Borel-Weil-Bott theorem and geometry of Schubert varieties

Lectures by Shrawan Kumar during June, 2012
(MRC Meeting, Snowbird, Utah)

1 Introduction

We take the base field to be the field of complex numbers in these lectures. The varieties are, by definition, quasi-projective, reduced (but not necessarily irreducible) schemes.

Let G be a semisimple, simply-connected, complex algebraic group with a fixed Borel subgroup B, a maximal torus $H \subset B$, and associated Weyl group W. (Recall that a Borel subgroup is any maximal connected, solvable subgroup; any two of which are conjugate to each other.) For any $w \in W$, we have the Schubert variety $X_{w}:=\overline{B w B / B} \subset G / B$. Also, let $X(H)$ be the group of characters of H and $X(H)_{+}$the semigroup of dominant characters. For any $\lambda \in X(H)$, we have the homogeneous line bundle $\mathcal{L}(\lambda)$ on G / B (cf. Section 5) and its restriction (denoted by the same symbol) to any X_{w}.

The Lie algebras of G, B, and H are given by $\mathfrak{g}, \mathfrak{b}$, and \mathfrak{h}, respectively. For a fixed B, any subgroup $P \subset G$ containing B is called a standard parabolic.

The aim of these talks is to prove the following well-known results on the geometry and cohomology of Schubert varieties. Extension of these results to a connected reductive group is fairly straight forward.
(1) Borel-Weil theorem and its generalization to the Borel-Weil-Bott theorem.
(2) Any Schubert variety X_{w} is normal, and has rational singularities (in particular, is Cohen-Macaulay).
(3) For any $\lambda \in X(H)_{+}$, the linear system on X_{w} given by $\mathcal{L}(\lambda+\rho)$ embeds X_{w} as a projectively normal and projectively Cohen-Macaulay variety, where ρ is the half sum of positive roots.
(4)

For any $\lambda \in X(H)_{+}$, we have

$$
H^{p}\left(X_{w}, \mathcal{L}(\lambda)\right)=0, \text { for all } p>0
$$

(5)

For any $\lambda \in X(H)_{+}$and $v \leq w \in W$, the canonical restriction map

$$
H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \rightarrow H^{0}\left(X_{v}, \mathcal{L}(\lambda)\right)
$$

is surjective.
(6) The Demazure character formula holds for the Demazure submodules (cf. Theorem 33 for the precise statement).

Proof of (1) is given in Sections (6)-(7).
One uniform and beautiful proof of the above results (2)-(6) was obtained via using the characteristic $p>0$ methods (specifically the Frobenius splitting methods; cf. [BK, Chapters 2 and 3]).

Another uniform proof of the above results (including in the Kac-Moody setting) using only characteristic 0 methods was obtained by Kumar [K1]. There are various other proofs of these results including in characteristic $p>0$ (see Remark 36). Kumar's proof of the above results relied on the following fundamental cohomology vanishing. (In fact, his result was more general and also worked in the Kac-Moody setting, but the following weaker version is enough for our applications in this note.)

For any sequence of simple reflections $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$ (called a word), let $Z_{\mathfrak{w}}$ be the associated Bott-Samelson-Demazure-Hansen variety, and for any $1 \leq j \leq n$, let $Z_{\mathfrak{w}(j)}$ be the divisor of $Z_{\mathfrak{w}}$ defined in Section 10. Also, for any $\lambda \in X(H)$, we have the line bundle $\mathcal{L}_{\mathfrak{w}}(\lambda)$ on $Z_{\mathfrak{w}}$ (cf. Section 10).
Theorem 1. For any word $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$ and any $\lambda \in X(H)_{+}$,

$$
\text { (a) } H^{p}\left(Z_{\mathfrak{w}}, \mathcal{O}_{Z_{\mathfrak{w}}}\left[-Z_{\mathfrak{w}(n)}\right] \otimes \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=0, \text { for all } p>0
$$

Also,

$$
\text { (b) } H^{p}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=0, \text { for all } p>0
$$

Following Brion [B], we give a very short and simple proof of the above theorem using the Kawamata-Viehweg vanishing theorem (cf. Theorem 17). Once we have the above theorem, all the above stated results (2) - (6) follow by fairly standard arguments, which we give in Sections (11)- (12). Thus, we have made this note self-contained. We should mention that apart from the original proof of the above theorem (rather a generalization of it) due to Kumar (cf. [K1, Proposition 2.3]), there is another proof (of the generalization valid in characteristic $p>0$ as well) due to Lauritzen-Thomsen using the Frobenius splitting methods (cf. [BK, Theorem 3.1.4]).

2 Representations of G

Let $R \subset \mathfrak{h}^{*}$ denote the set of roots of \mathfrak{g}. Recall,

$$
\mathfrak{g}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R} \mathfrak{g}_{\alpha}, \text { where } \mathfrak{g}_{\alpha}:=\{x \in \mathfrak{g}:[h, x]=\alpha(h) x \text { for all } h \in \mathfrak{h}\}
$$

Our choice of B gives rise to R^{+}, the set of positive roots, such that

$$
\mathfrak{b}=\mathfrak{h} \oplus \bigoplus_{\alpha \in R^{+}} \mathfrak{g}_{\alpha} .
$$

We let $\left\{\alpha_{1}, \ldots, \alpha_{\ell}\right\} \subset \mathfrak{h}^{*}$ be the simple roots and let $\left\{\alpha_{1}^{\vee}, \ldots, \alpha_{\ell}^{\vee}\right\} \subset \mathfrak{h}$ be the simple coroots, where $\ell:=\operatorname{dim} \mathfrak{h}$ (called the rank of \mathfrak{g}).

Elements of $X(H):=\operatorname{Hom}\left(H, \mathbb{C}^{*}\right)$ are called integral weights, and can be identified with

$$
\mathfrak{h}_{\mathbb{Z}}^{*}=\left\{\lambda \in \mathfrak{h}^{*}: \lambda\left(\alpha_{i}^{\vee}\right) \in \mathbb{Z}, \forall i\right\},
$$

by taking derivatives. The dominant integral weights $X(H)_{+}$are those integral weights $\lambda \in X(H)$ such that $\lambda\left(\alpha_{i}^{\vee}\right) \geq 0$, for all i.

We let $V(\lambda)$ denote the irreducible G-module with highest weight $\lambda \in$ $X(H)_{+}$. Then, $V(\lambda)$ has a unique B-stable line such that H acts on this line by λ. This gives a one-to-one correspondence between the set of isomorphism classes of irreducible finite dimensional algebraic representations of G and $X(H)_{+}$.

3 Tits system

Let $N=N_{G}(H)$ be the normalizer of H in G, and let $W=N / H$ be the Weyl group, which acts on H by conjugation. For each $i=1, \ldots, \ell$, consider the subalgebra

$$
\mathfrak{s l}_{2}(i):=\mathfrak{g}_{\alpha_{i}} \oplus \mathfrak{g}_{-\alpha_{i}} \oplus \mathbb{C} \alpha_{i}^{\vee} \subset \mathfrak{g} .
$$

There is an isomorphism of Lie algebras $\mathfrak{s l}_{2} \rightarrow \mathfrak{s l}_{2}(i)$, taking $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$ to $\mathfrak{g}_{\alpha_{i}},\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$ to $\mathfrak{g}_{-\alpha_{i}}$, and $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ to α_{i}^{\vee}. This isomorphism gives rise to a homomorphism $S L_{2} \rightarrow G$. Let $\overline{s_{i}}$ denote the image of $\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ in G. Then, $\overline{s_{i}} \in N$ and $S=\left\{s_{i}\right\}_{i=1}^{\ell}$ generates W as a group, where s_{i} denotes the
image of $\overline{s_{i}}$ under $N \rightarrow N / H$. These $\left\{s_{i}\right\}$ are called simple reflections. For details about the Weyl group, see [$\mathrm{Hu}, \S 24,27$].

The conjugation action of W on H gives rise to an action on \mathfrak{h} via taking derivatives and also on \mathfrak{h}^{*} by taking duals. Below are explicit formulae for these induced actions:

$$
\begin{array}{rll}
s_{j}: \mathfrak{h} \rightarrow \mathfrak{h} & : & h \mapsto h-\alpha_{j}(h) \alpha_{j}^{\vee} \\
s_{j}: \mathfrak{h}^{*} \rightarrow \mathfrak{h}^{*} & : & \beta \mapsto \beta-\beta\left(\alpha_{j}^{\vee}\right) \alpha_{j} .
\end{array}
$$

Theorem 2. The quadruple (G, B, N, S) forms a Tits system (also called a $B N$-pair), i.e., the following are true:
(a) $H=B \cap N$ and S generates W as a group;
(b) B and N generate G as a group;
(c) For every $i, s_{i} B s_{i} \nsubseteq B$;
(d) For every $1 \leq i \leq \ell$ and $w \in W,\left(B s_{i} B\right)(B w B) \subset\left(B s_{i} w B\right) \cup(B w B)$.

There are many consequences of this theorem. For example, (W, S) is a Coxeter group. In particular, there is a length function on W, denoted by $\ell: W \rightarrow \mathbb{Z}_{+}$. For any $w \in W, \ell(w)$ is defined to be the minimal $k \in \mathbb{Z}_{+}$ such that $w=s_{i_{1}} \ldots s_{i_{k}}$ with each $s_{i_{j}} \in S$. A decomposition $w=s_{i_{1}} \ldots s_{i_{k}}$ is called a reduced decomposition if $\ell(w)=k$.

We also have the Bruhat-Chevalley ordering: $v \leq w$ if v can be obtained by deleting some simple reflections from a reduced decomposition of w.

Axiom (d) above can be refined:

$$
\left(B s_{i} B\right)(B w B) \subset B s_{i} w B \text { if } s_{i} w>w .
$$

Thus, if we have a reduced decomposition $w=s_{i_{1}} \ldots s_{i_{k}}$, then

$$
\begin{equation*}
B w B=\left(B s_{i_{1}} B\right) \ldots\left(B s_{i_{k}} B\right), \tag{1}
\end{equation*}
$$

which can be obtained from (d^{\prime}) by inducting on $k=\ell(w)$.
We also have the Bruhat decomposition:

$$
G=\bigsqcup_{w \in W} B w B
$$

Theorem 3. The set of standard parabolics are in one-to-one correspondence with subsets of the set $[\ell]=\{1, \ldots, \ell\}$. Specifically, if $I \subset[\ell]$, let

$$
P_{I}=\bigsqcup_{w \in\left\langle s_{i}: i \in I\right\rangle} B w B,
$$

where $\left\langle s_{i}: i \in I\right\rangle$ denotes the subgroup of W generated by the enclosed elements. Then, $I \mapsto P_{I}$ is the bijection.

Sketch of the proof. By (1) and (d), P_{I} is clearly a subgroup containing B. Conversely, if $P \supset B$, then, by the Bruhat decomposition,

$$
P=\bigsqcup_{w \in S_{P}} B w B
$$

for some subset $S_{P} \subset W$. Let I be the following set:

$$
\left\{i \in[\ell]: s_{i} \text { occurs in a reduced decomposition of some } w \in S_{P}\right\} .
$$

From the above (specifically Axiom (d) and $\left(d^{\prime}\right)$), one can prove $P_{I}=P$.

4 A fibration

We begin with a technical theorem.
Theorem 4. Let F be a closed, algebraic subgroup of G and X be an F variety. Then, $E=G \times_{F} X$ is a G-variety, where

$$
G \times_{F} X:=G \times X / \sim \quad \text { with } \quad(g f, x) \sim(g, f x)
$$

for all $g \in G, f \in F$, and $x \in X$. The equivalence class of (g, x) is denoted by $[g, x]$. Then, G acts on E by:

$$
g^{\prime} \cdot[g, x]=\left[g^{\prime} g, x\right] .
$$

In particular, $G \times_{F}\{p t\}=G / F$ is a variety. Furthermore, the map $\pi: E \rightarrow G / F$ given by $[g, x] \mapsto g F$ is a G-equivariant isotrivial fibration with fiber X.

The variety structure on G / F can be characterized by the following universal property: if Y is any variety, then $G / F \rightarrow Y$ is a morphism if and only if the composition $G \rightarrow G / F \rightarrow Y$ is a morphism.

Now, B is a closed subgroup. To see this, we only need to show that \bar{B} is solvable (B being a maximal solvable subgroup, it will follow that $B=\bar{B}$). Since the commutator $G \times G \rightarrow G$ is a continuous map, we have that $[\bar{F}, \bar{F}] \subset$ $\overline{[F, F]}$, for any $F \subset G$. Using this fact and induction, $D_{n}(\bar{F}) \subset \overline{D_{n}(F)}$ for all n, where $D_{n}(F)$ denotes the n-th term in the derived series of F. Since $D_{n}(B)$ is trivial for large $n, D_{n}(\bar{B})$ becomes trivial for large n, and \bar{B} is solvable. Thus, G / B is a variety. We wish to give an explicit realization of this variety structure. In the process, we will show that G / B is a projective variety.

Take any regular $\lambda \in X(H)_{+}$, so that $\lambda\left(\alpha_{i}^{\vee}\right)>0$ for all i. The representation $G \rightarrow \operatorname{Aut}(V(\lambda))$ gives rise to a map

$$
\pi: G / B \rightarrow \mathbb{P} V(\lambda), \quad g \mapsto[g \cdot v],
$$

since $[v]$ is fixed by B, where v is a highest weight vector of $V(\lambda)$.
Claim. π is a morphism and injective.
Proof. π is a morphism since the composition $G \rightarrow G / B \rightarrow \mathbb{P} V(\lambda)$ is a morphism. To prove injectivity, it suffices to show that the stabilizer of $[v]$ is exactly B. Let P be the stabilizer. Now, $B \subset P$, so P is parabolic and hence $P=P_{I}$ for some $I \subset[\ell]$. If $I=\varnothing$, then $P=B$. Towards a contradiction, assume $s_{i} \in P$. Then, s_{i} stabilizes λ, but

$$
s_{i}(\lambda)=\lambda-\lambda\left(\alpha_{i}^{\vee}\right) \alpha_{i} \neq \lambda,
$$

since λ is regular.
We claim $X=\pi(G / B)$ is closed. We will need the following theorem:
Theorem 5 (Borel fixed-point theorem, see $\S 21$ in [Hu]). Let Z be a projective variety with an action of a solvable group. Then, Z has a fixed point.

Clearly, \bar{X} is G-stable as a subspace of $\mathbb{P} V(\lambda)$. It follows that $\bar{X} \backslash X$ is G-stable. Thus, $\bar{X} \backslash X$ has a B-fixed point which contradicts the existence of a unique highest weight vector. Thus, $\bar{X} \backslash X=\varnothing$ and X is closed.

Lastly, to show X and G / B are isomorphic varieties, we use the following proposition from algebraic geometry:

Proposition 6 (Theorem A. 11 in [K2]). If $f: Y \rightarrow Z$ is a bijective morphism between irreducible varieties and Z is normal, then f is an isomorphism.

Observe that X is smooth because it is a G-orbit (G takes smooth points to smooth points and any variety has at least one smooth point). In particular, X is normal and $\pi: G / B \rightarrow X$ is an isomorphism.

5 Line bundles on G / B

For any $\lambda \in X(H)$, we define a line bundle $\mathcal{L}(\lambda)$ on G / B. Recall that $B=H \ltimes U$, where $U=[B, B]$ is the unipotent radical. Extend $\lambda: H \rightarrow \mathbb{C}^{*}$ to $\lambda: B \rightarrow \mathbb{C}^{*}$ by letting λ map U to 1 . Consider $\mathbb{C}=\mathbb{C}_{\lambda}$ as a B-module, where $b \cdot z=\lambda(b) z$. Then, $\mathcal{L}(\lambda)$ is the line bundle: $\pi: G \times_{B} \mathbb{C}_{-\lambda} \rightarrow G / B$. Note that λ is made negative in the definition of $\mathcal{L}(\lambda)$.

The space of global sections

$$
H^{0}(G / B, \mathcal{L}(\lambda)):=\left\{\sigma: G / B \rightarrow G \times_{B} \mathbb{C}_{-\lambda}: \pi \circ \sigma=\mathrm{id}\right\}
$$

is a G-module, where the G-action is given by

$$
(g \cdot \sigma)\left(g^{\prime} B\right)=g \sigma\left(g^{-1} g^{\prime} B\right) .
$$

Also, this module is finite dimensional since G / B is projective and any cohomology of coherent sheaves on projective varieties is finite dimensional.

6 Borel-Weil theorem

Theorem 7 (Borel-Weil theorem). If $\lambda \in X(H)_{+}$, then there is a G-module isomorphism

$$
H^{0}(G / B, \mathcal{L}(\lambda)) \simeq V(\lambda)^{*}
$$

Proof. If we pull back the line bundle $\mathcal{L}=\mathcal{L}(\lambda)$ (given by $\pi: G \times_{B} \mathbb{C}_{-\lambda} \rightarrow$ $G / B)$ under $G \rightarrow G / B$, we get the bundle $\hat{\mathcal{L}}$, which is $\hat{\pi}: G \times \mathbb{C}_{-\lambda} \rightarrow G$. We wish to compare sections of these two bundles.

Sections of $\hat{\mathcal{L}}$ are of the form $\sigma(g)=(g, f(g))$, for some map $f: G \rightarrow \mathbb{C}_{-\lambda}$, so we can identify $H^{0}(G, \hat{\mathcal{L}})$ with $k[G] \otimes \mathbb{C}_{-\lambda}$. There is a B-action on $k[G]$ given by $(b \cdot f)(g)=f(g b)$. Acting diagonally, we get an action on $k[G] \otimes \mathbb{C}_{-\lambda}$.

Since $k[G] \otimes \mathbb{C}_{-\lambda}$ is naturally isomorphic to $k[G]$ (make the second coordinate 1), we get a new B-action on $k[G]$ given by

$$
\begin{equation*}
(b \cdot f)(g)=\lambda(b)^{-1} f(g b) \tag{2}
\end{equation*}
$$

Use this action to make $H^{0}(G, \hat{\mathcal{L}})$ a B-module.
Sections of \mathcal{L} are of the form $\sigma(g B)=[g, f(g)]$, for some map $f: G \rightarrow$ $\mathbb{C}_{-\lambda}$. In order to insure that σ is well-defined, we require that for any $b \in B$:

$$
[g, f(g)]=[g b, f(g b)]=[g, b \cdot f(g b)]=\left[g, \lambda(b)^{-1} f(g b)\right] .
$$

Therefore, f must have the property that $f(g)=\lambda(b)^{-1} f(g b)$ for all $b \in B$. It follows that

$$
\left[H^{0}(G, \hat{\mathcal{L}})\right]^{B}=H^{0}(G / B, \mathcal{L})
$$

Now, it suffices to show $\left[H^{0}(G, \hat{\mathcal{L}})\right]^{B} \simeq V(\lambda)^{*}$.
Consider the following two $(G \times G)$-modules. First, $k[G]$ has a $(G \times G)$ action given by $\left(\left(g_{1}, g_{2}\right) \cdot f\right)(g)=f\left(g_{1}^{-1} g g_{2}\right)$. Second, acting coordinate-wise, we have:

$$
\mathcal{M}:=\bigoplus_{\mu \in X(H)_{+}} V(\mu)^{*} \otimes V(\mu) .
$$

It follows from the Peter-Weyl theorem and Tanaka-Krein duality that these are isomorphic as $(G \times G)$-modules. The explicit isomorphism is $\Phi=\sum_{\mu} \Phi_{\mu}$: $\mathcal{M} \rightarrow k[G]$, where $\Phi_{\mu}: V(\mu)^{*} \otimes V(\mu) \rightarrow k[G]$ is given by

$$
\Phi_{\mu}(f \otimes v)(g)=f(g v)
$$

Furthermore, $k[G] \otimes \mathbb{C}_{-\lambda}$ has a $(G \times B)$-action given diagonally, where G is forgotten when $G \times B$ acts on the second coordinate $\mathbb{C}_{-\lambda}$, and the action of $G \times B$ on $k[G]$ is the restriction of the $G \times G$ action given above. Since $H^{0}(G, \hat{\mathcal{L}}) \simeq k[G] \otimes \mathbb{C}_{-\lambda}$ as (left) G-modules, where G acts on $k[G]$ via $(g \cdot f)(x)=f\left(g^{-1} x\right)$, for $g, x \in G$ and $f \in k[G]$. Since the action of G on $k[G] \otimes \mathbb{C}_{-\lambda}$ commutes with the B-action given by equation (2), we get an
induced G-action on the space of B-invariants:

$$
\begin{aligned}
{\left[H^{0}(G, \hat{\mathcal{L}})\right]^{B} } & \simeq\left[k[G] \otimes \mathbb{C}_{-\lambda}\right]^{B} \\
& \simeq \bigoplus_{\mu \in X(H)_{+}}\left[V(\mu)^{*} \otimes V(\mu) \otimes \mathbb{C}_{-\lambda}\right]^{B} \\
& \simeq \bigoplus_{\mu \in X(H)_{+}} V(\mu)^{*} \otimes\left[V(\mu) \otimes \mathbb{C}_{-\lambda}\right]^{B} \\
& \simeq \bigoplus_{\mu \in X(H)_{+}} V(\mu)^{*} \otimes\left[\mathbb{C}_{\mu} \otimes \mathbb{C}_{-\lambda}\right]^{H} \\
& \simeq V(\lambda)^{*},
\end{aligned}
$$

since $\mathbb{C}_{\mu} \otimes \mathbb{C}_{-\lambda}$ will only have H-invariants if $\mu=\lambda$.
It follows from the next section that the higher cohomology vanishes; that is, for $\lambda \in X(H)_{+}$and $i \geq 1, H^{i}(G / B, \mathcal{L}(\lambda))=0$.

7 Borel-Weil-Bott theorem

Let ρ be half the sum of the positive roots. Since G is simply-connected, $\rho \in X(H)_{+}$. Also, ρ has the property that $\rho\left(\alpha_{i}^{\vee}\right)=1$ for all i. We will need a shifted action of the Weyl group on \mathfrak{h}^{*} given by:

$$
w \star \lambda=w(\lambda+\rho)-\rho .
$$

Theorem 8 (Borel-Weil-Bott). If $\lambda \in X(H)_{+}$and $w \in W$, then

$$
H^{p}(G / B, \mathcal{L}(w \star \lambda))=\left\{\begin{array}{ll}
V(\lambda)^{*} & \text { if } p=\ell(w) \\
0 & \text { if } p \neq \ell(w)
\end{array} .\right.
$$

Before we prove this theorem, we need to establish a number of results. For any i, let P_{i} denote the minimal parabolic subgroup $P_{i}=B \sqcup B s_{i} B$. In what follows, if M is a B-module, the notation $H^{p}(G / B, M)$ is the p-th sheaf cohomology for the sheaf of sections of the bundle $G \times{ }_{B} M \rightarrow G / B$.

Lemma 9. If M is a P_{i}-module, then $H^{p}\left(G / B, M \otimes \mathbb{C}_{\mu}\right)=0$, for all $p \geq 0$ and any $\mu \in X(H)$ such that $\mu\left(\alpha_{i}^{\vee}\right)=1$.

Proof. Apply the Leray-Serre spectral sequence to the fibration $G / B \rightarrow$ G / P_{i} with fiber P_{i} / B and the vector bundle on G / B corresponding to the B-module $M \otimes \mathbb{C}_{\mu}$. Thus,

$$
E_{2}^{p, q}=H^{p}\left(G / P_{i}, H^{q}\left(P_{i} / B, M \otimes \mathbb{C}_{\mu}\right)\right) \Longrightarrow H^{*}\left(G / B, M \otimes \mathbb{C}_{\mu}\right) .
$$

If we can show $E_{2}^{p, q}=0$, then we are done.
It suffices to show $H^{q}\left(P_{i} / B, M \otimes \mathbb{C}_{\mu}\right)$ vanishes for all $q \geq 0$. By the next exercise, we have

$$
H^{q}\left(P_{i} / B, M \otimes \mathbb{C}_{\mu}\right) \simeq M \otimes H^{q}\left(P_{i} / B, \mathbb{C}_{\mu}\right)
$$

since M is a P_{i}-module by assumption. Since $P_{i} / B \simeq S L_{2}(i) / B(i) \simeq \mathbb{P}^{1}$, where $S L_{2}(i)$ is the subgroup of P_{i} with Lie algebra $\mathfrak{s l}_{2}(i)$ and $B(i)$ is the standard Borel subgroup of $S L_{2}(i)$, we have that

$$
H^{q}\left(P_{i} / B, \mathbb{C}_{\mu}\right) \simeq H^{q}\left(\mathbb{P}^{1}, \mathcal{O}\left(-\mu\left(\alpha_{i}^{\vee}\right)\right)\right)=H^{q}\left(\mathbb{P}^{1}, \mathcal{O}(-1)\right)
$$

which is known to be zero (for example, [H, Ch. III, Theorem 5.1]).
Exercise 10. For any closed subgroup $F \subset G$, if M is a G-module, then $G \times_{F} M \rightarrow G / F$ is a trivial vector bundle.

Proposition 11. If for some $i, \mu \in X(H)$ has the property that $\mu\left(\alpha_{i}^{\vee}\right) \geq-1$, then for all $p \geq 0$,

$$
H^{p}(G / B, \mathcal{L}(\mu)) \simeq H^{p+1}\left(G / B, \mathcal{L}\left(s_{i} \star \mu\right)\right)
$$

Proof. First, consider the case where $\mu\left(\alpha_{i}^{\vee}\right) \geq 0$. Let $X_{i}:=P_{i} / B \simeq \mathbb{P}^{1}$ and $\mathcal{H}:=H^{0}\left(X_{i}, \mathcal{L}(\mu+\rho)\right)$. It can easily be seen (by using the definition of the action of P_{i} on $\left.\mathcal{H}\right)$ that the action of the unipotent radical U_{i} of P_{i} is trivial on \mathcal{H}. Moreover, P_{i} / U_{i} is isomorphic with the subgroup $\widehat{S L_{2}(i)}$ of G generated by $S L_{2}(i)$ and H. Thus, by the Borel-Weil theorem for $G=\widehat{S L_{2}(i)}$, we get $\mathcal{H} \simeq V_{i}(\mu+\rho)^{*}$, as $\widehat{S L_{2}(i)}$-modules, where $V_{i}(\mu+\rho)$ is the irreducible $\widehat{S L_{2}(i)}$ module with highest weight $\mu+\rho$. (Even though we stated the Borel-Weil theorem for semisimple, simply-connected groups, the same proof gives the result for any connected, reductive group.) Thus, we have the weight space decomposition (as H-modules):

$$
\mathcal{H} \simeq V_{i}(\mu+\rho)^{*}=\bigoplus_{j=0}^{(\mu+\rho)\left(\alpha_{i}^{\vee}\right)} \mathbb{C}_{-(\mu+\rho)+j \alpha_{i}}
$$

There is a short exact sequence of B-modules:

$$
0 \longrightarrow K \longrightarrow \mathcal{H} \longrightarrow \mathbb{C}_{-(\mu+\rho)} \longrightarrow 0
$$

where K, by definition, is the kernel of the projection. Tensoring with \mathbb{C}_{ρ}, we get the following exact sequence of B-modules:

$$
0 \longrightarrow K \otimes \mathbb{C}_{\rho} \longrightarrow \mathcal{H} \otimes \mathbb{C}_{\rho} \longrightarrow \mathbb{C}_{-\mu} \longrightarrow 0
$$

Passing to the long exact cohomology sequence, we get:

$$
\begin{aligned}
& \cdots \rightarrow H^{p}\left(G / B, \mathcal{H} \otimes \mathbb{C}_{\rho}\right) \rightarrow H^{p}\left(G / B, \mathbb{C}_{-\mu}\right) \rightarrow \\
& \quad H^{p+1}\left(G / B, K \otimes \mathbb{C}_{\rho}\right) \rightarrow H^{p+1}\left(G / B, \mathcal{H} \otimes \mathbb{C}_{\rho}\right) \rightarrow \cdots .
\end{aligned}
$$

By the previous lemma, $H^{p}\left(G / B, \mathcal{H} \otimes \mathbb{C}_{\rho}\right)=0$ for all p. Thus,

$$
\begin{equation*}
H^{p}(G / B, \mathcal{L}(\mu))=H^{p}\left(G / B, \mathbb{C}_{-\mu}\right) \simeq H^{p+1}\left(G / B, K \otimes \mathbb{C}_{\rho}\right) \tag{3}
\end{equation*}
$$

Consider another short exact sequence of B-modules:

$$
0 \longrightarrow \mathbb{C}_{-s_{i}(\mu+\rho)} \longrightarrow K \longrightarrow M \longrightarrow 0
$$

where M is just the cokernal of the inclusion. In particular, as H-modules,

$$
M=\bigoplus_{j=1}^{(\mu+\rho)\left(\alpha_{i}^{\vee}\right)-1} \mathbb{C}_{-(\mu+\rho)+j \alpha_{i}}
$$

so it may be regarded as a P_{i}-module. Then, as B-modules, we can tensor with \mathbb{C}_{ρ} to arrive at the following exact sequence:

$$
0 \longrightarrow \mathbb{C}_{-s_{i} \star \mu} \longrightarrow K \otimes \mathbb{C}_{\rho} \longrightarrow M \otimes \mathbb{C}_{\rho} \longrightarrow 0
$$

Again, passing to the long exact sequence, we see:

$$
\begin{aligned}
& \cdots \rightarrow H^{p}\left(G / B, M \otimes \mathbb{C}_{\rho}\right) \rightarrow H^{p+1}\left(G / B, \mathbb{C}_{-s_{i} \nless \mu}\right) \rightarrow \\
& \quad H^{p+1}\left(G / B, K \otimes \mathbb{C}_{\rho}\right) \rightarrow H^{p+1}\left(G / B, M \otimes \mathbb{C}_{\rho}\right) \rightarrow \cdots .
\end{aligned}
$$

By the previous lemma, $H^{p}\left(G / B, M \otimes \mathbb{C}_{\rho}\right)=0$ for all p. Thus,

$$
\begin{equation*}
H^{p+1}\left(G / B, \mathcal{L}\left(s_{i} \star \mu\right)\right)=H^{p+1}\left(G / B, \mathbb{C}_{-s_{i} \star \mu}\right) \simeq H^{p+1}\left(G / B, K \otimes \mathbb{C}_{\rho}\right) \tag{4}
\end{equation*}
$$

Combining equations (3) and (4), we get the proposition in the case where $\mu\left(\alpha_{i}^{\vee}\right) \geq 0$.

For the case that $\mu\left(\alpha_{i}^{\vee}\right)=-1$, we have that $s_{i} \star \mu=\mu$, so the statement reduces to proving that $H^{p}(G / B, \mathcal{L}(\mu))=0$, for all p. In this case, $K=$ 0 . From the isomorphism $\mathcal{H} \otimes \mathbb{C}_{\rho} \simeq \mathbb{C}_{-\mu}$, we conclude $H^{p}(G / B, \mathcal{L}(\mu)) \simeq$ $H^{p}\left(G / B, \mathcal{H} \otimes \mathbb{C}_{\rho}\right)$ which vanishes by the previous lemma.
Corollary 12. If $\mu \in X(H)_{+}$and $w \in W$, then for all $p \in \mathbb{Z}$, as G-modules:

$$
H^{p}(G / B, \mathcal{L}(\mu)) \simeq H^{p+\ell(w)}(G / B, \mathcal{L}(w \star \mu))
$$

Proof. We induct on $\ell(w)$. Assume the above for all $v \in W$ such that $\ell(v)<\ell(w)$, and write $w=s_{i} v$ for some $v<w$. Then,

$$
H^{p}(G / B, \mathcal{L}(\mu)) \simeq H^{p+\ell(v)}(G / B, \mathcal{L}(v \star \mu))
$$

Now $(v \star \mu)\left(\alpha_{i}^{\vee}\right)=(\mu+\rho)\left(v^{-1} \alpha_{i}^{\vee}\right)-1 \geq-1$, since $v^{-1} \alpha_{i}^{\vee}$ is a positive coroot and $\mu+\rho$ is dominant. So, applying Proposition 11, we get:
$H^{p}(G / B, \mathcal{L}(\mu)) \simeq H^{p+\ell(v)+1}\left(G / B, \mathcal{L}\left(s_{i} \star(v \star \mu)\right)\right)=H^{p+\ell(w)}(G / B, \mathcal{L}(w \star \mu))$, which is our desired result.

We are now ready to prove the Borel-Weil-Bott theorem.
Proof of the Borel-Weil-Bott theorem. From the above corollary,

$$
H^{p}(G / B, \mathcal{L}(w \star \lambda)) \simeq H^{p-\ell(w)}(G / B, \mathcal{L}(\lambda))
$$

We claim that $H^{j}(G / B, \mathcal{L}(\lambda))=0$ if $j \neq 0$. Indeed, if $j<0$, this is true. Let w_{0} denote the unique longest word in the Weyl group, so that $\ell\left(w_{0}\right)=$ $\operatorname{dim}(G / B)$. If $j>0$, then by Corollary 12 ,

$$
H^{j}(G / B, \mathcal{L}(\lambda)) \simeq H^{j+\operatorname{dim}(G / B)}\left(G / B, \mathcal{L}\left(w_{0} \star \lambda\right)\right)=0
$$

This implies

$$
H^{p}(G / B, \mathcal{L}(w \star \lambda))= \begin{cases}H^{0}(G / B, \mathcal{L}(\lambda)) & \text { if } p=\ell(w) \\ 0 & \text { if } p \neq \ell(w)\end{cases}
$$

which is our desired result, by the Borel-Weil theorem.
Exercise 13. Show that for any μ not contained in $W \star\left(X(H)_{+}\right), H^{p}(G / B, \mathcal{L}(\mu))=$ 0 , for all $p \geq 0$.

8 Schubert varieties

For any $w \in W$, let $X_{w}:=\overline{B w B / B} \subset G / B$ denote the corresponding Schubert variety. This variety is projective and irreducible of dimension $\ell(w)$. By the Bruhat decomposition, we have the following decomposition of X_{w} :

$$
X_{w}=\bigsqcup_{v \leq w} B v B / B
$$

9 Bott-Samelson-Demazure-Hansen variety

Let \mathfrak{W} be the set of all ordered sequences $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right), n \geq 0$, of simple reflections, called words. For any such word, define the Bott-Samelson-Demazure-Hansen variety (for short BSDH variety) as follows: if $n=0$ (thus, \mathfrak{w} is the empty sequence), $Z_{\mathfrak{w}}$ is a point. For $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$, with $n \geq 1$, define

$$
Z_{\mathfrak{w}}=P_{i_{1}} \times \cdots \times P_{i_{n}} / B^{n}
$$

where the product group B^{n} acts on $P_{\mathfrak{w}}:=P_{i_{1}} \times \cdots \times P_{i_{n}}$ from the right via:

$$
\left(p_{1}, \ldots, p_{n}\right) \cdot\left(b_{1}, \ldots, b_{n}\right)=\left(p_{1} b_{1}, b_{1}^{-1} p_{2} b_{2}, \ldots, b_{n-1}^{-1} p_{n} b_{n}\right) .
$$

We denote the $B^{\times n}$ orbit of $\left(p_{1}, \ldots, p_{n}\right)$ by $\left[p_{1}, \ldots, p_{n}\right]$. This action is free and proper. The group $P_{i_{1}}$ (in particular, B) acts on $Z_{\mathfrak{w}}$ via its left multiplication on the first factor.

Lemma 14. $Z_{\mathfrak{v}}$ is a smooth projective variety.
Sketch of the proof. Induct on the length of \mathfrak{w}, where length refers to the number of terms in the sequence. Let \mathfrak{v} be the last $n-1$ terms in the sequence \mathfrak{w}, so that $\mathfrak{w}=\left(s_{i_{1}}\right) \cup \mathfrak{v}$, where order is preserved when taking the union.

Let

$$
\pi: Z_{\mathfrak{w}} \simeq P_{i_{1}} \times_{B} Z_{\mathfrak{v}} \longrightarrow Z_{\left(s_{i_{1}}\right)}=P_{i_{1}} / B \simeq \mathbb{P}^{1}
$$

be the map $\left[p_{1}, \ldots, p_{n}\right] \mapsto p_{1} B$. This map has fiber $Z_{\mathfrak{v}}$ and since it is a fibration, we get that $Z_{\mathfrak{w}}$ is smooth. Furthermore, $Z_{\mathfrak{w}}$ is complete since \mathbb{P}^{1} is complete and the fibers of π are complete by induction.

Furthermore, it is a trivial fibration restricted to $\mathbb{P}^{1} \backslash\{x\}$, for any $x \in \mathbb{P}^{1}$. Hence, projectivity follows from the Chevalley-Kleiman criterion asserting
that a smooth complete variety is projective if and only if any finite set of points is contained in an affine open subset.

There is a map $\xi: \mathfrak{W} \rightarrow W$ given by $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right) \mapsto s_{i_{1}} \cdots s_{i_{n}}$. For any $\mathfrak{w} \in \mathfrak{W}$, we say \mathfrak{w} is reduced if $s_{i_{1}} \cdots s_{i_{n}}$ is a reduced decomposition of $\xi(w)$.

For $\mathfrak{w} \in \mathfrak{W}$, consider the map $\theta_{\mathfrak{w}}: Z_{\mathfrak{w}} \rightarrow G / B$ given by $\left[p_{1}, \ldots, p_{n}\right] \mapsto$ $p_{1} \cdots p_{n} B$.
Lemma 15. If \mathfrak{w} is reduced, then $\theta_{\mathfrak{w}}\left(Z_{\mathfrak{w}}\right)=X_{\xi(\mathfrak{w})}$. Moreover, $\theta_{\mathfrak{w}}$ is a desingularization of $X_{\xi(\mathfrak{w})}$; that is, it is birational and proper.

If \mathfrak{w} is not reduced, then $\theta_{\mathfrak{w}}\left(Z_{\mathfrak{w}}\right)$ is NOT equal to $X_{\xi(\mathfrak{w})}$ in general.
Sketch of the proof. The open subset of $Z_{\mathfrak{w}}$ given by

$$
\left(B s_{i_{1}} B\right) \times \cdots \times\left(B s_{i_{n}} B\right) / B^{n}
$$

maps isomorphically to the open cell $B w B / B$ by (1) of Section (3).

10 A fundamental cohomology vanishing theorem

For any $1 \leq j \leq n$, define $\mathfrak{w}(j)=\left(s_{i_{1}}, \ldots, \widehat{s_{i_{j}}}, \ldots, s_{i_{n}}\right)$. The variety $Z_{\mathfrak{v}(j)}$ embeds into $Z_{\mathfrak{w}}$ via:

$$
\left[p_{1}, \ldots, p_{j-1}, p_{j+1}, \ldots, p_{n}\right] \mapsto\left[p_{1}, \ldots, p_{j-1}, 1, p_{j+1}, \ldots, p_{n}\right]
$$

Denote also by $Z_{\mathfrak{w}(j)}$ the image of this map. These are divisors in $Z_{\mathfrak{w}}$.
For $\lambda \in X(H)$, let $\mathcal{L}_{\mathfrak{w}}(\lambda)=\theta_{\mathfrak{w}}^{*}(\mathcal{L}(\lambda))$ be the pull-back of $\mathcal{L}(\lambda)$ under the $\operatorname{map} \theta_{\mathfrak{w}}$.

The following result is fundamental to the notes. This is a special case of a more general result proved by Kumar (cf. [K1, Proposition 2.3] or [K2, Theorem 8.1.8]).
Theorem 16. For any word $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$ and any $\lambda \in X(H)_{+}$,
(a) $H^{p}\left(Z_{\mathfrak{w}}, \mathcal{O}_{Z_{\mathfrak{w}}}\left[-Z_{\mathfrak{w}(n)}\right] \otimes \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=0$, for all $p>0$.

Also,

$$
\text { (b) } H^{p}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=0, \text { for all } p>0
$$

To prove the above theorem, we make use of the following KawamataViehweg vanishing theorem (cf. [D, Theorem 7.21]).

Theorem 17. Let X be a smooth projective variety. Let D be a nef and big \mathbb{Q}-divisor on X and $\Delta=\sum a_{i} X_{i} a \mathbb{Q}$-divisor on X with simple normal crossings such that $0 \leq a_{i}<1$. Assume further that $D+\Delta$ is an integral divisor. Then,

$$
H^{p}\left(X, K_{X}+D+\Delta\right)=0, \text { for all } p>0
$$

where K_{X} is a canonical divisor of X.
We recall the following from [BK, Proposition 2.2.2]. Various properties of $Z_{\mathfrak{w}}$ are summarized in [BK, §2.2.1]; in particular, it is smooth.

Proposition 18. The canonical line bundle of $Z_{\mathfrak{w}}$ is given by:

$$
\omega_{Z_{\mathfrak{v}}} \simeq \mathcal{O}_{Z_{\mathfrak{w}}}\left[-\sum_{j=1}^{n} Z_{\mathfrak{w}(j)}\right] \otimes \mathcal{L}_{\mathfrak{w}}(-\rho)
$$

where ρ is the usual half sum of positive roots.
Now, we are ready to prove Theorem 16 (cf. [B, Proof of Theorem 2.3.1]). Proof of Theorem 16. We first prove (a). Consider the projection

$$
\pi: Z_{\mathfrak{w}} \rightarrow Z_{\mathfrak{w}(n)},\left[p_{1}, \ldots, p_{n}\right] \mapsto\left[p_{1}, \ldots, p_{n-1}\right] .
$$

By [BK, Exercise 3.1.E.3(f)], there exist positive integers a_{1}, \ldots, a_{n-1} such that $\mathcal{O}_{Z_{\mathfrak{v}}}\left[\sum_{j=1}^{n-1} a_{j} Z_{\mathfrak{v}(j)}\right]$ is an ample line bundle on $Z_{\mathfrak{v}}$, where $\mathfrak{v}:=\mathfrak{w}(n)$. Moreover, $\mathcal{L}_{\mathfrak{w}}(\rho)$ has degree 1 along the fibers of π. Thus, there exists a large enough positive integer a such that

$$
\mathcal{O}_{Z_{\mathfrak{w}}}\left[\sum_{j=1}^{n-1} a a_{j} Z_{\mathfrak{w}(j)}\right] \otimes \mathcal{L}_{\mathfrak{w}}(\rho)
$$

is an ample line bundle on $Z_{\mathfrak{w}}$.
Take any integer N bigger than each $a a_{j}$ and take
$D=\sum_{j=1}^{n-1} \frac{a a_{j}}{N} Z_{\mathfrak{w}(j)}+\frac{1}{N} \hat{\mathcal{L}}_{\mathfrak{w}}(\rho)+\hat{\mathcal{L}}_{\mathfrak{w}}(\lambda)+\left(1-\frac{1}{N}\right) \hat{\mathcal{L}}_{\mathfrak{w}}(\rho), \Delta=\sum_{j=1}^{n-1}\left(1-\frac{a a_{j}}{N}\right) Z_{\mathfrak{w}(j)}$,
where $\hat{\mathcal{L}}_{\mathfrak{w}}(\lambda)$ denotes a divisor on $Z_{\mathfrak{w}}$ representing the line bundle $\mathcal{L}_{\mathfrak{w}}(\lambda)$.
Since $\sum_{j=1}^{n-1} a a_{j} Z_{\mathfrak{w}(j)}+\hat{\mathcal{L}}_{\mathfrak{w}}(\rho)$ is an ample divisor and $\mathcal{L}_{\mathfrak{w}}(\lambda)$ is globally generated for any dominant weight λ, we get that $N D$ is an ample divisor (cf. [H, Exercise 7.5(a), Chap. II]). In particular, D is a nef and big \mathbb{Q}-divisor. Moreover, by $[\mathrm{BK}, \S 2.2 .1],\left\{Z_{\mathfrak{v}(j)}\right\}_{1 \leq j \leq n}$ are nonsingular prime divisors with simple normal crossings in $Z_{\mathfrak{w}}$. Hence, Δ satisfies the assumptions of Theorem 17.

Finally, by Proposition 18,

$$
K_{Z_{\mathfrak{w}}}+D+\Delta=-Z_{\mathfrak{w}(n)}+\hat{\mathcal{L}}_{\mathfrak{w}}(\lambda) .
$$

Thus, by Theorem 17, the (a)-part of Theorem 16 follows.
To prove the (b)-part, take an ample line bundle $\mathcal{O}_{Z_{\mathfrak{w}}}\left[\sum_{j=1}^{n} b_{j} Z_{\mathfrak{w}(j)}\right]$ for some $b_{j}>0$. Now, take N larger than each b_{j} and define

$$
D=\sum_{j=1}^{n} \frac{b_{j}}{N} Z_{\mathfrak{w}(j)}+\hat{\mathcal{L}}_{\mathfrak{w}}(\rho+\lambda), \quad \Delta=\sum_{j=1}^{n}\left(1-\frac{b_{j}}{N}\right) Z_{\mathfrak{w}(j)} .
$$

Again use Theorem 17 to conclude the (b)-part.
As an immediate corollary of Theorem 16 (a), we get the following:
Corollary 19. For any word $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$, and any $\lambda \in X(H)_{+}$, the canonical restriction map

$$
H^{0}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right) \rightarrow H^{0}\left(Z_{\mathfrak{w}(n)}, \mathcal{L}_{\mathfrak{w}(n)}(\lambda)\right)
$$

is surjective.

11 Geometry of Schubert varieties

In this section we show that Schubert varieties are normal and have rational singularities (in particular, they are Cohen-Macaulay).

We recall the Zariski's Main Theorem, see, e.g., [H, Chap. III, Corollary 11.4 and its proof].

Theorem 20. If $f: X \rightarrow Y$ is a birational projective morphism between irreducible varieties and X is smooth, then Y is normal if and only if $f_{*} \mathcal{O}_{X}=$ \mathcal{O}_{Y}.

Lemma 21. If $f: X \rightarrow Y$ is a surjective morphism between projective varieties and \mathcal{L} is an ample line bundle on Y such that $H^{0}\left(Y, \mathcal{L}^{\otimes d}\right) \rightarrow$ $H^{0}\left(X,\left(f^{*} \mathcal{L}\right)^{\otimes d}\right)$ is an isomorphism for all large d, then $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$.

For a proof see [K2, Lemma A.32].
For any $w \in W$, choose a reduced decomposition $w=s_{i_{1}} \cdots s_{i_{n}}$, with each $s_{i_{j}} \in S$, and take $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$. Such a \mathfrak{w} is called a reduced word. Then, $\theta_{\mathfrak{w}}: Z_{\mathfrak{w}} \rightarrow X_{w}$ is a desingularization (cf. Lemma 15).

By the last two results, in order to show that X_{w} is normal, it suffices to prove the following theorem:

Theorem 22. If $\lambda \in X(H)_{+}$and $w \in W$, then $H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \rightarrow H^{0}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)$ is an isomorphism.

Before we give the proof, we recall the following Projection formula (cf. [H, Exercise 8.3 of Chap. III]:

Lemma 23. If $f: X \rightarrow Y$ is any morphism of varieties, η is a vector bundle on Y, \mathcal{S} is a quasi-coherent sheaf on X, then for all i :

$$
R^{i} f_{*}\left(\mathcal{S} \otimes f^{*} \eta\right) \simeq\left(R^{i} f_{*} \mathcal{S}\right) \otimes \eta
$$

Proof of Theorem 22. This map is clearly injective since $Z_{\mathfrak{w}} \rightarrow X_{w}$. Choose a reduced decomposition of the longest element $w_{0} \in W, w_{0}=s_{i_{1}} \cdots s_{i_{N}}$, each $s_{i_{j}} \in S, N=\operatorname{dim}(G / B)=\left|R^{+}\right|$, and let $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{N}}\right)$. For $0 \leq j \leq N$, let $w_{j}=s_{i_{1}} \cdots s_{i_{j}}$ and $\mathfrak{w}_{j}=\left(s_{i_{1}}, \ldots, s_{i_{j}}\right)$. Consider the following diagram:

In this diagram, the horizontal arrows are surjective and the vertical arrows (which are the canonical inclusions) are injective. Passing to global sections, we get:

In this diagram, the horizontal arrows are of course injective and the vertical arrows on the left are surjective by Corollary 19. Furthermore, by Lemma 23 (with $\mathcal{S}=\mathcal{O}_{Z_{\mathfrak{w}_{N}}}$ and $\eta=\mathcal{L}(\lambda)$) and Theorem 20, the top horizontal arrow is an isomorphism. Then, by a standard diagram chase, all of the horizontal arrows are isomorphisms.

Since $w_{0}=w\left(w^{-1} w_{0}\right)$ and $\ell\left(w^{-1} w_{0}\right)=\ell\left(w_{0}\right)-\ell(w)$, a reduced decomposition of w_{0} can always be obtained so that the first $\ell(w)$ terms of the decomposition give the word \mathfrak{w}. This completes the proof.

Thus, using Theorems 20, 22 and Lemma 21, we get the following:
Corollary 24. Any Schubert variety X_{w} is normal.
Corollary 25. For any $v \leq w$ and $\lambda \in X(H)_{+}$, the restriction map

$$
H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \rightarrow H^{0}\left(X_{v}, \mathcal{L}(\lambda)\right)
$$

is surjective.
Proof. By the above proof, $H^{0}(G / B, \mathcal{L}(\lambda)) \rightarrow H^{0}\left(X_{v}, \mathcal{L}(\lambda)\right)$ is surjective and hence so is $H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \rightarrow H^{0}\left(X_{v}, \mathcal{L}(\lambda)\right)$.

An irreducible projective variety Y has rational singularities if for some desingularization $f: X \rightarrow Y$ we have that $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$ and $R^{i} f_{*} \mathcal{O}_{X}=0$ for all $i>0$. This definition does not depend on the choice of a desingularization. (In characteristic $p>0$, we also need to assume that $R^{i} f_{*} \omega_{X}=0$, for the canonical bundle ω_{X}.) To prove that X_{w} has rational singularities, we use the following theorem of Kempf (cf. [K2, Lemma A.31]:

Theorem 26. Let $f: X \rightarrow Y$ be a morphism of projective varieties such that $f_{*} \mathcal{O}_{X}=\mathcal{O}_{Y}$. Assume there exists an ample line bundle \mathcal{L} on Y such that $H^{i}\left(X,\left(f^{*} \mathcal{L}\right)^{\otimes d}\right)=0$ for all $i>0$ and all large d. Then, $R^{i} f_{*} \mathcal{O}_{X}=0$ for $i>0$.

Corollary 27. Any Schubert variety X_{w} has rational singularities.
Proof. In view of Corollary 24, it suffices to prove $H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(d \lambda)\right)=0$ for all large d, for all $i>0$, and some regular $\lambda \in X(H)_{+}$, which follows from Theorem 16.

We recall the following general theorem (cf. [K2, Lemma A.38]:
Theorem 28. Any projective variety Y which has rational singularities is Cohen-Macaulay.

In fact, in this case, for any ample line bundle \mathcal{L} on Y,

$$
H^{p}\left(Y, \mathcal{L}^{-n}\right)=0, \text { for all } p<\operatorname{dim} Y \text { and } n>0
$$

Thus, we get:
Corollary 29. Any Schubert variety X_{w} is Cohen-Macaulay.
Another consequence of having rational singularities (which we will use in the next section) is given in the following two results.

Proposition 30. Let Y be a projective variety with rational singularities. Then, for any desingularization $f: X \rightarrow Y$ and any vector bundle η on Y, $H^{i}(Y, \eta) \rightarrow H^{i}\left(X, f^{*} \eta\right)$ is an isomorphism for $i \geq 0$.

Proof. Applying the Leray-Serre spectral sequence, we have

$$
E_{2}^{p, q}=H^{p}\left(Y, R^{q} f_{*} f^{*} \eta\right) \Longrightarrow H^{*}\left(X, f^{*} \eta\right)
$$

By the projection formula (with $\mathcal{S}=\mathcal{O}_{X}$),

$$
R^{q} f_{*}\left(\mathcal{O}_{X} \otimes f^{*} \eta\right) \simeq\left(R^{q} f_{*} \mathcal{O}_{X}\right) \otimes \eta
$$

Since Y has rational singularities, $R^{q} f_{*} \mathcal{O}_{X}=0$ for $q>0$. Therefore, $E_{2}^{p, q}=0$ for $q>0$, and hence $H^{p}(Y, \eta) \simeq E_{2}^{p, 0}$ for all p, and the result follows.

Corollary 31. For any $\lambda \in X(H)$ and $i \geq 0$,

$$
H^{i}\left(X_{w}, \mathcal{L}(\lambda)\right) \simeq H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)
$$

for any reduced word \mathfrak{w} with $\xi(\mathfrak{w})=w$, where $\xi\left(s_{i_{1}}, \ldots, s_{i_{n}}\right):=s_{i_{1}} \ldots s_{i_{n}}$.
In particular, for any $\lambda \in X(H)_{+}, H^{i}\left(X_{w}, \mathcal{L}(\lambda)\right)=0$ if $i>0$.
Proof. By Corollary 27 and Proposition 30, $H^{i}\left(X_{w}, \mathcal{L}(\lambda)\right) \simeq H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)$, which vanishes by Theorem 16(b) for $\lambda \in X(H)_{+}$and $i>0$.

As a consequence of the above corollary and Theorem 28, we get the following:

Corollary 32. For any $\lambda \in X(H)_{+}$, the linear system on X_{w} given by $\mathcal{L}(\lambda+\rho)$ embeds X_{w} as a projectively normal and projectively Cohen-Macaulay variety.

Proof. To prove the projective normality of X_{w}, by using its normality (cf. Corollary 24) and [H, Exercise 5.14(d) of Chap. II and Theorem 5.1 of Chap. III], it suffices to show that the canonical multiplication map (for $\left.\lambda, \lambda^{\prime} \in X(H)_{+}\right)$

$$
H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \otimes H^{0}\left(X_{w}, \mathcal{L}\left(\lambda^{\prime}\right)\right) \rightarrow H^{0}\left(X_{w}, \mathcal{L}\left(\lambda+\lambda^{\prime}\right)\right)
$$

is surjective. By Corollary 25, to prove the above surjectivity, it suffices to show that

$$
H^{0}(G / B, \mathcal{L}(\lambda)) \otimes H^{0}\left(G / B, \mathcal{L}\left(\lambda^{\prime}\right)\right) \rightarrow H^{0}\left(G / B, \mathcal{L}\left(\lambda+\lambda^{\prime}\right)\right)
$$

is surjective. But, the above map is a G-module map (under the diagonal action of G on the domain) and $H^{0}\left(G / B, \mathcal{L}\left(\lambda+\lambda^{\prime}\right)\right)$ is an irreducible G module and hence it is surjective. This proves the projective normality of X_{w}.

We now prove that X_{w} is projectively Cohen-Macaulay: Since X_{w} is projectively normal, in view of [E, Exercise 18.16], it suffices to show that

$$
H^{p}\left(X_{w}, \mathcal{L}(n(\lambda+\rho))\right)=0, \text { for all } n \in \mathbb{Z} \text { and } 0<p<\operatorname{dim} X_{w}
$$

For any $p>0$ and $n \geq 0$, this vanishing follows from Corollary 31. For any $p<\operatorname{dim} X_{w}$ and $n<0$, the vanishing follows from Theorem 28 and Corollary 27.

12 Demazure character formula

Let $w \in W$ and $\lambda \in X(H)_{+}$. The Demazure module $V_{w}(\lambda) \subset V(\lambda)$ is the B-submodule defined by $V_{w}(\lambda)=\mathcal{U}(\mathfrak{b}) \cdot V(\lambda)_{w \lambda}$, where $\mathcal{U}(\mathfrak{b})$ is the enveloping algebra of \mathfrak{b} and $V(\lambda)_{w \lambda}$ is the weight space of $V(\lambda)$ with weight $w \lambda$. Observe that $V(\lambda)_{w \lambda}$ is one-dimensional. The formal character of $V_{w}(\lambda)$ is defined by

$$
\operatorname{ch} V_{w}(\lambda)=\sum_{\mu \in X(H)} \operatorname{dim}\left(V_{w}(\lambda)_{\mu}\right) e^{\mu}
$$

If $w=w_{0}$, then $V_{w}(\lambda)=V(\lambda)$. Therefore, ch $V_{w_{0}}(\lambda)$ is given by the Weyl character formula.

For an arbitrary $\mathfrak{w} \in \mathfrak{W}$, we need to introduce the Demazure operators $D_{\mathfrak{w}}$. For each simple reflection s_{i}, let $D_{s_{i}}: \mathbb{Z}[X(H)] \rightarrow \mathbb{Z}[X(H)]$ be the \mathbb{Z}-linear map given by:

$$
D_{s_{i}}\left(e^{\mu}\right)=\frac{e^{\mu}-e^{s_{i} \mu-\alpha_{i}}}{1-e^{-\alpha_{i}}}
$$

Given $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right) \in \mathfrak{W}$, define $D_{\mathfrak{w}}: \mathbb{Z}[X(H)] \rightarrow \mathbb{Z}[X(H)]$ by

$$
D_{\mathfrak{w}}=D_{s_{i_{1}}} \circ \cdots \circ D_{s_{i_{n}}} .
$$

In what follows, we will also need $*: \mathbb{Z}[X(H)] \rightarrow \mathbb{Z}[X(H)]$ given by

$$
* e^{\mu}=e^{-\mu}
$$

and extended \mathbb{Z}-linearly.
Theorem 33. For any reduced word \mathfrak{w} and $\lambda \in X(H)_{+}$,

$$
\operatorname{ch} V_{\xi(\mathfrak{w})}(\lambda)=D_{\mathfrak{w}}\left(e^{\lambda}\right)
$$

Proof. The first step is to show $V_{w}(\lambda)^{*} \simeq H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right)$, for any $w \in W$.
By the Borel-Weil theorem, $V(\lambda)^{*} \simeq H^{0}(G / B, \mathcal{L}(\lambda))$. The isomorphism $\phi: V(\lambda)^{*} \rightarrow H^{0}(G / B, \mathcal{L}(\lambda))$ is explicitly given by $\phi(f)(g B)=\left[g, f\left(g v_{\lambda}\right)\right]$, where v_{λ} is a highest weight vector in $V(\lambda)$.

By Corollary 25 , the restriction $H^{0}(G / B, \mathcal{L}(\lambda)) \rightarrow H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right)$ is surjective. Let ϕ_{w} denote the composition

$$
V(\lambda)^{*} \xrightarrow{\phi} H^{0}(G / B, \mathcal{L}(\lambda)) \rightarrow H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right)
$$

We compute the kernal of ϕ_{w}; i.e., find all $f \in V(\lambda)^{*}$ such that $\phi_{w}(f)$ is the zero section. It suffices to check that $\phi_{w}(f)=0$ on $B w B / B$, since $B w B / B$ is a dense open subset of X_{w}. For $f \in V(\lambda)^{*}$,

$$
\begin{aligned}
\phi_{w}(f)=0 & \Longleftrightarrow f\left(B w B \cdot v_{\lambda}\right)=0 \\
& \Longleftrightarrow f\left(B \cdot v_{w \lambda}\right)=0 \\
& \Longleftrightarrow f \text { vanishes on } V_{w}(\lambda)
\end{aligned}
$$

Thus, $\operatorname{ker} \phi_{w}=\left\{f \in V(\lambda)^{*}:\left.f\right|_{V_{w}(\lambda)}=0\right\}$; that is, we have the following exact sequence:

$$
0 \longrightarrow\left(\frac{V(\lambda)}{V_{w}(\lambda)}\right)^{*} \longrightarrow V(\lambda)^{*} \longrightarrow H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right) \longrightarrow 0
$$

Therefore, $H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right)^{*} \simeq V_{w}(\lambda)$, which completes the first step.
Now, take a reduced decomposition of $w=s_{i_{1}} \cdots s_{i_{n}}$ and let $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$. The map $Z_{\mathfrak{w}} \rightarrow X_{w}$ is B-equivariant and by Corollary 31, $H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right) \simeq$ $H^{i}\left(X_{w}, \mathcal{L}(\lambda)\right)$ for all i as B-modules (for any $\lambda \in X(H)$). Therefore, their characters coincide; that is,

$$
\operatorname{ch} H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=\operatorname{ch} H^{i}\left(X_{w}, \mathcal{L}(\lambda)\right)
$$

Consider the Euler-Poincaré characteristic:

$$
\chi_{H}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right):=\sum_{i}(-1)^{i} \operatorname{ch} H^{i}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right) \in \mathbb{Z}[X(H)] .
$$

Since ch $H^{0}\left(X_{w}, \mathcal{L}(\lambda)\right)=\chi_{H}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)$ for $\lambda \in X(H)_{+}$, it suffices to show:

$$
\chi_{H}\left(Z_{\mathfrak{w}}, \mathcal{L}_{\mathfrak{w}}(\lambda)\right)=* D_{\mathfrak{w}}\left(e^{\lambda}\right)
$$

In fact, we will prove a stronger result which is given as the next proposition.

Proposition 34. For a B-module M, let $G \times{ }^{B} M \rightarrow G / B$ be the associated vector bundle. Denote its pull-back to $Z_{\mathfrak{w}}$ (for any word \mathfrak{w}) under the morphism $\theta_{\mathfrak{w}}: Z_{\mathfrak{w}} \rightarrow G / B$ by $\theta_{\mathfrak{w}}^{*} M$. Then,

$$
\chi_{H}\left(Z_{\mathfrak{v}}, \theta_{\mathfrak{w}}^{*} M\right)=* D_{\mathfrak{w}}(* \operatorname{ch} M)
$$

Proof. We induct on the length n of $\mathfrak{w}=\left(s_{i_{1}}, \ldots, s_{i_{n}}\right)$. The Leray spectral sequence for the fibration $\pi: Z_{\mathfrak{w}} \rightarrow Z_{\mathfrak{w}(n)}$, with fibers $\mathbb{P}^{1} \simeq P_{i_{n}} / B$, takes the form

$$
E_{2}^{p, q}=H^{p}\left(Z_{\mathfrak{w}(n)}, \theta_{\mathfrak{w}(n)}^{*}\left(H^{q}\left(P_{i_{n}} / B, \theta_{\left(s_{i_{n}}\right)}^{*} M\right)\right)\right),
$$

and converges to $H^{p+q}\left(Z_{\mathfrak{w}}, \theta_{\mathfrak{w}}^{*} M\right)$. From this we see that

$$
\chi_{H}\left(Z_{\mathfrak{w}}, \theta_{\mathfrak{w}}^{*} M\right)=\chi_{H}\left(Z_{\mathfrak{w}(n)}, \theta_{\mathfrak{w}(n)}^{*}\left(\chi_{H}\left(P_{i_{n}} / B, \theta_{\left(s_{i_{n}}\right)}^{*} M\right)\right)\right) .
$$

It is easy to see that $\chi_{H}\left(P_{i_{n}} / B, \theta_{\left(s_{i_{n}}\right)}^{*} \mathbb{C}_{\mu}\right)=* D_{s_{i_{n}}}\left(e^{-\mu}\right)$, where \mathbb{C}_{μ} denotes the one-dimensional B-module with character μ and hence (by Lie's theorem)

$$
\begin{equation*}
\chi_{H}\left(P_{i_{n}} / B, \theta_{s_{i_{n}}}^{*} M\right)=* D_{s_{i_{n}}}(* \operatorname{ch} M) \tag{5}
\end{equation*}
$$

By induction on n,

$$
\begin{aligned}
\chi_{H}\left(Z_{\mathfrak{w}}, \theta_{\mathfrak{w}}^{*} M\right) & =* D_{\mathfrak{w}(n)}\left(* \chi_{H}\left(P_{i_{n}} / B, \theta_{\left(s_{i_{n}}\right)}^{*} M\right)\right) \\
& =* D_{\mathfrak{w}(n)}\left(* * D_{\left(s_{i_{n}}\right)}(* \operatorname{ch} M)\right), \text { by the above equality }(5) \\
& =* D_{\mathfrak{w}}(* \operatorname{ch} M) .
\end{aligned}
$$

Combining Proposition 34 for $M=\mathbb{C}_{\lambda}$ and Corollary 31, we get the following:

Corollary 35. For any reduced word \mathfrak{w}, the operator $D_{\mathfrak{w}}$ depends only upon $\xi(\mathfrak{w})$.

Remark 36. We have not given any historical comments. The interested reader can find them in [K2, § 8.C] and [BK, §§2.C and 3.C].

References

[B] Brion, M., Lectures on the geometry of flag varieties, In: 'Topics in Cohomological Studies of Algebraic Varieties, Springer, 2005.
[BK] Brion, M. and Kumar, S., Frobenius Splitting Methods in Geometry and Representation Theory. Boston, Birkhäuser, 2005.
[D] Debarre, O., Higher-Dimensional Algebraic Geometry. Springer, 2001.
[E] Eisenbud, D., Commutative Algebra with a View Toward Algebraic Geometry. New York, Springer-Verlag, 1995.
[H] Hartshorne, R., Algebraic Geometry. New York, Springer-Verlag, 1977.
[Hu] Humphreys, James. Linear Algebraic Groups. New York: SpringerVerlag, 1975.
[K1] Kumar, S., Demazure character formula in arbitrary Kac-Moody setting, Invent. Math. 89 (1987), 395-423.
[K2] Kumar, S., Kac-Moody Groups, their Flag Varieties and Representation Theory. Boston, Birkhäuser, 2002.

Address: Department of Mathematics, University of North Carolina, Chapel Hill, NC 27599-3250, USA. (shrawan@email.unc.edu)

