.

Thus, we get:

Corollary 29. Any Schubert variety Xw is Cohen-Macaulay.

Another consequence of having rational singularities (which we will use
in the next section) is given in the following two results.

Proposition 30. Let Y be a projective variety with rational singularities.
Then, for any desingularization f : X → Y and any vector bundle η on Y ,
H i(Y, η)→ H i(X, f ∗η) is an isomorphism for i ≥ 0.

Proof. Applying the Leray-Serre spectral sequence, we have

Ep,q
2 = Hp(Y,Rqf∗f

∗η) =⇒ H∗(X, f ∗η).

By the projection formula (with S = OX),

Rqf∗(OX ⊗ f ∗η) ≃ (Rqf∗OX)⊗ η.

Since Y has rational singularities, Rqf∗OX = 0 for q > 0. Therefore, Ep,q
2 = 0

for q > 0, and hence Hp(Y, η) ≃ Ep,0
2 for all p, and the result follows.
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Corollary 31. For any λ ∈ X(H) and i ≥ 0,

H i(Xw,L(λ)) ≃ H i(Zw,Lw(λ)),

for any reduced word w with ξ(w) = w, where ξ(si1 , . . . , sin) := si1 . . . sin .
In particular, for any λ ∈ X(H)+, H

i(Xw,L(λ)) = 0 if i > 0.

Proof. By Corollary 27 and Proposition 30, H i(Xw,L(λ)) ≃ H i(Zw,Lw(λ)),
which vanishes by Theorem 16(b) for λ ∈ X(H)+ and i > 0.

As a consequence of the above corollary and Theorem 28, we get the
following:

Corollary 32. For any λ ∈ X(H)+, the linear system on Xw given by
L(λ+ρ) embeds Xw as a projectively normal and projectively Cohen-Macaulay
variety.

Proof. To prove the projective normality of Xw, by using its normality (cf.
Corollary 24) and [H, Exercise 5.14(d) of Chap. II and Theorem 5.1 of
Chap. III], it suffices to show that the canonical multiplication map (for
λ, λ′ ∈ X(H)+)

H0(Xw,L(λ))⊗H0(Xw,L(λ′))→ H0(Xw,L(λ+ λ′))

is surjective. By Corollary 25, to prove the above surjectivity, it suffices to
show that

H0(G/B,L(λ))⊗H0(G/B,L(λ′))→ H0(G/B,L(λ+ λ′))

is surjective. But, the above map is a G-module map (under the diagonal
action of G on the domain) and H0(G/B,L(λ + λ′)) is an irreducible G-
module and hence it is surjective. This proves the projective normality of
Xw.

We now prove that Xw is projectively Cohen-Macaulay: Since Xw is
projectively normal, in view of [E, Exercise 18.16], it suffices to show that

Hp(Xw,L(n(λ+ ρ))) = 0, for alln ∈ Z and 0 < p < dimXw.

For any p > 0 and n ≥ 0, this vanishing follows from Corollary 31. For any
p < dimXw and n < 0, the vanishing follows from Theorem 28 and Corollary
27.
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12 Demazure character formula

Let w ∈ W and λ ∈ X(H)+. The Demazure module Vw(λ) ⊂ V (λ) is the
B-submodule defined by Vw(λ) = U(b) ·V (λ)wλ, where U(b) is the enveloping
algebra of b and V (λ)wλ is the weight space of V (λ) with weight wλ. Observe
that V (λ)wλ is one-dimensional. The formal character of Vw(λ) is defined by

ch Vw(λ) =
∑

µ∈X(H)

dim(Vw(λ)µ) e
µ.

If w = w0, then Vw(λ) = V (λ). Therefore, ch Vw0(λ) is given by the Weyl
character formula.

For an arbitrary w ∈ W, we need to introduce the Demazure operators
Dw. For each simple reflection si, let Dsi : Z[X(H)] → Z[X(H)] be the
Z-linear map given by:

Dsi(e
µ) =

eµ − esiµ−αi

1− e−αi
.

Given w = (si1 , . . . , sin) ∈W, define Dw : Z[X(H)]→ Z[X(H)] by

Dw = Dsi1
◦ · · · ◦Dsin

.

In what follows, we will also need ∗ : Z[X(H)]→ Z[X(H)] given by

∗ eµ = e−µ,

and extended Z-linearly.

Theorem 33. For any reduced word w and λ ∈ X(H)+,

chVξ(w)(λ) = Dw(e
λ).

Proof. The first step is to show Vw(λ)
∗ ≃ H0(Xw,L(λ)), for any w ∈ W .

By the Borel–Weil theorem, V (λ)∗ ≃ H0(G/B,L(λ)). The isomorphism
ϕ : V (λ)∗ → H0(G/B,L(λ)) is explicitly given by ϕ(f)(gB) = [g, f(gvλ)],
where vλ is a highest weight vector in V (λ).

By Corollary 25, the restriction H0(G/B,L(λ)) → H0(Xw,L(λ)) is sur-
jective. Let ϕw denote the composition

V (λ)∗
ϕ→ H0(G/B,L(λ))→ H0(Xw,L(λ)).
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We compute the kernal of ϕw; i.e., find all f ∈ V (λ)∗ such that ϕw(f) is the
zero section. It suffices to check that ϕw(f) = 0 on BwB/B, since BwB/B
is a dense open subset of Xw. For f ∈ V (λ)∗,

ϕw(f) = 0 ⇐⇒ f(BwB · vλ) = 0

⇐⇒ f(B · vwλ) = 0

⇐⇒ f vanishes on Vw(λ).

Thus, kerϕw = {f ∈ V (λ)∗ : f |Vw(λ) = 0}; that is, we have the following
exact sequence:

0 −→
(

V (λ)

Vw(λ)

)∗

−→ V (λ)∗ −→ H0(Xw,L(λ)) −→ 0.

Therefore, H0(Xw,L(λ))∗ ≃ Vw(λ), which completes the first step.
Now, take a reduced decomposition of w = si1 · · · sin and letw = (si1 , . . . , sin).

The map Zw → Xw is B-equivariant and by Corollary 31, H i(Zw,Lw(λ)) ≃
H i(Xw,L(λ)) for all i as B-modules (for any λ ∈ X(H)). Therefore, their
characters coincide; that is,

ch H i(Zw,Lw(λ)) = ch H i(Xw,L(λ)).

Consider the Euler–Poincaré characteristic:

χH(Zw,Lw(λ)) :=
∑
i

(−1)i chH i(Zw,Lw(λ)) ∈ Z[X(H)].

Since chH0(Xw,L(λ)) = χH(Zw,Lw(λ)) for λ ∈ X(H)+, it suffices to show:

χH(Zw,Lw(λ)) = ∗Dw(e
λ).

In fact, we will prove a stronger result which is given as the next proposition.

Proposition 34. For a B-module M , let G ×B M → G/B be the associ-
ated vector bundle. Denote its pull-back to Zw (for any word w) under the
morphism θw : Zw → G/B by θ∗wM . Then,

χH(Zw, θ
∗
wM) = ∗Dw(∗ ch M).
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Proof. We induct on the length n of w = (si1 , . . . , sin). The Leray spectral
sequence for the fibration π : Zw → Zw(n), with fibers P1 ≃ Pin/B, takes the
form

Ep,q
2 = Hp

(
Zw(n), θ

∗
w(n)(H

q(Pin/B, θ∗(sin)
M))

)
,

and converges to Hp+q(Zw, θ
∗
wM). From this we see that

χH(Zw, θ
∗
wM) = χH(Zw(n), θ

∗
w(n)(χH(Pin/B, θ∗(sin )M))).

It is easy to see that χH(Pin/B, θ∗(sin )Cµ) = ∗Dsin
(e−µ), where Cµ denotes

the one-dimensional B-module with character µ and hence (by Lie’s theorem)

χH(Pin/B, θ∗sinM) = ∗Dsin
(∗ chM). (5)

By induction on n,

χH(Zw, θ
∗
wM) = ∗Dw(n)

(
∗χH(Pin/B, θ∗(sin )M)

)
= ∗Dw(n)(∗ ∗ D(sin )

(∗ chM)), by the above equality (5)

= ∗Dw(∗ chM).

Combining Proposition 34 for M = Cλ and Corollary 31, we get the
following:

Corollary 35. For any reduced word w, the operator Dw depends only upon
ξ(w).

Remark 36. We have not given any historical comments. The interested
reader can find them in [K2, § 8.C] and [BK, §§2.C and 3.C].
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