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1 Semisimplicity

1.1 Representations

Let G be a group (either a Lie group or a discrete group).
A representation of G consists of a finite-dimensional complex vector

space V along with a group homomorphism G→ GL(V ).
In the case where G is a Lie group, then we ask that the mapG→ GL(V )

be a smooth map. This is equivalent to asking that for all v ∈ V and α ∈ V ∗,
the matrix coefficient

G→ C g 7→ 〈α, gv〉

is a smooth (complex-valued) function on G.
A morphism φ of between representations V,W is a linear map φ : V →

W such that for all g ∈ G and v ∈ V , φ(gv) = gφ(v) (this condition is called
G-equivariance). The vector space of all morphism from V to W is denoted
HomG(V,W ).

If V is a representation, we can form its dual representation V ∗. The
action of G on V ∗ is given by 〈gα, v〉 = 〈α, g−1v〉 for g ∈ G,α ∈ V ∗, v ∈ V
(here 〈, 〉 denotes the canonical bilinear pairing between V ∗ and V .

If V,W are representations we can form their direct sum V ⊕W . The
action of G on V ⊕W is given by g(v, w) = (gv, gw).

If V,W are representations we can form their tensor product V ⊗W . The
action of G on V ⊗W is given on elementary tensors by g(v⊗w) = gv⊗gw.

So we can “add” representations and “multiply” them. This suggests
that the representations of G form a kind of ring. In fact, we can define a
ring Rep(G), called the representation (or Grothendieck) ring, as follows.

We start with the free Z-module with basis given by the isomorphism
classes [V ] of representations V of G. Then we quotient by the relation
[V ⊕W ] = [V ] + [W ]. Then we define multiplication by [V ][W ] := [V ⊗W ].

Example 1.1. Suppose that V is a 1-dimensional representation of G. Since
linear operators on 1-dimensional vector spaces are just given by multi-
plicatin by scalars, V is determined by a (smooth) group homomorphism
ρ : G→ C×. So we will write V as Cρ.

Note that if ρ1, ρ2 are two such homomorphisms, then Cρ1
⊗Cρ2

is again a
1-dimensional representation and is given by the homomorphism ρ1ρ2 which
is defined by (ρ1ρ2)(g) = ρ1(g)ρ2(g).

1.2 Irreducibles and indecomposables

We have two different notions of simplest possible representations.
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A representation which is not isomorphic to a direct sum is called inde-
composable.

A subrepresentation W ⊂ V is a subspace which is invariant for the
action of all elements of G. A representation with no non-trivial subrepre-
sentations is called irreducible.

Note that irreducible implies indecomposable, but not the other way
around in general.

Example 1.2. Consider G = Z. A representation of Z is the same thing as a
vector space V along with an invertible linear operator T : V → V (the map
Z → GL(V ) is n 7→ Tn). A subrepresentation is just an invariant subspace
for T . It is well-known from linear algebra that for non-diagonalizable T ,
not every invariant subspace has a complementary invariant subspace.

For example, consider

V = C2, T =

[

1 1
0 1

]

Then {(x, 0) : x ∈ C} is the only invariant subspace, and hence it does not
have a complementary invariant subspace.

We have Schur’s Lemma.

Lemma 1.3. If V,W are irreducible representations, then HomG(V,W ) is
1-dimensional if V ∼= W and 0-dimensional otherwise.

The following simple result is useful for constructing irreducible repre-
sentations.

Proposition 1.4. (i) If V is an irreducible representation, then so is V ∗.

(ii) If V is a 1-dimensional representation, then it is irreducible.

(iii) If V is an irreducible representation and W is a 1-dimensional repre-
sentation, then V ⊗W is an irreducible representation.

All parts follow immediately from the definitions.
In general, if V,W are irreducible representations, each of dimension

bigger than 1, then V ⊗W will almost never be irreducible.
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1.3 Haar measure and semisimplicity

Let G be a compact connected Lie group.

Theorem 1.5. There exists an invariant (under right and left multipli-
cation) measure dg on G. This measure is unique once we demand that
∫

G dg = 1.

The existence of this measure (called the Haar measure) allows us to
prove that the category of representations of G is semisimple.

We begin with invariant inner products. A G-invariant inner product on
a representation V is a Hermitian inner product 〈, 〉 on V (i.e. a positive
definite sesquilinear form) such that 〈gv, gw〉 = 〈v, w〉 for all v, w ∈ V and
g ∈ G.

Lemma 1.6. Every representation V of G admits an G-invariant Hermitian
inner product.

Proof. Choose an Hermitian inner product 〈, 〉 on V . We average this form
with respect to the G action by defining 〈, 〉avg by the formula

〈v, w〉avg =

∫

G
〈gv, gw〉 dg

Then the invariance of the Haar measure shows that 〈, 〉avg is invariant.
The integral of positive numbers is positive, so 〈, 〉avg is positive definite.

If G is a finite group, then the above Lemma goes through by replacing
the integral with 1

|G|

∑

g∈G. In fact, this is a kind of Haar measure on G,
which is just a point measure.

For the remainder of this section, we assume that G is either connected
compact or finite. (Of course, we could take G compact, which would cover
both these cases, but it is psychologically better to think of them as two
separate cases.)

Let V be a representation of G. A subspace W ⊂ V is called an invariant
subspace if gW ⊂W for all g ∈ G. An irreducible representation is one with
no non-trivial invariant subspaces.

Proposition 1.7. If W is an invariant subspace, then there exists another
invariant subspace U such that U ⊕W = V .

Proof. Choose a G-invariant inner product. Let U = W⊥, where the or-
thogonal complement is taken with respect to the G-invariant inner product.
Then by the invariance of the inner product, U is also an invariant subspace.
By general results U ⊕W = V .
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This immediately implies the following result.

Theorem 1.8. Every G-representation is equal to a direct sum of irreducible
subrepresentations. Equivalently, a representation is indecomposable iff it is
irreducible.

In light of this theorem, we say that every G-representation is completely
reducible and that the category of G-representations is semisimple. (A con-
fusing point: this is not the same thing as G being semisimple.)

Example 1.9. This result certainly fails for non-compact groups. For ex-
ample, if G = Z, then the Example 1.2 gives an example of representation
which is not isomorphic to a direct sum of irreducible representations.

Every G-representation cannot be canonically written as the direct sum
of irreducible subrepresentations. However, it can be canonically be written
as a direct sum of isotypic components.

Let V be a representation and let W be an irreducible representation.
The W -isotypic component of V , denoted VW , is the sum of all subrepre-
sentations isomorphic to W . The following result gives the isotypic decom-
position of V .

Theorem 1.10. For each irreducible representation W , there is a canonical
isomorphism of G-representations VW

∼= W ⊗ HomG(W,V ).
We have

V =
⊕

W

VW

where W ranges over all isomorphism classes of irreducible representations.

Example 1.11. Take V = C2 with the trivial representation (G is arbi-
trary). Then we can write C2 as a direct sum of irreducible representations
by picking any two 1-dimensional subspaces L1, L2. These lines L1, L2 will
be subrepresentations and carry the trivial G-action. So C2 = L1 ⊕ L2 is
a decomposition of C2 into irreducible subrepresentations. However, this
decomposition is of course not unique.

In the isotypic decomposition of C2, there is just one piece, namely C2

itself.

If W is a 1-dimensional representation, then VW is very easy to under-
stand. As remarked earlier, W determines a homomorphism ρ : G → C×

and then
VW = {v ∈ V : gv = ρ(g)v for all g ∈ G}.
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If W is the trivial representation, then VW = V G is the subspace of vectors
invariant under G.

To prove Theorem 1.10, we begin with the following useful results.

Lemma 1.12. Let W be an irreducible representation and let V be a vector
space. Define a representation W ⊗ V where G acts on the W part. Then
every subrepresentation of W ⊗ V is of the form W ⊗ U for some subspace
U ⊂ V . In particular, every irreducible subrepresentation of W ⊗ V is
isomorphic to W .

Proof. Let Y ⊂ W ⊗ V be an invariant subspace. For each α ∈ V ∗, define
a linear map

pα : Y →֒W ⊗ V
id⊗α
−−−→W

Since W is irreducible, pα(Y ) = 0 or pα(Y ) = W for all α.
Then let A = {α : pα(Y ) = 0} ⊂ V ∗. We leave it to the reader to verify

that Y = W ⊗A⊥.

Proof of Theorem 1.10. We start with the first part.
First, we consider W ⊗ HomG(W,V ) a G-representation where G acts

trivially on HomG(W,V ). We define a linear map

Ψ : W ⊗ HomG(W,V ) → V, by w ⊗ φ 7→ φ(w).

This linear map is easily seen to be G-equivariant, so it is a morphism
of G-representations.

By definition, im Ψ = VW . Now we claim that Ψ is injective and hence
an isomorphism onto VW .

The kernel K of Ψ is a subrepresentation of W ⊗ HomG(W,V ). Ap-
plying Lemma 1.12, K is W ⊗ U for some U ⊂ HomG(W,V ). But if
φ ∈ HomG(W,V ) and W ⊗ φ lies in the kernel of Ψ, then φ(w) = 0 for
all w ∈ W . This means that φ = 0. Hence we conclude that K = 0 and so
this map is injective.

Now, to get the direct sum decomposition, we note that by Theorem 1.8,
the sum of the subspaces VW equals V .

We just need to show that we have a direct sum. For this, let W1, . . . ,Wk

be pairwise non-isomorphic irreducible representations and suppose that we
already know that VW1

, . . . , VWk−1
give a direct sum. Suppose that

Wk ∩ VW1
⊕ · · ·VWk−1

6= 0.

Then let U be an irreducible subrepresentation of this intersection. Applying
the first part and Lemma 1.12, we see that U ∼= Wk. On the other hand
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for each i = 1, . . . , k − 1, we can take the projection πi(U) ⊂ VWi
given by

the direct sum. Not all these projections can be 0, so let us assume that
πi(U) 6= 0. Then U ∼= πi(U), since U is irreducible. On the other hand,
πi(U) is an irreducible subrepresentation of VWi

and so we conclude that
U ∼= Wi. Thus Wk

∼= Wi, a contradiction. Thus we conclude that we have
a direct sum.

Let V a representation and consider the isotypic decomposition

V ∼=
⊕

W

W ⊗ HomG(W,V )

In the representation ringRep(G), we see that [V ] =
∑

W dim HomG(W,V )[W ].
From this we see that the isomorphism classes [W ] of irreducible represen-
tations forms a Z-basis for Rep(G).

2 Characters

2.1 Definition and basic properties

If V is a representation of G, then we define a smooth function χV : G→ C

called the character of V by χV (g) = tr(g|V ), where tr denotes trace.
These characters are remarkably useful.
Let us investigate the behaviour of our characters under natural opera-

tors on representations.

Proposition 2.1. (i) If V is a representation, then χV ∗(g) = χV (g).

(ii) If V,W are representations, then χV ⊕W = χV + χW .

(iii) If V,W are representations, then χV ⊗W = χV χW .

Proof. For (i), note that χV ∗(g) = tr(g−1|V ). Now V admits a G-invariant
inner product and with respect to that inner product, G acts by unitary
operators. Hence tr(g−1|V ) = tr(g)|V .

Parts (ii), (iii) follow from standard properties of trace and can be proved
by choosing bases.

Hence the map
Rep(G) → C(G) [V ] 7→ χV

is a ring homomorphism.
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2.2 Characters and Hom spaces

We begin with the following lemma.

Lemma 2.2. dimV G =
∫

G χV (g) dg

Proof. Define a linear operator A : V → V by A(v) =
∫

G gv dg. A is
well-defined since G is compact, matrix coefficients are continuous, and con-
tinuous functions on compact sets are integrable.

Note that A2 = A, so that A is a projection operator onto {v : Av = v}.
We claim that this subspace is precisely V G. Clearly V G is contained in this
subspace.

Suppose that Av = v. Applying h to both sides and bringing it under
the integral, we obtain

∫

G
hgv dg = hv

Using the invariance of the measure, we obtain that
∫

G gv dg = hv which
implies that v = hv, as desired.

Hence, we conclude that A is a projection onto its 1-eigenspace V G

(actually, it is easy to see thatA isG-equivariant, so it must be the projection
given by decomposition into isotypic components).

Since
∫

G χV (g) = tr(A), the result follows.

Characters live inside the space C(G) of continuous functions on G,
which embeds into the Hilbert space L2(G) of square integrable complex
valued functions on G. On this Hilbert space, we have a inner product

〈f1, f2〉 :=

∫

G
f1(g)f2(g) dg.

Lemma 2.2 leads to the following useful interpretation of the inner prod-
uct on characters.

Proposition 2.3. Let V,W be representations. Then 〈χV , χW 〉 = dim HomG(V,W ).

Proof. First note that Hom(V,W ) is a representation of G where G acts by
(gφ)(v) = gφ(g−1v). The space of invariants for this action is HomG(V,W ).
As a representation of G, we have an isomorphism Hom(V,W ) ∼= V ∗ ⊗W .

By Proposition 2.1, χV ∗⊗W = χV χW . Thus applying Lemma 2.2, we see
that

dim HomG(V,W ) = dim(V ∗ ⊗W )G =

∫

G
χV (g)χW (g) dg

as desired.

9



Theorem 2.4. (i) The characters of irreducible representations are or-
thonormal.

(ii) If V,W are representations, then V ∼= W iff χV = χW . In words,
two representations are isomorphic if and only if they have the same
character.

Proof. Part (i) follows immediately from Proposition 2.3 and Schur’s Lemma.
For (ii), note that V ∼= W iff they have the same size isotypic compo-

nents. So they are isomorphic iff dim Hom(U, V ) = dim Hom(U,W ) for all
irreducible representations U . By Proposition 2.3, the size of these hom
spaces is determined by the characters.

Hence the ring homomorphism Rep(G) → C(G) given by taking charac-
ters is injective.

2.3 Characters as class functions

A class function on a group G is a function f : G→ C which is constant on
conjugacy classes. In other words, f(hgh−1) = f(g) for all g, h ∈ G. Because
trace of a linear operator is invariant under conjugation, we immediately
obtain the following.

Lemma 2.5. A character is a class function.

Thus, characters live inside the subspace C(G)G consisting of continuous
class functions.

Now suppose that G is finite. Then C(G) is the same thing as the space
of all functions on G. It is a vector space of dimension |G|. The inner
product on this space is given by

〈f1, f2〉 =
1

|G|

∑

g∈G

f1(g)f2(g).

Consider the subspace C(G)G of class functions. It has a basis given
by the characteristic functions of conjugacy classes. Thus it has dimension
equal to the number of conjugacy classes.

Since the characters of irreducible representations are linearly indepen-
dent and all of them live in C(G)G, we immediately see that the number
of irreducible representations of a finite group is less than or equal to the
number of conjugacy classes in G. Actually there is equality.
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Theorem 2.6. If G is finite, the characters of irreducible representations
form an orthonormal basis for C(G)G and thus the number of irreducible
representations is equal to the number of conjugacy classes of G.

Before we proceed with the proof, let us define the regular representa-
tion of a finite group to be its action on C[G] by left multiplication. More
precisely, if g ∈ G and

∑

h∈G ahh ∈ C[G], then the action is given by

g(
∑

h∈G

ahh) =
∑

h∈G

ahgh

Note that C[G] has a basis given by the group elements of G and this action
is just a permutation action with respect to this basis. So it is easy to see
that under this representation G is taken to a linearly independent set in
End(C[G]). This representation is called the regular representation.

Proof. Suppose that the characters of the irreducible representations do not
span C(G)G. Then we can find f ∈ C(G)G, f 6= 0, such that 〈χV , f〉 = 0
for all irreducible representation V .

Fix some irreducible representation V . Let A be the linear operator on
V defined by

v 7→
∑

f(g)gv.

Then since f is a class function, it is easy to see that A is G-equivariant, so
by Schur’s lemma, A acts on V by some scalar a. Now

adimV = tr(A) =
∑

g∈G

f(g)tr(g|V ) =
∑

g∈G

f(g)χV (g) = |G|〈χV ∗ , f〉 = 0

So a = 0. Thus
∑

f(g)g acts by 0 in every irreducible representation and
hence in every representation of G and in particular in the regular represen-
tation.

However, in the regular representation, the group elements give linearly
independent endomorphisms. Thus f(g) = 0 for all g. So we see that the
characters do span after all.

We can rephrase this result as saying that the map Rep(G) ⊗Z C →
C(G)G is a ring isomorphism (we need to extend scalars from Z to C, since
Rep(G) is only a Z-module).

Eventually, we will prove an analog of this result for compact groups.
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2.4 Characters of S3

Consider G = S3. This is the simplest non-abelian group. In symmetric
groups, conjugacy classes are given by cycle type, so S3 has three conjugacy
classes:

{(1)}, {(123), (132)}, {(12), (23), (13)}

Hence it has three irreducible representations. Let us try to find them.
Two easy 1-dimensional representations are the trivial representation

(each group element goes to 1) and the sign representation, which takes
even permutations to 1 and odd permutations to -1. It is convenient to
represent the characters in a table like this.

χtriv χsign

(1) 1 1
(12) 1 −1

(123) 1 1
We need one more irreducible representation. One obvious representa-

tion of S3 is its action on C3 by permuting the coordinates, so σ(x1, x2, x3) =
(xσ(1), xσ(2), xσ(3)) for σ ∈ S3 and (x1, x2, x3) ∈ C3. It is easy to see that
the character of this representation is given as follows.

χC3((1)) = 3, χC3((123)) = 0, χC3((12)) = 1

We can see that this is not an irreducible representation, since 〈χC3 , χC3〉 =
2. Also we can compute 〈χC3 , χtriv〉 = 1 to see that Hom(Ctriv,C

3) is one
dimensional and hence C3 contains one copy of the trivial representation.

Actually this is easy to see, since the subspace {(x, x, x) : x ∈ C} ⊂ C3

is clearly an invariant subspace isomorphic to the trivial representation.
We can choose a complementary invariant subspace W = {(x1, x2, x3) :
x1 + x2 + x3 = 0}.

Since C3 = Ctriv ⊕W , we see that χW = χC3 − χtriv. Thus χW is given
as follows.

χW ((1)) = 2, χW ((123)) = −1, χW ((12)) = 0

From this, we see that 〈χW , χW 〉 = 1 and hence W is an irreducible repre-
sentation.

Thus, the three irreducible representations are the trivial, the sign, and
W . The complete character table is:

χtriv χsign χW

(1) 1 1 2
(12) 1 −1 0

(123) 1 1 −1
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3 Tori

3.1 Compact tori

A connected compact abelian group is called a torus. The simplest example
of a torus is U(1) = S1. More generally, every torus is isomorphic to a
product of copies of U(1). Let us formulate a more precise version of this
statement.

Let T be a torus. Let t denote its Lie algebra. There is an exponential
map t → T . Let Λ denote the kernel of the exponential map.

Proposition 3.1. The exponential map is a group homomorphism and is
surjective. Hence T ∼= t/Λ.

The group Λ is a free abelian group whose rank is equal to the dimension
of T (and of t). We can choose isomorphisms t ∼= Rn,Λ ∼= Zn, and T ∼=
Rn/Zn = U(1)n.

Even though all tori are isomorphic to U(1)n, it is usually convenient not
to choose such an identification (much like not picking a basis for a vector
space).

Example 3.2. Let T be the diagonal unitary matrices of determinant 1.
This torus is important because it is a maximal torus of SU(n). From the
definition,

T = {(t1, . . . , tn) ∈ U(1)n : t1 . . . tn = 1}.

From this description, we can write

t = {(a1, . . . , an) ∈ Rn :
∑

ai = 0} and Λ = {(m1, . . . ,mn) ∈ Zn :
∑

ai = 0}.

Tori are very useful since they are generated by one element in the follow-
ing sense. We say that t ∈ T is a topological generator of T if the subgroup
generated by t, {tn : n ∈ Z}, is dense in T .

Lemma 3.3. Every torus has a topological generator.

3.2 Representations of Tori

Let T be a torus. A weight of T is a smooth group homomorphism from T
to U(1) and a coweight is a smooth group homomorphism from U(1) to T .

A weight of T is the same thing as a 1-dimensional representation of T
because every smooth group homomorphism T → C× must land in U(1), as
U(1) is the only non-trivial connected compact subgroup of C×.
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The set of all (co)weights is called the (co)weight lattice and is denoted
X∗(T ) (resp. X∗(T )). The weight and coweight lattice form free abelian
groups. There is a perfect pairing defined by composition

〈, 〉 : X∗(T ) ⊗Z X∗(T ) → Z = X∗(U(1))

If T = U(1)n, then any weight is of the form (t1, . . . , tn) 7→ tµ1

1 . . . tµn
n for

some µ = (µ1, . . . , µn) ∈ Zn. This shows that X∗(T ) = Zn.
In general, X∗(T ) is always naturally isomorphic to Λ. This is because

given µ ∈ Λ we can define a map U(1) = R/Z → T = t/Λ by [a] 7→ [aµ].
Every group homomorphism U(1) → T is of this form. This can be seen by
considering the map at the level of Lie algebras.

Example 3.4. Let T be the torus from Example 3.2. Then we have
X∗(T ) = Zn/Z(1, . . . , 1) because µ = (µ1, . . . , µn) gives rise to a homo-
morphism

T → U(1), (t1, . . . , tn) 7→ tµ1

1 · · · tµn
n

and this map is trivial if (µ1, . . . , µn) ∈ Z(1, . . . , 1).
Similarly, X∗(T ) = {(µ1, . . . , µn) ∈ Zn : µ1 + · · · + µn = 0}. Such a

(µ1, . . . , µn) gives rise to the map

U(1) → T, t 7→ (tµ1 , . . . , tµn)

Using Schur’s Lemma it is easy to see the following.

Proposition 3.5. Every irreducible representation of an abelian group is
1-dimensional.

Thus all irreducible representation of a torus T are one-dimensional and
they correspond to the set of weights X∗(T ).

Hence by the isotypic decomposition, for any representation V of T , we
can write V as the direct sum of subspaces

V =
⊕

µ

Vµ, where Vµ = {v ∈ V : tv = µ(t)v for all t ∈ T}

This is called the weight decomposition — the Vµ are called the weight
spaces. A vector v ∈ Vµ is a called a weight vector of weight µ.

The character of the 1-dimensional representation given by a weight µ is
just µ itself, regarded now as a function on T with values in C. To distinguish
the character from the weight, we will write eµ for the character.
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Note that if V is an arbitrary representation of T , then using the above
weight decomposition, we see that

χV =
∑

µ∈X∗(T )

(dimVµ)eµ

We regard these characters as living in the Z-group algebra of the weight
lattice, Z[X∗(T )] which is a subring of C(T ).

Combining these results, we see that

Rep(T ) → Z[X∗(T )] [V ] 7→ χV

is a ring isomorphism.

3.3 Complexification of tori

Given a torus T , we will define its complexification TC. This is a special
case of the complexification of compact groups.

The simplest example of this complexification is U(1)C = C×. Of course,
in a sense this is the only example since every torus is a product of copies
of U(1). However, we will do things in a more invariant way.

Let us begin by describing what kind of an object a complex torus is.

3.3.1 Complex Lie groups and complex algebraic groups

We will now enter into the world of complex Lie groups and complex alge-
braic groups.

An n-dimensional complex manifold X is a topological space X along
with an open cover {Ui} and homeomorphisms Ui → Vi, where Vi are open
subsets of Cn. We require that the transition functions between these charts
are given by holomorphic functions between the open subsets of Cn.

A complex Lie group is a group in the category of complex manifolds.
By this we mean that it is a complex manifold G along with multiplication
maps G × G → G and inverse maps G → G which are holomorphic and
make G into a group.

Example 3.6. One simple example of a complex Lie group is C×, under
multiplication (it has a very simple atlas, since it is already an open subset
of C).

Another example is C/Z, where the group structure is given by addition
in C and the atlas comes by choosing open sets in C which do not contain
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two points whose difference is an integer. Note that the map z 7→ e2πiz

defines an isomorphism of complex Lie groups between C× and C/Z.
Another example of a complex Lie group is C/Z2. The underlying real

manifold is S1 × S1. For this reason, C/Z2 is sometimes called a complex
torus, which is the word which we are reserving for C× and its relatives.
In this course, we will not be interested in examples of complex Lie groups
whose underlying topological space is compact.

An affine complex algebraic variety is a subset X of Cn which is de-
fined by polynomial equations. Given X, we can consider the ideal I(X)
of all polynomials vanishing on X and then form the quotient O(X) =
C[x1, . . . , xn]/I(X), which is the algebra of polynomial functions on X (also
called the coordinate ring of X).

Conversely, given a finitely generated reduced C-algebra R, we define
SpecR to be the set of C-algebra homomorphisms from R to C. Given an
affine complex algebraic variety X, there is a map X → SpecO(X) taking
x to the homomorphism given by evaluation at x, f 7→ f(x). A basic result
in algebraic geometry, called Hilbert’s nullstellensatz, tells us that this map
is a bijection.

A complex algebraic group is a group in the category of affine complex
algebraic varieties.

Example 3.7. Consider SLn(C), the group of determinant 1, n×n, complex
matrices.

It is an algebraic variety, since it is the subvariety of Cn2

(the matrix
entries), given by the polynomial det−1. Note that det is a polynomial in
the entries of a matrix.

The group structure on SLn(C) is given by matrix multiplication which is
clearly polynomial in the entries of the matrices. The inverse map g 7→ g−1

is also given by a polynomial in the matrix entries, but this is a bit less
obvious.

Every complex algebraic group has an underlying complex Lie group
structure, because every smooth complex algebraic variety carries the struc-
ture of a complex manifold.

The tangent space at the identity to a complex Lie group or to a complex
algebraic group is a complex Lie algebra. The definition of the Lie algebra
structure is the definition using left-invariant vector fields, which makes
perfect sense for complex Lie groups or complex algebraic groups.

16



3.3.2 Algebraic varieties and localization

There is one special way to produce algebraic varieties which will be useful
for us. If f ∈ C[x1, . . . , xn] is a non-constant function, then we can consider
its non-vanishing locus Uf = {a ∈ Cn : f(a) 6= 0}. This set naturally carries
the structure of an algebraic variety because it is in bijection with

{
(

a,
1

f(a)

)

: a ∈ Uf} ⊂ Cn+1,

which is an algebraic variety because it is defined by the equation xn+1f(x1, . . . , xn) =
1.

Note that under this bijection, the coordinate ring of Uf is the quotient
of C[x1, . . . , xn+1] by the ideal generated by xn+1f−1. We call this ring, the
localization of C[x1, . . . , xn] at f and think about it as adjoining an inverse
for f .

O(Uf ) = C[x1, . . . , xn+1]/(xn+1f − 1) = C[x1, . . . , xn][f−1]

Example 3.8. Take G = GLn = {A ∈ End(Cn) : A is invertible }. Note
that End(Cn) can be identified with Cn2

(by matrix entries) and that A is
invertible if and only if det(A) 6= 0. Note that det is a polynomial function
of the matrix entries. Thus GLn is an algebraic group and O(GLn) =
C[xij , det

−1]1≤i,j≤n.
The simplest example of this isG = C×, from which we see that O(C×) =

C[x, x−1]. Some authors write Gm (the multiplicative group) for C× when
they think of it as an algebraic group.

3.3.3 Complex tori

Given a torus T , we define its complexification TC in two ways.
First, TC = tC/Λ as a complex Lie group (where tC = t ⊗R C). In this

approach, the group structure comes from addition in tC.
Second, as a complex algebraic group, we define TC as Spec C[X∗(T )].

So the coordinate ring of TC is the complexified group algebra of the weight
lattice of T . In this approach, the group structure is slightly more mysteri-
ous. It is defined by the equation µ(t1t2) = µ(t1)µ(t2) for µ ∈ X∗(T ) and
t1, t2 ∈ TC. This defines the element t1t2, because from the algebraic geom-
etry perspective, it is enough to know value of every polynomial function on
t1t2.

The underlying complex Lie group of the complex algebraic group TC

is naturally isomorphic to the complex Lie group TC. To see this, it is
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enough to define a map C-algebras between C[X∗(T )] and the algebra of
holomorphic functions on tC/Λ. We do so by assigning to each weight µ the
function (also denoted µ) defined by

µ([a]) = e2πiµ(a)

where µ(a) is defined using the emedding X∗(T ) ⊂ t∗.
TC is a complex torus, which by definition means a complex Lie/algebraic

group which is isomorphic to C×n
for some n.

Example 3.9. (i) Let us take T = U(1), so then X∗(T ) = Λ = Z and
t ⊗R C = C. Thus as a complex Lie group, TC = C/Z. On the other
hand, using the coordinate ring of the complex algebraic group TC is
given by O(TC) = C[Z] = C[x, x−1] and so TC = C×. We have already
seen that C/Z and C× are isomorphic as complex Lie groups.

(ii) As a second example, let us take diagonal unitary matrices of deter-
minant 1, from 3.2. Recall that t = {(a1, . . . , an) ∈ Rn :

∑

ai = 0}
and Λ = {(m1, . . . ,mn) :

∑

mi = 0}.

Then
TC = tC/Λ = {(a1, . . . , an) ∈ Cn :

∑

ai = 0}/Λ.

Exponentiating each coordinate gives us an isomorphism of complex
Lie groups between TC and

{(t1, . . . , tn) ∈ (C×)n : t1 . . . tn = 1}

On the other hand C[X∗(T )] = C[x1, . . . , xn, x
−1
1 , . . . , x−1

n ]/(x1 . . . xn).
This is readily seen to be the algebra of polynomial functions on the
above group.

3.4 Representation theory of complex tori

An algebraic representation of a complex algebraic group is vector space
V and a map of algebraic groups G → GL(V ). This means that the map
should be a group homomorphism and also a map of algebraic varieties (i.e.
it should be given by polynomials). In particular this means that every
matrix coefficient of a representation is a polynomial function on G.

Sometimes people say “rational representation” instead of “algebraic rep-
resentation”. The reason why they say “rational representation” rather than
“polynomial representation” is that for a group like GLn, which is defined
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by localization, the inverse of the localized function is polynomial function
on G. For example the map g 7→ det(g)−1 is a (1-dimensional) algebraic
representation of GLn.

Example 3.10. The simplest example of a non-algebraic representation is
to take G = C× and consider the 1-dimensional representation C× → C×

given by z → z. Since complex conjugation is not a polynomial, this is not
an algebraic representation (it is however an algebraic representation of the
underlying real algebraic group).

From now on, when we talk about a representation of an algebraic group,
we will always mean an algebraic representation.

The representation theory of complex tori is very much as that of com-
pact tori. Let TC be a complex torus, the complexification of a compact
torus T . Given a weight µ ∈ X∗(T ), we can construct a map T → C× in
one of the following two equivalent ways (depending on which definition of
TC we take).

In the first approach, we think of TC = tC/Λ, and we write µ ∈ Hom(Λ,Z)
(using the identification of X∗(T ) and Λ and the pairing between X∗(T ) and
X∗(T )). Then we define

TC → C×, by [a] 7→ e2πiµ(a).

This is a well-defined map since if a ∈ Λ, then µ(a) is an integer and so
e2πiµ(a) = 1. (This the same function on TC we defined in section 3.3.3 when
we were showing that weights give holomorphic functions on TC).

In the second approach, we just note that since we defined O(TC) =
C[X∗(T )], µ is an invertible element of O(TC) and hence defines a map from
TC to C×. This map is a group homomorphism by the definition of the
group structure on TC.

Actually, in practice, we don’t really think of it in either of these two
ways.

Example 3.11. Return to our favourite torus TC = {(t1, . . . , tn) ∈ C×n
:

t1 . . . tn = 1}. Recall that the weight lattice is X∗ = Zn/Z(1, . . . , 1). Given
µ = (µ1, . . . , µn) ∈ X∗, we get a group homomorphism by (t1, . . . , tn) 7→
tµ1

1 . . . tµn
n as before.

Lemma 3.12. The above construction gives an isomorphism of abelian
groups X∗(T ) ∼= Hom(TC,C

×). Similarly, we have an isomorphism X∗(T ) ∼=
Hom(C×, TC). Here Hom denotes either as complex Lie groups or as com-
plex algebraic groups (the homomorphisms are the same).
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Because of these isomorphisms, we will write X∗(TC) = X∗(T ) and
X∗(TC) = X∗(T ).

4 Maximal tori and characters

For this section, fix a compact connected Lie group G.

4.1 Maximal tori

A maximal torus T in a compact group G is a Lie subgroup T ⊂ G which
is a torus and which is not contained in another torus.

We have the following fundamental result. Fix a maximal torus T ⊂ G.

Theorem 4.1. Every element of G is conjugate into T .

Example 4.2. Take G = U(n). Then a maximal torus T for G is given by
the diagonal unitary matrices. Then Theorem 4.1 is equivalent in this case
to the statement that all unitary matrices are unitarily diagonalizable.

Using the existence of topological generators for tori, we immediately
conclude the following.

Corollary 4.3. Every torus in G is conjugate into T . In particular, all
maximal tori are conjugate.

In other words, if T ′ is another maximal torus in G, then there exists
g ∈ G, such that gT ′g−1 = T .

From this corollary, we conclude that all maximal tori have the same
dimension. The dimension of the maximal torus is called the rank of G and
is denoted ℓ.

Another corollary of Theorem 4.1 will be quite useful to us. It is also
proven using topological generators for tori.

Corollary 4.4. If T is a maximal torus, then

T = ZG(T ) := {g ∈ G : gtg−1 = t, for all t ∈ T}.

4.2 Restriction of representations to maximal tori

For us, the main point of maximal tori is that we can use them to study
representations of G. We fix a maximal torus T and write X = X∗(T ) for
its weight lattice.
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Let V be a representation of G. We can regard V as a representation of
T and then form its weight decomposition.

V =
⊕

µ∈X

Vµ

and we can consider its character χT
V as a T -representation. As we discussed

above χT
V =

∑

µ∈X(dimVµ)eµ.

Theorem 4.5. Let V,W be representations of G. Then V ∼= W as G-
representations iff χT

V = χT
W . Equivalently, V ∼= W iff dimVµ = dimWµ for

all µ.

Proof. Suppose that χT
V = χT

W . This means that χV (t) = χW (t) for all
t ∈ T . But since the character of a representation is a class function, this
implies that χV (gtg−1) = χW (gtg−1) for all g ∈ G. Every element of G is
of this form by Theorem 4.1. Hence χV = χW and so V ∼= W by Theorem
2.4.

Yet another equivalent formulation of Theorem 4.5 is to say that two
representations of G are isomorphic iff their restriction to T is isomor-
phic. Put another way, restriction gives us a injective ring homomorphism
Rep(G) → Rep(T ).

Since the character of V is completely determined by its restriction to
T , which is in turn determined by the dimension of the weight spaces, from
now on, if V is a representation of G, then we will think of its character as

χV =
∑

µ∈X∗(T )

(dimVµ)eµ

which we regard as a element of Z[X].

4.3 The Weyl group

Let NG(T ) denote the normalizer of T in G. So

NG(T ) = {g ∈ G : gtg−1 ∈ T, for all t ∈ T}.

Inside NG(T ) we have T which is a normal subgroup. We define the Weyl
group W by W = NG(T )/T . Note that NG(T ) acts on T by conjugation
and T acts trivially, so W acts on T . In fact, by Lemma 4.4, we see that
this is a faithful action (i.e. no non-identity element of W acts trivially on
T ).
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Example 4.6. Take G = U(n) and T to be the diagonal matrices. There is
a map Sn → NG(T ) taking a permutation w to a permutation matrix Pw.
We claim this this map induces an isomorphism Sn → NG(T )/T .

It is easy to see that the map is injective, since every non-identity per-
mutation matrix acts non-trivially on T by conjugation.

To see that it is surjective, let g ∈ NG(T ). Then we can rephrase the
condition of lying in the normalizer as saying that for all t ∈ T , there exists
t′ ∈ T such that tg = gt′. Since tg amounts to multiplying the rows by
(non-zero) scalars and gt′ amounts to multiplying the columns by (non-
zero) scalars, we see that g can only have one non-zero entry in each row
and coloumn. From this it follows that g ∈ SnT .

Hence Sn →W is an isomorphism.

Lemma 4.7. The Weyl group is finite.

Before proceeding with this lemma, let us note the following general fact.

Proposition 4.8. If G is a Lie group and H is a closed Lie subgroup, then
G/H naturally carries the structure of a manifold of dimension dimG −
dimH. If H is a normal closed Lie subgroup, then G/H is a Lie group. If
G is compact, then G/H is compact.

Proof of Lemma 4.7. Note that NG(T ) is a closed Lie subgroup, since it
is a subgroup which is topogically closed (conjugating T to T is a closed
condition). So from the Proposition, we see that W is compact. Hence to
show that W is finite, it suffices to show that it is discrete.

Consider the action of W on T . Since it acts on T , it acts linearly
on t and preserves the lattice Λ. Hence we get a group homomorphism
W → GL(Λ) where GL(Λ) denotes the Z-linear automorphisms of Λ (this
is the same thing as the linear operators on t which take Λ isomorphically
to Λ).

Since GL(Λ) is discrete, the connected component of the identity in W
must be taken to the identity in GL(Λ). Thus if w ∈W is in the connected
component of the identity, it acts trivially on Λ. Since it acts trivially on Λ
and Λ spans t (over R), w acts trivially on t and hence it acts trivially on
T = t/Λ.

Thus by the remarks at the beginning of this section, we see that w is
the identity element of W and thus W is discrete.

Because W acts on T , it acts Z-linearly on the weight and coweight
lattices X∗(T ) and X∗(T ). The argument in the proof of the above Proposi-
tion shows that W acts faithfully on the lattice Λ. Since Λ is isomorphic to
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X∗(T ) and is dual to X∗(T ), W acts faithfully on the weight and coweight
lattices as well.

Example 4.9. For G = U(n), the action of Sn on X∗(T ) = Zn is given by

w(µ1, . . . , µn) = (µw(1), . . . , µw(n))

4.4 The Weyl group and characters

As before, let G be a compact Lie group, let T be its maximal torus, and
let X be its weight lattice. Let W be the Weyl group and let Z[X]W denote
the subalgebra of Weyl invariants. So an element of Z[X]W is a linear
combination

∑

µ∈X aµe
µ, with awµ = aµ for all µ ∈ X,w ∈W .

We begin with the following relatively straightforward observation.

Proposition 4.10. If V is a representation of G, then χV ∈ Z[X]W .

Proof. We have already observed that χV is a class function on G (when
regarded as a function on G). Thus when we restrict χV to T , it must be
invariant under the action of NG(T ). This immediately implies the desired
result.

Here is another way to think about this proof. For each w ∈W , we pick
some g ∈ NG(T ) ⊂ G such that [g] = w. Let v ∈ Vµ be a weight vector of
weight µ. Then because g ∈ NG(T ), g−1tg ∈ T and we have

tgv = gg−1tgv = g(wµ)(t)v = (wµ)(t)gv

using the definition of the action of W on X. Hence g(Vµ) ⊂ Vwµ and
using g−1, it is easy to see that g gives an isomorphism from Vµ to Vwµ.
Thus, dimVµ = dimVwµ and hence the character χV =

∑

µ(dimVµ)eµ is
W -invariant.

(In the case of G = U(n), we can actually choose a lift W → G which is
a group homomophism, by assigning to each permutation w ∈ Sn = W , its
permutation matrix. In general, it is not possible to choose such a lift.)

From the proposition, we see that there is an injective ring homomor-
phism Rep(G) → Z[X]W . We will soon see that it is an isomorphism.

4.5 Representations of U(n)

Let us carry out an extended example when G = U(n). In this case, we
can do a complete analysis of the situation. We take T to be the diagonal
unitary matrices. So X = Zn and W = Sn. We will write

Z[X] = Z[e1, . . . , en, e
−1
1 , . . . , e−1

n ]
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where ei = e(0,...,1,...,0). For λ = (λ1, . . . , λn) ∈ X, following our usual
notation, we write

eλ = eλ1

1 . . . eλn
n

First, let us consider Z[X]W , which we can think of as the ring of Lau-
rent polynomials in the variable e1, . . . , en which are invariant under the
symmetric group Sn. This ring, or more precisely the n→ ∞ limit, is called
the ring of symmetric functions.

Let
X+ = {(λ1, . . . , λn) ∈ X : λ1 ≥ · · · ≥ λn}.

It is called the set of dominant weights. For λ ∈ X+, let us write

mλ =
∑

µ∈Wλ

eµ.

It is immediate from the definition that the set {mλ}{λ ∈ X+} forms a basis

for Z[X]W . mλ is called a monomial symmetric function.
Define a partial order on X = Zn by (λ1, . . . , λn) ≥ (µ1, . . . , µn) if

λ1 ≥ µ1, λ1 + λ2 ≥ µ1 + µ2, . . . , λ1 + . . . λn = µ1 + · · · + µn.

We will now define other bases for Z[X]W which will also be labelled by
dominant weights and which will be upper-triangular with respect to this
partial order. The motivation for our constructions in the following idea.

Let I be a partially ordered set, possibly infinite, but with the property
that for each i ∈ I, {j ∈ I : j ≤ i} is finite. Let V be a free abelian group
with basis {vi}i∈I . Let {wi}i∈I be another set of vectors in V labelled by I.
We say that {wi}i∈I is uni-upper triangular with respect to {vi}i∈I if for all
i ∈ I, we have

wi − vi ∈ span(wj : j < i)

Lemma 4.11. Under the above setup, {wi}i∈I forms a Z-basis for V as
well.

For k = 1, . . . , n, let pk(e1, . . . , en) denote the kth elementary symmetric
function. So

p1 = e1 + · · · + en, p2 = e1e2 + e1e3 + · · · + en−1en, . . . , pn = e1 . . . en

and, in general, pk is the sum over all k-element subsets of {1, . . . , n}. Clearly
pk ∈ Z[X]W , for k = 1, . . . , n. Also note that pn is invertible in Z[X] and
p−1

n ∈ Z[X]W .
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Let ωi = (1, . . . , 1, 0, . . . , 0). If we take λ ∈ X+, we can write λ =
m1ω1 + · · · + mnωn, with mi ∈ N, for 1 ≤ i ≤ n and mn ∈ Z. Given
λ ∈ X+, let us define pλ = pm1

1 . . . pmn
n . (pλ is sometimes called a elementary

symmetric function.)

Theorem 4.12. The set {pλ}λ∈X+
forms a basis for Z[X]W . Hence

Z[X]W ∼= Z[p1, . . . , pn−1, pn, p
−1
n ].

Proof. Note that pλ = mλ + v, where v lies in the span of the set {mµ}µ<λ

(for example, see Lemma 4.15 below). The result follow from Lemma 4.11.

Now, let us try to find representations of U(n) for which these pk are
the characters.

First, a general construction. If V is a representation of a group G, then
V ⊗k is a representation of G. There is also an action of Sk on V ⊗k which
commutes with the action of G on V ⊗k.

Hence the symmetric power Symk V := (V ⊗k)Sk carries an action of G.
Similarly

ΛkV := {v ∈ V ⊗k : σv = sign(σ)v}

is a representation of G.
More generally, ifW is an irreducible representation of Sk, then HomSk

(W,V ⊗k)
carries a representation of G. If W is the trivial representation of Sk, then
HomSk

(W,V ⊗k) = Symk V , while if W is the sign representation of Sk, then
HomSk

(W,V ⊗k) = ΛkV
We will specialize this to the case where V = Cn with the usual action

of U(n). So we have an action of U(n) on ΛkCn, for k = 1, . . . , n.

Lemma 4.13. The character of ΛkCn is pk.

Proof. Let v1, . . . , vn be the standard basis for Cn. There is a basis for
ΛkCn consisting of vi1 ∧ · · · ∧ vik where i1 < · · · < ik. The result follows
immediately.

The representation ΛnCn is 1-dimensional and is given by the group
homomorphism det : U(n) → U(1). Its dual representation is given by
1/det and has character p−1

n .

Corollary 4.14. The map Rep(G) → Z[X]W is an isomorphism.

Proof. We already knew it was injective and since it hits all the generators
p1, . . . , pn, p

−1
n , it must be surjective.

25



Let us use this result to get a description of the irreducible representa-
tions.

We say that a representation V of U(n) has highest weight λ ∈ X+, if

(i) dimVλ 6= 0, and

(ii) For all µ ∈ X such that dimVµ 6= 0, µ ≤ λ.

Note that a representation can only have one highest weight (of course, it
may not have any highest weight). We will also say that V is of highest
weight λ.

Lemma 4.15. If V1 and V2 are representations of highest weights λ1 and
λ2, then V1 ⊗ V2 has highest weight λ1 + λ2.

Proof. Note that

(V1 ⊗ V2)µ =
⊕

µ1+µ2=µ

(V1)µ1
⊗ (V2)µ2

Now if µ1 ≤ λ1 and µ2 ≤ λ2, then µ1 +µ2 ≤ λ1 +λ2. The result follows.

We are now in a position to prove our decisive result.

Theorem 4.16. For each λ ∈ X+, there exists a unique irreducible repre-
sentation V (λ) of U(n) of highest weight λ. These are all non-isomorphic
and they are all the irreducible representations of U(n).

Proof. Let λ ∈ X+ and let us write λ = m1ω1 + · · · +mnωn. Then we can
consider the representation

W = (Cn)⊗m1 ⊗ (Λ2Cn)⊗m2 ⊗ · · · ⊗ (ΛnCn)⊗mn

of U(n). By the above results, the character of W is pλ.
By Lemma 4.15, W has highest weight λ. In particular, the dimension of

its λ-weight space is 1-dimensional. Hence there exists a unique irreducible
subrepresentation V (λ) whose λ-weight space is 1-dimensional. Since W has
highest weight λ, so hence V (λ) does as well.

If λ 6= µ, then V (λ) and V (µ) will have different highest weights, so they
will be different representations.

To see that these are all the irreducible representations, it is enough to
see that the set {χλ := χV (λ)}λ∈X+

forms a basis for Z[X]W . To see this,
we again appeal to Lemma 4.11.
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Later, we will see a few different ways of computing the characters χλ

(equivalently, understanding the weight decomposition of V (λ)).

Example 4.17. If λ = (k, 0, . . . , 0) = kω1, then V (λ) = Symk Cn. This can
be proven by noting that Symk Cn is irreducible1 and is of highest weight
kω1.

Example 4.18. Consider U(3). Let us think about V (2, 1, 0). Consider
C3 ⊗ Λ2C3. This representation has the following weight diagram.

It contains one copy of the determinant representation, since there is a
non-zero map C3 ⊗ Λ2C3 → Λ3C3 which is the determinant representation.
So we can split

C3 ⊗ Λ2C3 = W ⊕ Cdet

This representation W has the weight diagram.
It is not that hard to see that W is irreducible and hence W = V (2, 1, 0).

5 Complexification of compact groups

5.1 Complexification in general

5.1.1 Vector spaces

We begin with vector spaces. If V is a real vector space, then we can
construct VC = V ⊗R C. We write elements of VC as v1 + iv2 = v1⊗1+v2⊗ i
for v1, v2 ∈ V . VC will carry a conjugate-linear map σ : VC → VC, which
is an involution (σ2 = id). We can recover V from VC and σ by setting
V = V σ

C
.

Finally, note that VC can also be defined by the following universal prop-
erty. Let W be a complex vector space. Every R-linear map T : V → W
extends uniquely to a C-linear map TC : VC →W by setting TC(v1 + iv2) =
T (v1) + iT (v2). Another way to say the same thing is that complexification
is the left adjoint functor to the forgetful functor from complex vector spaces
to real vector spaces. In an equation,

HomR(V,W ) = HomC(VC,W ).

1I don’t see a complete elementary way to prove that Symk Cn is irreducible, but there

should be one.
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5.1.2 Lie algebras

Now suppose that g is a real Lie algebra. Then we can construct a complex
Lie algebra gC := g⊗R C. The Lie bracket on gC comes from the Lie bracket
on g by extending it to be complex linear. As with vector spaces, conjugate-
linear σ and the universal property. In particular, every representation of g

on a complex vector space V extends uniquely to a representation of gC on
V .

Example 5.1. (i) One simple example is to take g = gln(R). Then we
see gC = gln(C).

(ii) Another straightforward example is g = so(n), the Lie algebra of n×n
skew-symmetric real matrices. Then gC = son(C), the n × n skew-
symmetric complex matrices because every complex skew-symmetric
matrix can be written as A + iB, where A,B are both real skew-
symmetric matrices.

Another way to think about the same thing, is to describe so(n) as
the subspace of gln(R) defined by the linear equation A + Atr = 0.
So its complexification is the subspace of gln(C) defined by the same
equation, which is of course gln(C).

(iii) A more complicated example is g = u(n), the Lie algebra of skew-
Hermitian n×n complex matrices. Note that u(n) is a real Lie algebra,
not a complex Lie algebra. The complexification of u(n) is gln(C). This
can be see in two different ways.

First of all, we can embed u(n) into gln(C) in the obvious way. Under
this embedding iu(n) becomes the set of all Hermitian matrices. Every
complex matrix can be written uniquely as the sum of a Hermitian and
a skew-Hermitian matrix, so u(n) ⊕ iu(n) = gln(C).

Another way to think about this is to think of an element u(n) a sum
A+ iB, where A,B are real matrices. Then,

u(n) = {(A,B) ∈Mn(R) ×Mn(R) : A+ iB = −(Atr − iBtr)}

We can rewrite this as the space of pairs of real matrices (A,B) as
A = −Atr and B = Btr. Hence

u(n)C = {(A,B) ∈Mn(C) ×Mn(C) : A = −Atr, B = Btr}

With this description, the map u(n)C → gln(C) taking (A,B) 7→ A+
iB is an isomorphism of complex Lie algebras.

28



Notice that in the example above, u(n) and gln(R) are non-isomorphic
real Lie algebras (for n ≥ 2), but their complexifications are isomorphic.

5.1.3 Affine varieties

Now letX ⊂ Rn be a real affine algebraic variety. We let I(X) ⊂ R[x1, . . . , xn]
denote the ideal of polynomials vanishing on X. We define the complexifi-
cation XC of X to be the set of x ∈ Cn such that f(x) = 0 for all f ∈ I(X).
For example, if I(X) is generated by just one polynomial f , then XC will
be the subvariety of Cn defined by the same polynomial.

Conversely if we fix a complex affine variety Y , then any real variety X
such that XC

∼= Y is called a real form of Y .

Example 5.2. Let us take X = U(1) to be a circle in R2, defined by the
equation x2 + y2 = 1. So f = x2 + y2 − 1 and XC ⊂ C2 is the locus
x2 +y2 = 1. However, x2 +y2 = (x+ iy)(x− iy), so applying a linear change
of coordinates in C2, we see that

XC = {(u, v) ∈ C2 : uv = 1}

Note that XC is the same thing as R×
C

= C×, where as usual, we regard R×

as the affine variety

R× = {(u, v) ∈ R2 : uv = 1}.

So U(1) and R× an example of a pair of non-isomorphic real varieties whose
complexifications are isomorphic.

The following result will be of importance to us.

Lemma 5.3. Let X be a real affine variety and XC its complexification.
If f ∈ O(XC) and f vanishes on X, then f = 0. (In other words, X is
Zariski-dense in XC.)

Proof. It suffices to show that O(XC) = O(X)⊗R C. To see this, note that
R[x1, . . . , xn] ⊗R C = C[x1, . . . , xn], so the above statement is equivalent to
showing that I(XC) = I(X) ⊗R C. By the definition, we have containment,
I(X) ⊗R C ⊂ I(XC), so by the Nullstellensatz, it suffices to show that
I(X) ⊗R C is a radical ideal.

Suppose that a, b ∈ R[x1, . . . , xn] and (a + ib)k ∈ I(X) ⊗R C for some
k. Then multiplying by (a − ib)k, we see that (a2 + b2)k ∈ I(X) ⊗R C.
Hence (a2 + b2)k ∈ I(X). Since I(X) is radical, a2 + b2 ∈ I(X). But if
a2 + b2 ∈ I(X), then a2(x)+ b2(x) = 0 for all x ∈ X. Hence a(x) = b(x) = 0
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for all x ∈ X (since a(x) and b(x) are real numbers). Thus a, b ∈ I(X) and
we are done2.

If X ⊂ Rn is a real affine variety, then XC ⊂ Cn carries an involution σ :
XC → XC which is defined by σ(x1, . . . , xn) = (x1, . . . , xn), using complex
conjugation of each coordinate. Since the polynomials defining XC have real
coefficients, if x ∈ XC, then σ(x) ∈ XC. By construction, we can recover X
from XC by looking at the fixed points of σ.

Example 5.4. Take X to be the circle in R2 as above. As above, we identify
XC = C×. Then σ(z) = z−1. So σ(z) = z if and only if |z| = 1 as expected.

The complexification of algebraic varieties satisfies a universal property
similar to the one for vector spaces. Let X be a real affine variety and XC

be its complexification. Let Y be a complex affine variety. Then a real-
algebraic map from X to Y extends uniquely to a complex algebraic map
from XC to Y . Moreover all complex algebraic maps from XC to Y arise
this way. In an equation,

HomR−varieties(X,Y ) = HomC−varieties(XC, Y ). (1)

To see this, let recall that if X ⊂ Rn and Y ⊂ Cm = R2m, then a morphism
F of real varieties from X to Y is given by 2m-polynomials {fj , gj}j=1...m in
n variables with real coefficients, which map X into Y . Then we can define
FC : XC → Y , by using {fj + igj}j=1,...,m, which gives us m polynomials
in n variables with complex coefficients, which maps XC into Y . Note that
this univeral property implies that the complexification of X is independent
of the embedding of X into affine space.

We can also think about this by examining coordinate rings. Let A =
OC(Y ) and B = OR(X). The coordinate ring of X when regarded as a real
variety is (A ⊗ Ā)σ, where Ā denotes the same C-algebra as A but with
scalar multiplication twisted by complex conjugation and where σ denotes
the map which permutes tensors. Then the equivalent statement to (1) is

HomR−algebras((A⊗ Ā)σ, B) = HomC−algebras(A,B ⊗R C)

This last statement can be verified directly by noting that there are two
(vector space) embeddings of A into (A ⊗ Ā)σ and these two embeddings
can be used to define a map from A to B ⊗R C = B ⊕ iB.

Finally, we note the following fact. Suppose we have an embedding map
X → Y of affine varieties. The functoriality of complexification gives us a

2Thanks to David Speyer for this argument.
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map XC → YC. We claim that this gives an embedding XC ⊂ YC. To see
this, embed Y into some affine space Rn. This gives an embedding of X
into Rn and we can define the complexification of X with respect to this
embedding. Thus we get XC ⊂ YC ⊂ Cn as desired.

5.1.4 Algebraic groups

Now, let G be a real algebraic group. Then we complexify G as a real
variety to obtain a complex variety GC. The group structure on G gives us
a group structure on GC. There are a couple of ways to see that the group
structure survives the complexification. The first is to just note that the
group multiplication is given by polynomial functions and these polynomial
functions continue to make sense after the complexification. Another way is
to note that the group structure on G provides O(G) with the structure of
a Hopf algebra and so its complexification O(GC) = O(G)⊗R C also carries
the structure of a Hopf algebra.

Example 5.5. (i) The important example of U(1) was already mentioned
above. More generally, if T is any torus, then its complexification TC

defined in section 3.3 agrees with the above definition.

To make this precise, we have to first give T the structure of a real
algebraic group. One way to do this is to choose an isomorphism of
Lie groups T → U(1)n and then define a real algebraic group structure
on T using the real algebraic group structure on U(1)n. The resulting
structure on T is independent of the isomorphism with U(1)n, because
all Lie group automorphisms of U(1)n are real algebraic.

An alternate approach to define O(T ) is as follows. First we define
O(TC) = C[X] as before and then we define σ : O(TC) → O(TC) by
µ 7→ −µ. Then we set O(T ) := O(TC)σ. Then we check that there
is a bijection between SpecR O(T ) (the set of maximal ideals of O(T )
whose residue field is R) and T .

(ii) Let us now take G = SO(n). We view SO(n) as the variety in Mn(R)
(n×n matrices) defined by the equations AAtr = 1 and detA = 1. Its
complexification is hence given by the same conditions in Mn(C) and
thus is SOn(C).

More generally, if V is any real vector space with a non-degenerate
symmetric bilinear form 〈, 〉, then its automorphisms SO(V, 〈, 〉) is a
real algebraic group. Note that SO(V, 〉, 〈) is determined up to isomor-
phism by the signature of the bilinear form. We can complexify the
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pair V, 〈, 〉 to obtain VC, 〈, 〉C and then we have SO(V )C
∼= SO(VC).

Note that SO(VC) ∼= SOn(C) where n = dimR V , since VC, 〈, 〉C is
isomorphic to Cn with its standard bilinear form.

(iii) Now, we consider G = U(n). We regard U(n) as a variety in Mn(R)2

defined by the equation (A+ iB)(A+ iB)∗ = 1. This is equivalent to
AAtr +BBtr = I and ABtr = BAtr. Hence

U(n)C = {(A,B) ∈Mn(C)2 : AAtr +BBtr = I, ABtr = BAtr}

with the group structure given by a slightly strange expression.

We claim that the map

U(n)C → GLn(C), (A,B) 7→ A+ iB

is an isomorphism of complex algebraic groups. To see this, note that
the inverse is given by

g 7→

(

1

2
(g + (gtr)−1),

1

2i
(g − (gtr)−1)

)

Thus the complexification of U(n) is GLn(C), as is to be expected
from looking at the Lie algebra.

Note thatGLn(C) is also the complexification ofGLn(R). So U(n) and
GLn(R) are two real forms of GLn(C) and they are non-isomorphic
for all n ≥ 1.

As in the previous sections, we note that GC enjoys a universal property.
Let H be a complex algebraic group. Then every map of real algebraic
groups from G to H extends uniquely to a map of complex algebraic groups
from GC to H and all maps of complex algebraic groups from GC to H arise
this way.

This universal property is particularly useful in the case where H =
GL(V ) for some complex vector space V .

Proposition 5.6. Let G be a real algebraic group. A real algebraic repre-
sentation of G on a complex vector space V extends uniquely to an algebraic
representation of GC on the same vector space.

Also as in the previous sections, the complexification GC carries an in-
volution σ whose fixed point set is G. In the algebraic group setting, σ is a
group homomorphism.
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Example 5.7. If G = U(n), then U(n)C = GLn(C) carries the involution
σ(g) = (g∗)−1.

On the other hand, if we regard GLn(C) as the complexification of the
real algebraic group GLn(R), then it carries the involution σ(g) = ḡ.

5.2 Complex reductive groups

If G is a complex algebraic group, then we will study its complex alge-
braic representations. We say that G is reductive if it is connected and if
every representation is isomorphic to a direct sum of irreducible subrepre-
sentations (in other words, the category is semisimple). Another way to
formulate this is to say that every invariant subspace of a representation
has a complementary invariant subspace.

Recall that we proved that the (smooth) representations of a compact
Lie group were semisimple. We can harness this fact as follows.

Theorem 5.8. Let K be a real algebraic group, whose underlying Lie group
is compact and connected. Then G = KC is reductive.

The theorem follows from the following Lemma, which is useful in its
own right.

Lemma 5.9. Let K be a real algebraic group and let G be its complexifica-
tion. Let V be a representation of G and let W be a K-invariant subspace.
Then W is G-invariant.

Proof. The fact that W is K-invariant is equivalent to the vanishing of some
matrix coefficients. These matrix coefficients are polynomial functions on G
which vanish onK. Hence they also vanish onG. ThusW is alsoG-invariant
as desired.

There is a Lie algebra version of this lemma which has a simpler proof.

Lemma 5.10. Let k be a real Lie algebra and let g be its complexification.
Let V be a representation of g and let W be a k-invariant subspace. Then
W is g-invariant.

Proof. Every element of g is of the form X + iY for X,Y ∈ k. Since W is
k-invariant, it is invariant under X and Y and hence under X + iY .

Proof of Theorem 5.8. Let V be a representation of G. Let W ⊂ V be a
G-invariant subspace. Then W is a K-invariant subspace, so there exists a
complementaryK-invariant subspaceW ′. By Lemma 5.9, W ′ is G-invariant.
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Hence every G-invariant subspace of V has a complementary G-invariant
subspace.

Theorem 5.8 has some “converses” which are also true, but which we
will not prove.

(i) Every complex reductive group G is the complexification of a unique
real algebraic group whose underlying Lie group is compact and con-
nected.

(ii) Every compact connected Lie group has the structure of a real alge-
braic group, in a unique way.

Accepting these converses, Theorem 5.8 gives a bijection between the isomor-
phism classes of compact connected Lie groups and the isomorphism classes
of complex reductive groups. In fact, I think that this is an equivalence of
categories.

From this point on, we will let K denote a real algebraic group whose
underlying Lie group is compact, connected and G = KC will denote its
complexification. We will refer to K as a compact Lie group and G as a
complex reductive group.

Example 5.11. Let us list some pairs of a compact Lie group K and the
resulting complex reductive group G.

(i) We can take K = T , a torus. Then G = TC.

(ii) We can take K = U(n). Then G = GLn(C).

(iii) As a slight modification, take K = SU(n), then G = SLn(C) (note
that this example is defined by imposing one equation on the previous
example).

(iv) Another good family of examples is K = SO(n). Then G = SOn(C).

(v) A more “exotic” example is to take K = Sp(n), the group of n × n
unitary quaternion matrices. ThenG = Sp2n(C), the symplectic group
(i.e. the automorphisms of C2n preserving the standard symplectic
form).
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5.3 Lie algebras of algebraic groups

Let G be an algebraic group (either real or complex). Then it has a Lie
algebra Lie(G), which is defined using the left-invariant vector fields on the
group, much as with Lie groups. Just as with Lie groups, the space of left
invariant vector fields is isomorphic to the tangent space at the identity.

There is a nice way to find the tangent space of an algebraic variety,
which is particularly useful for finding the Lie algebra of an algebraic group.
We start with varieties.

Let X be an affine variety over a field k. Then for any k-algebra R, we
can consider the R-points of X as follows by defining X(R) to be the subset
of Rn defined by the polynomials in I(X) (this is the same as what we did
to define the complexification of a real variety). Another way to say the
same thing is to define X(R) as the set of k-algebra homomorphisms from
O(X) to R.

Now, let R = k[ε]/ε2. There is a map of k-algebras from R to k given
by sending ε to 0. So for any variety X, we get X(R) → X(k).

Lemma 5.12. For any point x ∈ X(k), the preimage of x in X(R) is TxX.

Proof. To prove this lemma, we have to pick a definition of the tangent
space. Let us pick a “differential geometry” definition. Suppose that I(X)
is generated by the polynomials f1, . . . , fm. Namely, we will think of TxX
as the intersections of the kernels of the linear maps dxf1, . . . , dxfm. So
(y1, . . . , yn) ∈ TxX if dxfi(y1, . . . , yn) = 0 for all i.

On the other hand (x1 +y1ε, . . . , xn +ynε) ∈ X(R) if and only if fi(x1 +
y1ε, . . . , xn + ynε) = 0 for all i. But using basic calculus, we see that these
two conditions are the same.

So if G is an algebraic group, its Lie algebra is given by the fibre of G(R)
over e ∈ G(k). Let us illustrate this in some examples.

Example 5.13. (i) Let us take G = U(n) viewed as a real algebraic
group. Then Te(G) consists of those I + Aε such that (I + Aε)(I +
Aε)∗ = 1. Expanding this out using ε2 = 0, we find thatA+A∗ = 0. So
g = u(n) is the Lie algebra of n×n complex skew-Hermitian matrices.

(ii) Also another example, let us take G = SLn(C) (or SLn(R)). Then
Te(G) consists of those I +Aε such that det(I +Aε) = 1. Expanding
this out gives tr(A) = 0.

One advantage of this approach is that it allows us to show that taking
the Lie algebra commutes with complexification.
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Proposition 5.14. Let G be a real algebraic group. Then Lie(G)C =
Lie(GC).

Proof. Let R = R[ε]/ε2 and let RC = C[ε]/ε2. Let us pick an embedding
G ⊂ Rn. If e + aε and e + bε are two points in Rn which lie in G(R).
Then we can regard a + ib as a point in Rn

C
and it is easy to see that

e+ (a+ ib)ε ∈ GC(R). This shows that Lie(G)C ⊂ Lie(GC). The converse
is also easy.

5.4 The root datum

In this section, we write X = X∗(T ) for the weight lattice and X∨ = X∗(T )
for the coweight lattice of the maximal torus.

Let g be the Lie algebra of G. By the above results, g is the complexi-
fication of k. We have an adjoint action of G on g, defined as follows. For
each g ∈ G, we have a conjugation by g map

G→ G, h 7→ ghg−1,

taking e to e. Taking the derivative at e this gives a map TeG→ TeG which
we denote X 7→ gXg−1 for X ∈ g = Te(G). This is the adjoint action.

When G = GLn(C) and so g = gln(C), gXg−1 is given by conjugation of
matrices. Since the adjoint action is compatible with embeddings of groups,
if G ⊂ GLn(C), then the adjoint action of G on g ⊂ gln(C) is also given by
conjugation.

We can consider the weight decomposition of g for the adjoint action.
Let R be the set of non-zero weights of this representation. These are called
the roots of the group G. Hence we can write

g = g0 ⊕
⊕

α∈R

gα

The zero weight space g0 = tC, the Lie algebra of the maximal torus.
Since the torus T acts by Lie algebra automorphisms, we see that [gα, gβ] ⊂
gα+β for any two roots α, β.

Theorem 5.15. For each root α ∈ R, the following holds

(i) gα is 1-dimensional.

(ii) −α is also a root, but no other Q-multiple of α is a root.

(iii) gα ⊕ [gα, g−α] ⊕ g−α forms a Lie subalgebra isomorphic to sl2(C).
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(iv) There exists a unique map ψα : SL2(C) → G, which induces the above
isomorphism on the level of Lie algebras (this map is either 1-1 or is
a 2-1 cover).

We restrict ψα to the maximal torus C× of SL2(C). By construction,
ψα(C×) ⊂ TC. Hence it gives a coweight of T , which we denote by α∨, and
call a coroot. We have 〈α∨, α〉 = 2.

Example 5.16. (i) Take G = GLn(C). Then R = {ei − ej}i6=j and if
α = ei − ej , then gα consists of those matrices with an entry in the ith
row and jth column and zeros elsewhere.

For each α = ei − ej , the resulting map SL2(C) → GLn(C) consists
of embedding of 2 × 2 matrices into the i, j rows and i, j columns
(putting 1s on the diagonal away from these rows/columns). Hence
α∨ = ei − ej .

(ii) Another simpler example is to take G = TC a torus. Then there are
no roots R = ∅.

(iii) A third example is G = SL2(C). Then g = sl2(C) with the conjugation
action. We can identify X with Z by choosing the isomorphism C× ∼=
T given by t 7→

[

t 0
0 t−1

]

. Then with this identification the roots R
are{2,−2} and the coroots are {1,−1}.

(iv) A fourth example is G = PGL2(C) = GL2(C)/C× = SL2(C)/{±I}.
Then g = sl2(C) and the conjugation action of SL2(C) on sl2(C)
descends to the adjoint representation of PGL2(C). We choose an
isomorphism C× ∼= T by t 7→ [ t 0

0 1 ] and hence identify X with Z. With
this identification, the roots are {1,−1}. For α = 1, the map ψα is
the 2-1 cover SL2(C) → PGL2(C). On the maximal torus of SL2(C),
this map becomes

[

t 0
0 t−1

]

7→
[

t 0
0 t−1

]

=
[

t2 0
0 1

]

and so the coroots are {2,−2}.

For each root α, we define the reflection in α by

sα : X → X, µ 7→ µ− 〈α∨, µ〉α (2)

Recall that we have a faithful action of the Weyl group on X. Hence we
can identify W with its image in GL(X). Note that since g is a representa-
tion of G, the set of roots is invariant under W (just as the set of weights
of any representation is W -invariant.)
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Theorem 5.17. For each root α, sα ∈W and it is represented by ψα(
[

0 1
−1 0

]

).
Moreover the sα generate W .

Example 5.18. Continuing with the example of GLn, we have that if α =
ei − ej is a root, then sα is the transposition (i j) in Sn = W , which as we
mentioned acts on X = Zn by permuting the coordinates.

The collection (X,R,X∨, R∨) is called the root datum of G (or of K).
It determines G up to isomorphism.

The root datum of a reductive group is an example of an abstract root
datum which is defined as follows.

A root datum is a 4-tuple (X,R,X∨, R∨) with the following structure/axioms.

(i) X,X∨ are finite rank free Z-modules with a perfect pairing 〈, 〉 between
them.

(ii) R ⊂ X, R∨ ⊂ X∨ are finite subsets, such that if α ∈ R, then −α ∈ R,
but no other Q-multiple of α is in R.

(iii) There is a bijection α 7→ α∨ between R and R∨, such that 〈α∨, α〉 = 2.

(iv) We define sα as in (2). Then, sα(R) ⊂ R and sα(R∨) ⊂ R∨.

An important result is that the root datum determines the group.

Theorem 5.19. The above method of associated a root datum to a reductive
group gives a bijection between isomorphism classes of complex reductive
groups (and hence compact connected Lie groups) and isomorphism classes
of root data.

There is also the related concept of root system.
A root system is a 4-tuple (V,R, V ∗, R∨) with the following structure/axioms.

(i) V, V ∗ are dual finite dimensional R-vector spaces.

(ii) R ⊂ V , R∨ ⊂ V ∗ are finite subsets, such that if α ∈ R, then −α ∈ R,
but no other R-multiple of α is in R. Moreover, we require that R
spans V and R∨ spans V ∗.

(iii) There is a bijection α 7→ α∨ between X and X∨, such that 〈α∨, α〉 = 2.

(iv) We define sα as in (2). Then, sα(R) ⊂ R.

A root datum (X,R,X∨, R∨) has underlying root system, defined as
follows. Let Q = ZR be the root lattice, which is the Z-span of the roots
inside X (similarly we define the coroot lattice Q∨). Then (Q⊗ZR, R,Q∨⊗Z

R, R∨) is a root system.
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5.5 Centre of the group and semisimple groups

Given K,G, we define

Q⊥
R = {x ∈ X∨ ⊗Z R : 〈x, α〉 ∈ Z for all α ∈ R}

Q⊥
C = {x ∈ X∨ ⊗Z C : 〈x, α〉 ∈ Z for all α ∈ R}

be the “perp” (or dual) of the root lattice.
We have the following nice result describing the centre Z(G) of G.

Theorem 5.20. There is are isomorphisms (as real/complex Lie groups)

Z(K) ∼= Q⊥
R/X

∨

Z(G) ∼= Q⊥
C/X

∨

Proof. We will prove the result for K. First, by the fact that the maxi-
mal torus is its own centralizer, Z(K) ⊂ T . Examining the adjoint rep-
resentation, we see that the subgroup of T which acts trivially on g is
⋂

α∈R ker(α), where each α is thought of as a map T → U(1). Hence we see
that Z(K) ⊂

⋂

α ker(α). In fact, there is equality here, because if t ∈
⋂

α,
then the closed subgroup of elements commuting with t will have Lie algebra
k and hence must be K.

So Z(K) =
⋂

α∈R ker(α). If we think of T = X∨ ⊗Z R/X∨ then the
result follows.

A companion result, which we will not prove is the following.

Theorem 5.21. The fundamental groups of K, G are given as

π1(K) = π1(G) ∼= X∨/Q∨

The rough idea is to note that every element of X∨ gives us a loop in
T since X∨ = Hom(U(1), T ). In fact, X∨ = π1(T ). However, some of
these loops are contractible in K. In particular, if α∨ is a coroot, then
the corresponding loop in T is contractible in K, since it factors through
SU(2) → K and SU(2) is simply-connected.

Some elementary reasoning shows the following.

Lemma 5.22. The following are equivalent.

(i) Q and X have the same rank.

(ii) Z(K) and Z(G) are finite and they are equal.
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(iii) π1(K) is finite.

When the above equivalent conditions hold, then we say that G (or K)
is semisimple. In this case, we write X∨

ab for Q⊥
R

and we call it the absolute
coweight lattice. Similarly,

Xab := (Q∨)⊥ = {x ∈ X ⊗Z R : 〈α∨, x〉 ∈ Z for all α∨ ∈ R∨

is called the absolute weight lattice. We have containments

Q ⊂ X ⊂ Xab, Q∨ ⊂ X∨ ⊂ X∨
ab

Also when G is semisimple, then Z(G) ∼= X∨
ab/X

∨ ∼= X/Q, since a finite
abelian group is isomorphic to its Pontryagin dual (here the Pontryagin dual
of H is Hom(H,U(1))).

If Z(G) = {1} (equivalently X = Q or X∨ = Xab), then we say that G
(or K) is of adjoint type. If π1(G) = {1} (equivalently X∨ = Q or X = Xab),
then we say that G (or K) is simply-connected.

If (V,R, V ∗, R∨) is an root system, then a semisimple root datum having
this underlying root system is determined by choosing the lattice X between
Q and Xab. There are only finitely many such choices and they correspond
to subgroups of the finite abelian group Xab/Q. There are two natural
extremal choices. The first is the adjoint type, where we take X = Q
and end up with (Q,R,X∨

ab, R
∨). The second is the simply-connected type,

where we take X = Xab and end up with (Xab, R,Q,R
∨).

Example 5.23. (i) If G = PGL2(C), then Q = Z = X (since 1 is a root)
and so Z(G) = {1}. So PGL2(C) is of adjoint type.

(ii) If G = SL2(C), then Q = 2Z and X = Z and so Z(G) = {±1}. So
SL2(C) is simply-connected.

(iii) IfG = SLn(C), then we haveX = Zn/Z(1, . . . , 1) andQ = {(a1, . . . , an) ∈
X :

∑

ai = 0}. So we see that G is semisimple. We have X∨ =
{(a1, . . . , an) ∈ Zn :

∑

ai = 0} = Q∨. So G is simply-connected. The
centre of G is isomorphic to X/Q which is Z/n.

(iv) IfG = SO2n(C), then one can show that there are proper containments
Q ⊂ X ⊂ Xab, with Xab/X = Z/4. So SO2n(C) is semisimple, but
neither of adjoint type nor simply-connected.

(v) If G = GLn(C), then Q = {(a1, . . . , an) ∈ Zn :
∑

ai = 0} and

Q⊥ = {(b1, . . . , bn) ∈ Cn : bi − bj ∈ Z, for all i, j}
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We see that Q⊥/Zn ∼= C/Z via the map (b1, . . . , bn) 7→ b1. We can
also see directly that Z(GLn(C)) = C× since it consists of multiples
of the identity matrix. So GLn(C) is not semisimple.

Let (X = Xab, R,X
∨ = Q∨, R∨) be a simply connected root datum. If

we choose some lattice Q ⊂ X ′ ⊂ X, then we can define G′ = G/((X ′)∨/Q∨)
and produce a new group whose root datum is (X ′, R, (X ′)∨, R∨). The map
G → G′ is a finite cover and gives an isomorphism on Lie algebras. These
G′ are all the reductive groups whose Lie algebra is g.

We say a complex Lie algebra is semisimple if it is the Lie algebra of
a semisimple reductive group. We can summarize the above paragraph as
follows.

Theorem 5.24. There is a bijection between isomorphism classes of com-
plex semisimple Lie algebras and isomorphism classes of root systems, which
is compatible with the map from a semisimple group to its Lie algebra and
the map from a root datum to a root system.

semisimple reductive groups = root data
↓ ↓

semisimple Lie algebras = root systems

5.6 Positive systems

A coweight µ is called regular if its stabilizer in the Weyl group is trivial
(equivalently, it does not lie on any root hyperplanes kerα ⊂ X∨). A subset
R+ of R is called a positive system or set of positive roots if there exists a
regular coweight µ such that

R+ = {α ∈ R : 〈µ, α〉 > 0}.

Example 5.25. Take G = GLn(C). Then µ = (µ1, . . . , µn) ∈ Zn is regular
iff µi 6= µj for all i 6= j. Let us choose µ such that µ1 > µ2 > · · · > µn.
Then the set of positive roots is R+ = {ei − ej : i < j}.

Fix a positive system R+. A simple root is a positive root α which is
not a sum of two positive roots.

Theorem 5.26. (i) R+ ⊔ −R+ = R.

(ii) Every positive root can be written uniquely as a positive linear combi-
nation of simple roots.

(iii) The number of simple roots is the same as the rank of Q.

41



So if G is semisimple, then the number of simple roots is l, the dimension
of the maximal torus.

We will write the simple roots as {αi}i∈I . If α =
∑

i∈I niαi is a positive
root, then the sum

∑

i∈I ni is called the height of a positive root α.
The Cartan matrix is the matrix (with rows and columns indexed by I)

given by aij = 〈α∨
i , αj〉.

Example 5.27. If G = GLn, then the simple roots are αi = ei − ei+1. The
Cartan matrix is given by

aij =











2 if i = j

−1 if |i− j| = 1

0 otherwise

Proposition 5.28. W is generated by the reflections corresponding to sim-
ple roots si = sαi

. The relations among these generators are given as follows.

(i) s2i = e.

(ii) sisj = sjsi if aij = aji = 0.

(iii) sisjsi = sjsisj if aij = aji = −1.

(iv) sisjsisj = sjsisjsi if {aij , aji} = {−1,−2}.

(v) sisjsisjsisj = sjsisjsisjsi if {aij , aji} = {−1,−3}.

The Dynkin diagram is used to record the Cartan matrix.

Example 5.29. Take G = GLn as before. Then si is the transposition
(i i+ 1). These neighbouring transpositions generate W = Sn.

6 Flag varieties and the Borel-Weil theorem

6.1 Coadjoint orbits

Our goal is to study flag varieties for complex reductive groups. Let us begin
by viewing them as coadjoint orbits of compact groups.

The adjoint action of K on k gives rise to a coadjoint action of K on
k∗. The orbit of X ∈ k∗ under this action is called the coadjoint orbit
through X. (Actually for compact groups, the representations k and k∗ are
isomorphic, since we can always choose K-invariant inner product on k, so
it doesn’t make much difference whether we speak of adjoint or coadjoint
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orbits. However, for arbitrary Lie groups, adjoint and coadjoint orbits are
different and coadjoint orbits behave better.)

We say that X ∈ t is regular if 〈X,α〉 6= 0 for all roots α. Under this
hypothesis, we can easily see that centralizer of X in g is t. Hence the
stabilizer T ′ of X in K (for the adjoint representation) will have T as the
connected component of the identity. I believe that T ′ is actually connected,
so that in fact T ′ = T . However, I’m not sure how to prove this. On the
other hand, if we take X ∈ t such that X generates a dense 1-parameter
subgroup of T , then the stabilizer of X in K is definitely T (because T is
its own centralizer). However, this is a stronger condition than X being
regular.

Choose X ∈ t such that the stabilizer of X is T . Then the (co)adjoint
orbit throughX is isomorphic toK/T . Note thatK/T is a compact manifold
of real dimension

dimK − dimT = dimCG− dimC TC = dim g − dim tC = 2|R+|

6.1.1 Regular coadjoint orbits for U(n)

. Take K = U(n). Recall that u(n) is the vector space of skew-Hermitian
matrices and we will somewhat arbitrary think of u(n)∗ as the vector space
of Hermitian matrices. Let λ ∈ u(n)∗ be a diagonal matrix with distinct
real entries λ1, . . . λn. Then the G orbit through λ is exactly the set Hλ

of all Hermitian matrices whose eigenvalues are λ1, . . . , λn. Such a matrix
is determined by the eigenspaces L1, . . . , Ln corresponding to these eigen-
values. Hence we obtain an isomorphism between Hλ and the space of all
orthogonal decompositions of Cn into lines L1, . . . , Ln.

Example 6.1. Take n = 2, then K/T = CP1, the manifold of all lines in
C2.

Now, let us think about it from a different perspective. A flag in Cn is a
sequence of subspaces 0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn of Cn with dimVi = i.
Note that an orthogonal decomposition L1, . . . , Ln determines a flag with
Vi = L1 ⊕ · · · ⊕ Li. Conversely, from a flag V0, . . . , Vn we can recover an
orthogonal decomposition by setting Li to be the orthogonal complement to
Vi−1 inside Vi. Let Fl(Cn) denote the set of all flags in Cn. Hence we have
a bijection K/T ∼= Fl(Cn).

Note that a flag (unlike an orthogonal decomposition) is defined in com-
plex linear algebra terms (no reference to a sesquilinear form) and so Fl(Cn)
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carries an action of G = GLn(C). It is easy to see that this action is transi-
tive and is compatible with the above action of U(n) on the decompositions
of Cn into orthogonal lines. The standard flag is the flag

0 ⊂ span(v1) ⊂ span(v1, v2) ⊂ · · · ⊂ span(v1, . . . , vn) = Cn

where v1, . . . , vn is the standard basis for Cn. The stabilizer of the standard
flag in Cn is the group of invertible upper triangular matrices, which is
denoted B. So we have a bijections G/B ∼= Fl(Cn) ∼= K/T ∼= Hλ.

6.1.2 The moment map image

Return to the general case, with K a compact group and λ ∈ t∗, such that
the stabilizer of λ is T . Let Hλ be the coadjoint orbit through λ.

We begin with the following observation about fixed points.

Lemma 6.2. The set of fixed points for the T -action on K/T is the Weyl
group W = N(T )/T .

Proof. Suppose that [k] is a fixed point. Then [tk] = [k] for all t ∈ T . So
k−1tk ∈ T for all t ∈ T . Hence k lies in the normalizer of T .

So, if we view Hλ = K/T , then the fixed points will be given by wλ for
w ∈W .

Example 6.3. When K = U(n), W = Sn. The T -fixed points acting on
the set of orthogonal decompositions E1 ⊕ · · · ⊕ En = Cn consists of those
(L1, . . . , Ln) where each Li is a coordinate line. So there is some permutation
w such that Li = Ew(i) where Ej denotes the jth coordinate line in Cn.

The advantage of viewing K/T as Hλ is that it allows us to consider
the moment map. For our purposes, we define the moment map as the
restriction of the projection π : k∗ → t∗ to Hλ.

Note that for each w ∈W , π(wλ) = wλ.
The coadjoint orbit Hλ is a symplectic manifold and π : Hλ → t∗ is

a moment map in the sense of symplectic geometry. Applying the Atiyah-
Guillemin-Sternberg convexity theorem from symplectic geometry, we obtain
the following result.

Theorem 6.4. The moment map image π(Hλ) is the convex hull of the set
{wλ}w∈W .

So this moment map image looks something like a weight diagram. We
will explain this coincidence later.
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Example 6.5. Take K = U(n) and λ = (λ1, . . . , λn) regular. Then Hλ

is the set of Hermitian matrices with eigenvalues λ1, . . . , λn. The map π :
Hλ → Rn is the map which takes a Hermitian matrix to its diagonal entries.
Note that the image of π lands in the affine subspace given by the sum of
the coordinates being equal to λ1 + · · · + λn (since that is the trace of any
matrix in Hλ).

6.2 Borel subalgebras

Our goal is now to generalize the K/T = G/B result to arbitrary compact
groups. We begin with the construction of the Lie algebra of the Borel
subgroup.

The Borel subalgebra b and the nilpotent subalgebra n of g are defined as

b = tC ⊕
⊕

α∈R+

gα, n =
⊕

α∈R+

gα.

Example 6.6. Take G = GLn(C) and choose the positive system

R+ = {ei − ej}i<j

The Borel subalgebra b of gln(C) consists of upper triangular matrices
and the nilpotent subalgebra n ⊂ b consists of strictly upper triangular
matrices.

We will need some results from the elementary theory of Lie algebras. A
Lie algebra is called solvable if there exists a filtration g = g0 ⊃ g1 ⊃ · · · ⊃
gn = 0 such that [gi, gi] ⊂ gi+1. A Lie algebra is called nilpotent if there
exists a filtration g = g0 ⊃ g1 ⊃ · · · ⊃ gn = 0 such that [g, gi] ⊂ gi+1.

Proposition 6.7. The Borel subalgebra b is solvable and the nilpotent sub-
algebra n is nilpotent.

Proof. For the purposes of this proof, we set g0 = tC and declare ht(0) = 0.
An appropriate filtration is to set

bk =
⊕

α∈R+∪{0},ht(α)≥k

gα

for k ≥ 0. Since [gα, gβ] ⊂ gα+β and ht(α+ β) = ht(α) + ht(β), we see that
[gk, gk] ⊂ gk+1.

The important result about solvable algebras is the following result which
is known as Lie’s theorem.
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Theorem 6.8. Let V be a finite-dimensional representation of a solvable
Lie algebra b. Then there exists an eigenvector for the action of b. (In other
words, there exists a non-zero vector v ∈ V and a linear map λ : b → C

such that Xv = λ(X)v for all X ∈ b.)

Proof. Since b is solvable, [b, b] 6= b. Let H = b/[b, b]; it is an abelian Lie
algebra. Let a be the preimage in b of any codimension 1 subspace of H.
Then a is solvable and it is also a Lie ideal in b.

By induction there is an eigenvector v for the action of a. Let λ : a → C

be the associated eigenvalue. Let W ⊂ V be the λ-eigenspace for a.
We claim that W is b-invariant. Fix Y ∈ b. If X ∈ a and w ∈W ,

XY w = Y Xw + [X,Y ]w = λ(X)Y w + λ([X,Y ])w.

So we need to show that λ([X,Y ]) = 0. To see this, let U = span(w, Y w, Y 2w, . . . ).
This U is Y invariant and a invariant. In fact, any X ∈ a acts on U upper-
triangularly with respect to the given basis with constant diagonal entries
given by λ(X). So the trace of X acting on U is λ(X) dimU . Apply this
reasoning to [X,Y ] ∈ a. Since the trace of [X,Y ] is 0, this implies that
λ([X,Y ]) = 0 as desired.

Now pick Y ∈ br a. Then YW ⊂W and so Y has an eigenvector in W .
This will also be an eigenvector for a and hence it will be an eigenvector for
all of b, since a is codimension 1 in b.

From the previous theorem, we can immediately deduce the following
corollary.

Corollary 6.9. Let V be a finite-dimensional representation of a solvable
Lie algebra b. There exists a basis for V such that every element of b is
represented by upper-triangular matrices.

Note that this corollary implies that the only irreducible representations
of a solvable Lie algebra are 1-dimensional.

In the case of our Borel subalgebra, we get a strengthening of the above
theorem. First, note that [b, b] = n since if X ∈ gα, there exists H ∈ t

such that α(H) 6= 0 and so [H,X] = α(H)X is a non-zero multiple of X,
which implies that X ∈ [b, b]. Combined with the observation that the
commutator of upper triangular matrices is strictly upper triangular, we
obtain the following result.

Corollary 6.10. Let V be a finite-dimensional representation of the Borel
subalgebra b. Then there exists a basis for V such that every element of b
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is represented by upper-triangular matrices and every element of n is repre-
sented by strictly upper triangular matrices. In particular, all elements of n

act nilpotently.

6.3 Iwasawa decomposition

We begin with the Iwasawa decomposition (also known as KAN decom-
position) of GLn(C). The algebraic subgroup of upper triangular matrices
in GLn(C) is called the Borel subgroup and is denoted B. The algebraic
subgroup of upper triangular matrices in GLn(C) with 1s on the diagonal is
called the unipotent subgroup and is denoted N .

Theorem 6.11. Let G = GLn(C),K = U(n) and let N be as above. Let
T be the usual maximal torus of diagonal matrices and let A be the Lie
subgroup of TC consisting of diagonal matrices whose entries are positive
real numbers.

Then every element of g can be uniquely factored as kan with k ∈ K,
a ∈ A, and n ∈ N . Moreover, multiplication gives a diffeomorphism K ×
A×N → G.

Proof. Given a matrix g ∈ GLn(C) we get an ordered basis by looking at
its columns. Applying the Gram-Schmidt process to this basis gives us an
orthonormal basis, which gives us a unitary matrix k. When we apply Gram-
Schmidt, we are effectively taking g and multiplying on the right by AN (N
adds vectors to earlier vectors and A scales the vectors to make them unit
length) and obtaining k. This shows existence.

The uniqueness follows from the fact that AN ∩K = {1} and A ∩N =
{1}.

The multiplication map is a diffeomorphism, since the Gram-Schmidt
process gives a smooth inverse.

Now, we want to do this for an arbitrary group. Let K be a compact
Lie group and G be its complexification, as usual. We need to define N and
A. A is easy to define since it just has to be a real Lie subgroup, while N is
harder since it is an algebraic subgroup.

Let A be the Lie subgroup of TC corresponding to the Lie algebra it. If
we think of TC = t ⊗ C/Λ , then A = it/Λ. On the other hand if we think
of TC = Spec C[X∗(T )], then

A = {t ∈ TC : µ(t) ∈ R>0 for all µ ∈ X∗(T )}.

The following result gives the Iwasawa decomposition for G.
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Theorem 6.12. There exists an algebraic subgroup B of G whose Lie al-
gebra is b and an algebraic subgroup N whose Lie algebra is n. B is the
semidirect product of TC and N , B = TC ⋉N .

Every element of G can be written uniquely as a product kan with k ∈
K, a ∈ A,n ∈ N . The multiplication map K × A ×N → G is a diffeomor-
phism.

As before B is called the Borel subgroup of G and N the unipotent
subgroup.

We begin with the following preliminary. Let G be a complex algebraic
group and let g be its Lie algebra. From the theory of Lie groups, we have
an exponential map g → G, but this map is not in general a map of algebraic
varieties and hence not a map of algebraic group. However, for the unipotent
subgroup of GLn(C), we do have an algebraic exponential map. This leads
to the following result.

Lemma 6.13. Let N denote the unipotent subgroup of GLn(C) and n the
nilpotent Lie subalgebra of gln(C). If a is a Lie subalgebra of n, then there
exists an algebraic subgroup A of N whose Lie algebra is a.

Proof. Define

exp : n → N, X 7→ I +X + · · · +
1

(n− 1)!
Xn−1

(note that Xn = 0, so this is actually the restriction of the usual exponential
map). This is a polynomial map and an inverse is given by

log : N → n, g 7→ (g − 1) −
1

2
(g − 1)2 + · · · ±

1

n− 1
(g − 1)n−1

So we have an isomorphism of algebraic varieties.
Now let a ⊂ n be a Lie subalgebra. Since exp is an isomorphism of

varieties, then A := exp(a) is a subvariety of N . So it remains to show that
it is a subgroup. There are two possible approaches to showing this. One
is to note that the exp map we have defined coincides with the usual exp
map from Lie groups. Then a standard result from Lie groups shows that
there exists a Hausdorf neighbourhood U of the identity in N such that if
g, h ∈ A and g, h ∈ U , then gh ∈ A. So consider the map m : A × A → N
given by multiplication. The intersection V = U ∩ A × U ∩ A is Hausdorf
open in A × A and hence Zariski dense in A × A. Since V ⊂ m−1(A), and
m−1(A) is Zariski-closed, we conclude that A×A = m−1(A) as desired.
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Alternatively, we can give a purely algebraic proof using the Baker-
Campbell-Hausdorff formula which shows that for X,Y ∈ n,

exp(X) exp(Y ) = exp(X + Y −
1

2
[X,Y ] + . . . )

.

Proof. To prove this theorem, we will need to assume that K admits a faith-
ful finite-dimensional algebraic representation, so it is actually an algebraic
subgroup of U(n) for some n. This is possible to prove. First, by considering
L2(K) (which is a faithful, infinite-dimensional, unitary representation) and
doing a little bit of functional analysis, it is possible to construct a finite-
dimensional faithful representation. Next, we would have to show that it is
algebraic.

Anyway, with the assumption, let us choose such a representation. Be-
cause it is a faithful representation of K, it will be a faithful representation
of G.

This will also be a representation of b, the Borel subalgebra. By Corol-
lary 6.10, we can choose a basis v1, . . . , vn such that b acts by upper-
triangular matrices and n acts by strictly upper-triangular matrices. Apply-
ing the Gram-Schmidt process, we can choose this basis to be orthonormal.

Note that T ⊂ K acts semisimply and hence t does as well. Since t ⊂ b,
we see that t must act by diagonal matrices. Thus when we choose the
maximal torus Tn of U(n) using the above basis, we see that T embeds into
Tn and TC embeds in TC,n.

Let Nn denote the unipotent subgroup of GLn(C) and nn the nilpotent
Lie algebra of gln(C). Since n is a Lie subalgebra of nn, Lemma 6.13 shows
us that there is an algebraic subgroup N ⊂ Nn whose Lie algebra is n. Now
TC,n normalizes N , so TC does as well. Because TC normalizes N , B = TCN
is a subgroup of G and is a semidirect product. It is an algebraic subgroup
since it is the product of TC and N .

Now, we must show the decomposition. First, note that the map K ×
A × N → G is a diffeomorphism onto its image, since K ⊂ U(n), A ⊂ An

and N ⊂ Nn and we have the Iwasawa decomposition (Theorem 6.11) for
GLn(C).

It remains to show that it is surjective. To see this, note that

dimR(K ×A×N) = dimR(K) + dimR(T ) + dimR(N) = dimCG+ l + 2m

where m = |R+| and l = dimR T . Since l + 2m = dimC g, we see that
dimR(K ×A×N) = dimRG.
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Hence it follows that the image is all of G (note that since the multipli-
cation is a diffeomorphism, the image is closed in G).

6.4 Flag varieties

Our goal now is to use the above results to define flag varieties for any
reductive group. We begin with some algebraic geometry background.

Up until now, we have only been speaking about affine varieties. We
will now need to expand our attention to projective varieties. Let Pn = CPn

denote complex projective space. It is the set of lines in Cn+1 or equivalently
non-zero elements of Cn+1 modulo the equivalence relation of scaling. A
point in Pn is written as [x0, . . . , xn]. If f is a homogeneous polynomial in
n+ 1 variables, then we can consider its vanishing set V (f) in Pn, which is
defined as

V (f) = {[x0, . . . , xn] : f(x0, . . . , xn) = 0}.

A projective variety is the simultaneous vanishing set of a collection of homo-
geneous polynomials. A quasi-projective variety X is a Zariski-open subset
of a projective variety (this means that there are two projective varieties
Y, Z with Z ⊂ Y and X = Y r Z). Note that a quasi-projective variety X
has a Hausdorff topology inherited from the topology of Pn. If X is smooth
as a variety, then X acquires the structure of a smooth manifold with re-
spect to the Hausdorff topology. A general result from complex algebraic
geometry tell us that a quasi-projective variety is projective if and only if it
is compact in the Hausdorff topology.

Let G be a connected algebraic group and let H be a closed subgroup.
A quotient G/H is a complex variety X with a point x ∈ X such that G
acts on X (i.e. there is an action such that G ×X → X is a morphism of
algebraic varieties) which is universal in the sense that for all varieties Y
with G-action and point y ∈ Y whose stablizer contains H, there is a unique
G-equivariant map X → Y , taking x to y.

The following result gives us the existence of quotients.

Theorem 6.14. Let G be an algebraic group and let H be a closed sub-
group. Then a quotient G/H exists as a smooth quasi-projective variety. Its
underlying set is the right H-cosets in G.

Now, we define the flag variety of G as the quotient G/B. By the above
theorem it has the structure of a quasi-projective variety.

Theorem 6.15. There exists a diffeomorphism G/B ∼= K/T . The flag
variety is compact and is a projective variety.
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Proof. We define a map K/T → G/B using the inclusion of K into G. The
map is well-defined since T ⊂ B. We define a map backwards G/B → K/T
using the Iwasawa decomposition. So if g = kan ∈ G, then g 7→ k. This
map is well-defined since B = TAN (we already know that B = TCN and
we can see that TC = TA by examining the case T = U(1)n). This gives us
the diffeomorphism G/B → K/T .

Since K is compact, K/T is compact and so G/B is compact in the
Hausdorff topology. So it is a projective variety.

Example 6.16. The flag variety of GLn(C) has already been discussed. Let
us consider as a second example, G = SO2n(C). An isotropic flag in C2n is
a flag

0 = V0 ⊂ V1 ⊂ · · · ⊂ Vn ⊂ V−n ⊂ · · ·V−1 ⊂ C2n

such that for all i, V ⊥
i = V−i.

We leave it as an exercise to check that the flag variety for SO2n(C)
embed into the set of orthogonal flags in C2n. In fact the set of all orthogonal
flags in C2n is disconnected as a topological space and the flag variety for
SO2n(C) is one connected component.

Recall that we already showed that if H was a regular coadjoint orbit,
then H ∼= K/T . Thus we have shown that all regular coadjoint orbits are
isomorphic to G/B.

More generally, a subgroup P ⊂ G is called a parabolic subgroup if G/P
is projective. There is a nice combinatorial theory of parabolic subgroups,
but we will not develop it during this course. We will content ourselves with
stating the following result which partially explains the importance of the
Borel subgroup.

Theorem 6.17. A subgroup P ⊂ G is parabolic if and only if it contains a
conjugate of B. Hence any projective variety with a transitive action of G
is isomorphic to a quotient of the flag variety.

6.5 Borel-Weil theorem

Recall that we showed that taking characters gives an injective mapRep(K) →
Z[X]W . Moreover, we showed that there was an isomorphism between
Rep(G) and Repalg(K), the representation ring of algebraic representations
of K. So our situation is as follows.

Rep(G) ⊆ Rep(K) ⊆ Z[X]W

Our goal now is to show that these two inclusions are equalities.
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In the case of K = U(n), we proved that these were equalities by ex-
plicitly constructing representations V (λ) for every dominant weight λ. We
will now do this for every group.

6.5.1 Dominant weights

We begin by defining the set of dominant weights, X+, as

X+ := {λ ∈ X : 〈α∨, λ〉 ≥ 0 for all positive coroots α∨}

Then we define an ordering ≤ on X and X+ by λ ≥ µ if λ − µ lies in the
root lattice Q.

For each λ ∈ X+, we define the monomial symmetric function by

mλ =
∑

µ∈Wλ

eµ.

Lemma 6.18. The monomial symmetric functions gives a basis
(

mλ

)

λ∈X+

for Z[X]W .

Proof. The statement is equivalent to showing that there is exactly one
dominant weight in every Weyl orbit on the weight lattice.

Suppose that A is a Weyl orbit on the weight lattice. Choose µ ∈ A
such that µ is maximal with respect to ≤. Then sαµ ≤ µ for all positive
coroots α. Hence 〈α∨, µ〉 ≥ 0 for all positive roots α∨. Thus µ is dominant.
So every Weyl orbit contains a dominant weight.

Now, suppose that λ ∈ X+. We would like to show that if w ∈ W and
wλ is dominant, then wλ = λ. We will content ourselves to discussing the
case when λ is regular (i.e. 〈α∨, λ〉 6= 0 for all coroots α∨). Then it follows
from the fact that the Weyl group acts simply-transitively on the set of Weyl
chambers.

We say that a representation V of G has highest weight λ ∈ X, if

(i) Vλ 6= 0, and

(ii) For all µ ∈ X such that Vµ 6= 0, µ ≤ λ.

In this circumstance, we call V a highest weight representation.

Lemma 6.19. If V has highest weight λ, then λ is dominant.
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Proof. Let α ∈ R+ be a positive root. By Proposition 4.10 the character of
V is invariant under W . Thus, since Vλ 6= 0, we see that Vsαλ 6= 0. Since λ
is the highest weight, this means that λ ≥ sαλ. Hence λ− sαλ ∈ Q+.

Now, λ− sαλ = 〈α∨, λ〉α and hence we conclude that 〈α∨, λ〉 ≥ 0. Since
this holds for all positive roots, λ is dominant.

6.5.2 Highest weight vectors

Let V be a representation of G and let v ∈ V be a non-zero weight vector.
We say that v is a highest weight vector if gv = v for all g ∈ N .

Lemma 6.20. v is a highest weight vector iff Y v = 0 for all Y ∈ n.

Proof. Consider the exponential map as in the proof of Theorem 6.13.

Let us now tie together the notion of highest weight representation and
highest weight vector.

Lemma 6.21. Let V be a representation of highest weight λ and let v ∈ Vλ

be a non-zero vector. Then v is a highest weight vector.

Proof. Let Y ∈ gα for some positive root α. Then Y v ∈ Vλ+α. But since V
has highest weight λ, Vλ+α = 0. Thus, Y v = 0. Hence Y v = 0 for all Y ∈ n

as desired.

The same method of proof allows us to prove the following result.

Lemma 6.22. If V is a non-zero representation of G, then V contains a
highest weight vector whose weight is dominant.

Proof. Choose λ to be a maximal element of the set of weights of V . By
this we mean, choose λ such that Vλ 6= 0 and if µ > λ, then Vµ = 0. (Since
≤ is a partial order, this is not the same thing as λ being the highest weight
of the representation.) Then we pick v ∈ Vλ non-zero and proceed as in the
proof of the previous Lemma.

Note that λ is neccesarily dominant, since if not, then there exists a
positive root α such that 〈α∨, λ〉 < 0, which implies that sαλ > λ, which
is a contradiction since Vsαλ 6= 0 (by the fact that the character is Weyl-
invariant).

Corollary 6.23. Let V be a representation. If dimV N = 1, then V is
irreducible.
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Proof. Suppose that V = V1 ⊕ V2 for two non-trivial subrepresentations
V1, V2. Then dimV N = dimV N

1 + dimV N
2 ≥ 2, a contradiction.

The converse of this theorem is true as well, but we are not yet in a
position to prove it.

If V is a vector space, then we write P(V ) for the projective space of
1-dimensional subspaces of V . If W ⊂ V is a subspace, then P(W ) ⊂ P(V )
is a called a projective subspace of P(V ).

Theorem 6.24. Let V be a representation with a highest weight vector v.
Then there is a map G/B → P(V ) taking [g] to [gv].

Moreover, if V is irreducible, then the image of G/B in P(V ) lies in no
proper projective subspace.

Proof. We observe that G acts on P(V ). The stabilizer of [v] contains N
since v is a highest weight vector. Also every element of T acts on v by a
scalar and hence acts trivially on [v]. Thus, the stabilizer of [v] contains B
and so we have a map G/B → P(V ).

Thus, for every representation, we can choose a highest weight vector
and get a map from G/B to a projective space. So this motivates us to
study maps from G/B to projective space.

6.5.3 Line bundles on projective varieties

We will need to review some results concerning line bundles on projective
varieties.

A line bundle on a complex variety X is a variety L with a map π :
L→ X, such that X admits a cover by open affine varieties Uα, along with
isomorphisms π−1(Uα) → Uα × C, compatible with the projections to Uα,
such that the transition functions are linear along the fibres.

L is a called the total space of the line bundle. Each fibre Lx := π−1(x)
carry the structure of a 1-dimensional complex vector space. Natural oper-
ations on 1-dimensional vector spaces go over to operations on line bundles
as follows. If L is a line bundle, then there is a dual line bundle L∗ whose
fibre at x is L∗

x. If L,L′ are two line bundles, then L⊗L′ is the line bundle
whose fibre at x is Lx ⊗ L′

x.
A section of L is a map of varieties s : X → L, such that π ◦ s is the

identity. In other words, a section is a way of picking an element s(x) ∈ Lx

in each fibre. The set of all sections Γ(X,L) forms a complex vector space.
We will now study the relationship between line bundles and maps to

projective space. First, let us discuss line bundles on projective space. Let

54



V be a vector space. On P(V ), we have two natural line bundles O(−1) and
O(1), which are defined as follows. The fibre of O(−1) at a point ℓ ∈ P(V )
(here ℓ is a 1-dimensional subspace of V ) is ℓ itself. So the total space of
O(−1) is described as follows.

O(−1) = {(v, ℓ) : v ∈ V, ℓ ∈ P(V ), and v ∈ ℓ}

The line bundle O(1) is defined as the dual of O(−1), so its fibre at ℓ is ℓ∗.
The following basic result from algebraic geometry will be quite impor-

tant to us.

Proposition 6.25. The spaces of sections of O(1) and O(−1) are given as
follows.

Γ(P(V ),O(1)) = V ∗, Γ(P(V ),O(−1)) = 0

Proof. We will content ourselves with explaining how to construct the map
from V ∗ to Γ(P(V ),O(1)). Given α ∈ V ∗, we get a section sα of O(1) whose
value at ℓ ∈ P(V ) is α|ℓ, the restriction of α to ℓ ⊂ V . It is not hard to
check that this is an isomorphism.

Suppose that X is a projective variety and we are given a map ρ : X →
P(V ). Then we can consider the pullback of O(1) under this map, which
we denote by OX,ρ(1) (or just O(1) for short). By definition, the fibre of
OX,ρ(1) at x is the fibre of O(1) at ρ(x). We can pullback sections of O(1)
to get a map V ∗ → Γ(X,O(1)).

We recall the following terminology from algebraic geometry. A linear
system on X is a triple (L, V, i) where L is a line bundle on X, V is a vector
space and i : V ∗ → Γ(X,L). A linear system is called base-point free if for
all x ∈ X, there exists α ∈ V ∗ such that i(α)(x) 6= 0.

We can now state the main result of this section.

Theorem 6.26. Fix a vector space V and a projective variety X. There is
a bijection between maps ρ : X → P(V ) and base-point free linear systems
(L, V, i) on X (up to isomorphisms of L).

Proof. Given ρ : X → P(V ) we have already seen how to produce the map
i : V ∗ → Γ(X,O(1)). It is base-point free, since for all x ∈ X, ρ(x) is a line
in V and hence there exists α ∈ V ∗ which pairs non-trivially with this line.

Conversely, given (L, V, i), we can define a map ρ : X → P(V ) as follows.
We think of points in P(V ) as hyperplanes in V ∗ and define,

ρ(x) = {α ∈ V ∗ : i(α)(x) = 0}
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Since our linear system is base-point free, ρ(x) is actually a hyperplane in
V ∗ for each x ∈ X.

It is easy to see that these constructions are inverse to each other.

A map ρ : X → P(V ) is called non-degenerate if its image is not con-
tained in any projective hyperplane in P(V ) (equivalently any proper pro-
jective subspace).

Proposition 6.27. If ρ : X → P(V ) is non-degenerate, then i : V ∗ →
Γ(X,O(1)) is an inclusion.

Proof. Let α ∈ V ∗. If α gives 0 in Γ(X,O(1)), then α restricts to 0 on
ρ(x) ⊂ V for all x ∈ X and so ρ(x) ∈ α⊥ for all x ∈ X. Since ρ is non-
degenerate, this implies that α = 0.

6.5.4 Line bundles on flag varieties

We have seen that if V is an irreducible highest weight representation of
G, then we get a non-degenerate map G/B → P(V ). By the above results,
these correspond to base-point free linear systems on G/B with injective i.
So in order to construct these representations, we should start by looking
for line bundles on G/B. Actually these line bundles will be G-equivariant.

Let X be a projective variety with an action of a group G. A G-
equivariant line bundle on X is a line bundle L with an action of G on
the total space of L, which is linear on fibres and compatible with the ac-
tion of G on X. In other words, for each g ∈ G and x ∈ X, we are given
a linear map Lx → Lgx. In particular, the fibre Lx carries an action of the
stabilizer of x in G.

If L is a G-equivariant, then there is an action of G on the space of
sections Γ(X,L), given by

(g · s)(x) = gs(g−1x)

for g ∈ G, s ∈ Γ(X,L), and x ∈ X. A G-equivariant linear system is a linear
system (L, V, i) where the line bundle L is G-equivariant and the vector
space V carries a compatible action of G. We can extend Theorem 6.26 to
the equivariant setting as follows.

Theorem 6.28. Fix a vector space V and a projective variety X, both of
which carry actions of a group G. There is a bijection between G-equivariant
maps ρ : X → P(V ) and G-equivariant base-point free linear systems (L, V, i)
on X (up to isomorphisms of L).
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In the setting of Theorem 6.24, the projective space P(V ) will carry a G
action coming from the G action on V and the map G/B → P(V ) will be
G-equivariant.

Now, suppose that X has a transitive action of G. We pick x ∈ X and
let H be the stabilizer of x in G. Thus, X = G/H. Suppose that L is
a G-equivariant line bundle on X. Then the fibre Lx is a 1-dimensional
representation of H.

Proposition 6.29. The above construction gives an equivalence of cate-
gories between the category of G-equivariant line bundles on G/H and the
category of 1-dimensional representations of H.

Proof. We have already seen how to go from a G-equivariant line bundle on
X to a 1-dimensional representation of H. Conversely, given a 1-dimensional
representation W of H, we define a line bundle L whose total space is

L = G×H W := {[g, w]H}

where [g, w]H denotes the equivalence class for the equivalence relation given
by the diagonal H action. In other words, [g, w]H = [gh−1, hw]H for all
h ∈ H.

There is a map L → G/H given by [g, w]H 7→ [g]. L is a G-equivariant
line bundle on G/H where G acts on L via g′[g, w] = [g′g, w].

The above results suggest that we focus on the 1-dimensional represen-
tations of B.

Let λ ∈ X be a weight. So λ defines a 1-dimension representation
C(−λ) of T . We can extend this to a 1-dimensional representation of B by
using the map B → B/N = T . These are actually all the 1-dimensional
representations of B, since N = [B,B] (in fact, these are all the irreducible
representations of B). We let L(λ) = G ×B C(−λ) denote the associated
line bundle on G/B.

Example 6.30. Let G = GLn and let λ = (λ1, . . . , λn) be a dominant
weight. Recall that a point in the flag variety G/B is a flag 0 = V0 ⊂ V1 ⊂
· · · ⊂ Vn = Cn. The fibre of L(λ) at this point V• is

(V1/V0)
⊗−λ1 ⊗ · · · ⊗ (Vn/Vn−1)

⊗−λn .

To see this, just note if V• = E• is the standard flag, then B acts on this
line with via the representation −λ.

We are now in a position to state the Borel-Weil theorem.
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Theorem 6.31. If λ is a dominant weight, then V (λ) := Γ(X,L(λ))∗ is
an irreducible representation of G with highest weight λ. These are all the
irreducible representations of G.

If λ is not dominant, then Γ(X,L(λ))∗ = 0

Example 6.32. Take G = SL2, so G/B = P1. The line bundle O(−1)
on P1 carries a natural G-equivariant structure and hence it corresponds
via 6.29 to the 1-dimensional representation of B on the line over the point
[1, 0] ∈ P1. This line is precisely the span of (1, 0) and hence it is the
representation of B coming from the weight 1. Thus O(−1) = L(−1).

More generally L(n) = O(n), the nth tensor power of O(1). A general-
ization of Proposition 6.25 tells us that Γ(P1,O(n)) ∼= SymnC2, the space
of homogeneous polynomials in two variables of degree n.

Thus, in the case of SL2, the Borel-Weil theorem is telling us that the
irreducible representation of SL2 are SymnC2.

We begin by proving part of the theorem.

Theorem 6.33. Let V be an irreducible representation of G. Then there
exists a dominant weight λ such that V ∼= V (λ).

Proof. By Lemma 6.22, V has a highest weight vector v. Let λ be the weight
of v. Hence we get a non-degenerate G-equivariant map

G/B → P(V ), [g] 7→ [gv]

from the flag variety to projective space (Theorem 6.24). Let L denote the
pullback of O(1) under this map. Hence we get an injective G-equivariant
map V ∗ → Γ(G/B,L) (Proposition 6.27).

L is a G-equivariant line bundle and so it is determined by the action
of B on the fibre at [1] (Proposition 6.29). By the definition of O(1), the
fibre L[1] is span(v)∗ and hence it is the representation C(−λ) of B. Thus
L = L(λ). Collecting this altogether we obtain a injective G-equivariant
map

V ∗ → Γ(G/B,L(λ)) = V (λ)∗

or equivalently a surjective G-equivariant map

V (λ) → V

Since V (λ) is irreducible, this map is an isomorphism.

Another way to prove this result is to think about characters and to note
that the characters χλ of V (λ) give a basis for Z[X]W .
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6.6 Bruhat decomposition

In order to prove the Borel-Weil theorem, we will first need to understand
the Bruhat decomposition.

First, we introduce some notation. Let N− be the opposite unipotent
subgroup of G. It is constructed just like N , except that its Lie algebra is
n− = ⊕α∈R−

gα. Then for w ∈W , we set Nw = N ∩ wNw−1.
Note that the Lie algebra of Nw is

nw = n ∩ wn−w
−1 = ⊕α∈R+∩wR−

gα

We define the length l(w) of w to be the size of the set R+∩wR−. This is
the same thing as the minimal length of an expression w = si1 . . . sik where
each sij is a simple reflection.

The Weyl group has a unique longest element, denoted w0, which has
the property that w0R− = R+. So Nw0

= N .
We have the exponential map exp : n → N which is an isomorphism of

varieties and it restricts to give an isomorphism nw → Nw. In particular,
we see that Nw is isomorphic as a variety to Cl(w).

In order to state the Bruhat decomposition, let us pick a representative
w̃ for each w ∈W .

Theorem 6.34. Every element of g can be written as g = bw̃b′ for b ∈ Nw,
b′ ∈ B and w ∈W . This expression is unique in two ways.

First, if
b1w̃1b

′
1 = b2w̃2b

′
2

for b1, b2 ∈ B, then w1 = w2 .
Second, if

b1w̃b
′
1 = b2w̃b

′
2

for b1, b
′
1 ∈ Nw ,b2, b

′
2 ∈ B, then b1 = b′1 and b2 = b′2.

Proof. We will prove this theorem for GLn only. Let us start by giving
a desription of Nw. We have that Nw consists of those upper-triangular
matrices with 1s on the diagonal, whose i, j entry is 0 if w−1(i) < w−1(j).

Now take g ∈ GLn. We begin by looking at the first column of g. Take
the lowest non-zero entry, say that it is in the jth row. By multiplying g on
the right by an element of T we make this non-zero entry equal to 1. Then
by multiplying g on the right by an element ofN , we perform rightward
column operations to make the rest of the j row equal to 0. Then we add
the jrow to earlier rows by left multiplying by an element of N and make
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the rest of the first column equal to 0. Continuing in this way, we reduce
our element of G to a permutation matrix w̃.

This shows us that G = ⊔NwB. To get the more refined statement, we
just note that we can restrict the row operations that we perform to those
that lie in Nw.

The geometric counterpart of the Bruhat decomposition is the decom-
position of the flag variety into Schubert cells. Recall that for each w ∈W ,
we can consider w ∈ G/B and that these are precisely the T -fixed point on
the flag variety. Now given w ∈W , we call X0

w = Bw, the Schubert cell for
w. Its closure Xw = X0

w is called the Schubert variety for w.
As a consequence of the Bruhat decomposition, we have the following

result.

Theorem 6.35. There is a decomposition G/B = ⊔X0
w. Moreover, Nw

∼=
X0

w and in particular, X0
w
∼= Cl(w).

As a consequence of this theorem, X0
w0

is an open dense subvariety of
G/B. It is called the big cell and it is isomorphic to N .

6.7 Schubert cells and varieties for GLn

In the case of G = GLn, it is possible to give a linear algebra descrip-
tion of the Schubert cells. Let V0 ⊂ V1 ⊂ · · · ⊂ Vn = Cn) and W0 ⊂
W1 ⊂ · · · ⊂ Wn = Cn be two flags. Then we can consider the matrix
A = (dimVi ∩Wj)1≤i,j≤n where we record all dimensions of intersections
between the two flags.

Lemma 6.36. For each pair of flags V•,W•, there exists a permutation w
such that the matrix of intersection dimensions is given by Aij = # of k <
j such that w(k) < i. In other words, Aij equals the number of 1 left and
right from (i, j) in the permutation matrix for w.

Under the circumstance of the Lemma, we say that V• and W• are in
relative position given by the permutation w.

Let us write E• for the standard flag and wE• for the w-permuted stan-
dard flag. So

wE1 = span(ew(1)) ⊂ wE2 = span(ew(1), ew(2)) ⊂ · · · ⊂ Cn

From the definition, we immediately see that E• and wE• are in relative
position w.
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Proposition 6.37. X0
w consists of those flags V• such that E• and V• are

in relative position w.

Proof. First we will show that if V• lies in X0
w, then it is in relative position

w with respect to E•. To see this, we know that V• = bwE• for some b ∈ B.
Then

dimEi ∩ Vj = dimEi ∩ bwEj = dim bEi ∩ bwEj = dimEi ∩ wEj

since Ei is invariant under b, and b is invertible. Thus we see that E• and
V• are in relative position w.

Conversely, suppose that V• has relative position w with respect to E•.
Then since G/B = ⊔w∈WX0

w, we see that V• ∈ X0
u for some u. By the above

analysis, we see that E• and V• are in relative position u. Hence u = w and
we are done.

We can also give a linear algebra description of the closure of a Schubert
cell.

Proposition 6.38.

Xw = {V• ∈ G/B : dimEi ∩ Vj ≥ Aw
ij}

where
Aw

ij = # of k < j such that w(k) < i

6.8 Proof of the Borel-Weil theorem

We begin with the following lemma.

Lemma 6.39. Let w ∈ W and let λ ∈ X. The action of T on the fibre of
L(λ) over the point w ∈ G/B is by weight −w−1λ.

In particular, T acts on the fibre over w0 by λ∗ := −w0λ. Note that λ∗

is dominant if and only if λ∗ is dominant.

Proof. By definition the fibre over w is {[w̃, s] : s ∈ C(−λ)}. Hence for
t ∈ T ,

t[w̃, s] = [tw̃, s] = [w̃(w−1tw), s] = [w̃, (−λ)(w−1tw)s] = (−w−1λ)(t)[w̃, s]

as so the result follows.
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Example 6.40. Consider the case G = GLn. Then the point w in G/B is
the flag wE•. Hence applying Example 6.30, the fibre of L(λ) at wE• is

span(ew(1))
−λ1 ⊗ · · · ⊗ span(ew(n))

−λn

on which T acts by

(t1, . . . , tn) 7→ t−λ1

w−1(1)
· · · t−λn

w−1(n)

which is the weight −wλ.

Given a section s ∈ Γ(G/B,L(λ)), we can restrict s to the big cell
X0

w0

∼= N . This idea will be the key to everything which follows.

Proposition 6.41. dim Γ(G/B,L(λ))N ≤ 1. Moreover, if s ∈ dim Γ(G/B,L(λ))N ,
then s has weight λ∗.

Proof. Let s ∈ Γ(G/B,L(λ))N . Then s is determined by its restriction to
the big cell X0

w0
, since the big cell is dense. Since N acts transitively on the

big cell, s is determined by its restriction to any one point in X0
w0

. In other
words, for any x ∈ X0

w0
, the map

Γ(G/B,L(λ))N → L(λ)x

is injective. Since the right hand side is one-dimensional, the left hand side
is at most 1-dimensional.

Moreover, if we choose x = w0, then since the above restriction map is
T -equivariant, we see that s has weight λ∗.

From this, we apply Corollary 6.23 to obtain the following.

Corollary 6.42. If Γ(G/B,L(λ)) 6= 0, then Γ(G/B,L(λ)) is an irreducible
representation.

It remains to show that the space of sections in non-zero if and only if λ
is dominant. Let us first see why λ being dominant is a necessary condition.

From the proof of 6.41, we have a T -equivariant inclusion

Γ(G/B,L(λ)) →֒ Γ(X0
w0
, L(λ))

Since X0
w0

is an affine space, the right hand side is very easy to understand.
(Note that the above map is not G-equivariant, since G does not act on the
right hand side, as it does not preserveX0

w0
. On the other hand, it is possible

to define a g-action on Γ(X0
w0
, L(λ)) such that this map is g-equivariant.)
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Proposition 6.43. As a T -representation, Γ(X0
w0
, L(λ)) is isomorphic to

Sym(n∗) ⊗ C(λ∗)

Proof. We can use the transitive N action on X0
w0

to trivialize the line
bundle L(λ) over X0

w0
, as follows. We have an isomorphism of T -equivariant

line bundles
N × C(λ∗) → L(λ)|X0

w0

by (n, s) 7→ ns.
Thus we can compute the space of sections of the trivial line bundle

on N (which is just O(N)) and then tensor with the 1-dimensional T -
representation C(λ∗).

Since N ∼= n, we see that O(N) ∼= Sym(n∗) and so the result follows.

In particular, the weights of Γ(X0
w0
, L(λ)) are all of the form λ∗ − µ,

where µ ∈ Q+. In fact we see that dim Γ(X0
w0
, L(λ))λ∗−µ is the number

of ways to write µ as a sum of positive roots. This number is called the
Kostant partition function of µ and is denote kpf(µ).

Because of the inclusion

Γ(G/B,L(λ)) →֒ Γ(X0
w0
, L(λ))

we see that the weights of Γ(G/B,L(λ)) are all of the form λ∗−µ for µ ∈ Q+.

Corollary 6.44. If Γ(G/B,L(λ)) 6= 0, then it has highest weight λ∗. If λ
is not dominant, then Γ(G/B,L(λ)) = 0.

Proof. Suppose that Γ(G/B,L(λ)) 6= 0, then it has a non-zero N -invariant
vector, which is of weight λ∗ by Proposition 6.41. Combining this with the
above description of the weights of Γ(G/B,L(λ)), we see that Γ(G/B,L(λ))
has highest weight λ∗. Hence by Lemma 6.19, we conclude that λ∗ (and
hence λ) is dominant.

From the above analysis, we also see that

dim Γ(G/B,L(λ))λ∗−µ ≤ kpf(µ)

for µ ∈ Q+.
Dualizing, we see that the weights of Γ(G/B,L(λ))∗ are all of the form

µ+ w0λ for µ ∈ Q+ and that

dim Γ(G/B,L(λ))∗µ+w0λ ≤ kpf(µ).
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Since the dimensions of the weight spaces of G-representations are W -
invariant, we see that all the weights of Γ(G/B,L(λ))∗ are of the form λ−µ
for µ ∈ Q+ and that

dim Γ(G/B,L(λ))∗λ−µ ≤ kpf(µ).

More generally, we get a bound on the weight spaces for each w ∈W as
follows.

dim Γ(G/B,L(λ))∗ν ≤ kpf(µ), if ν = wλ− wµ and µ ∈ Q+

6.8.1 Existence of a section

To complete the proof of the Borel-Weil theorem, it suffices to prove that if
λ is dominant, then Γ(G/B,L(λ)) 6= 0.

More precisely, we will prove the following statement.

Theorem 6.45. Let λ be a dominant weight. Let s be a non-zero N -
invariant section of L(λ) over X0

w0
. Then s extends to a section of L(λ)

over all of G/B.

Proof. We begin with the case of G = SL2, so G/B = P1. We think of P1

as 0∪C× ∪∞ and let us set things us so that ∞, 0 are T -fixed points, with
∞ = 1, 0 = w0 as Weyl group elements.

We write λ = n ∈ N. Then L(λ) = O(n).
We can think of the line bundle O(n) being glued from trivial line bundles

over P1 r ∞ and P1 r 0. More explicitly, we write

Γ(P1 r ∞,O(n)) = C[z], Γ(P1 r 0,O(n)) = znC[z−1]

The section s above can be then taken to be the constant polynomial 1 ∈
C[z]. Thus it extends over P1.

Now, our strategy is to reduce to the SL2 case. We will need the follow-
ing result from algebraic geometry, which is sometimes known as Hartog’s
theorem.

Theorem 6.46. Let X be a normal irreducible variety and let L be a line
bundle on X. Let U ⊂ X be an open subset of X such that dim(X r U) ≤
dimX − 2. Let s ∈ Γ(U,L) be a section of L over U . Then s extends to a
section of L over X.
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We apply this theorem where

U = X0
w0

∪
⋃

i∈I

X0
siw0

.

Thus it suffices to check that s extends to a section of L(λ) over X0
siw0

for
each i.

Fix i ∈ I. Consider Y := X0
w0

∪X0
w0si

. Recall that we have a root SL2

subgroup Ψi : SL2 → G. Note that Ψi(N) (which is the same thing as Nsi
)

stabilizes siw0. This allows us to define a map

P1 = SL2/B → Y, by [g] 7→ ψ(g)w0si

The image of P1 under this map (which we will denote by P1
i ) is precisely

the stabilizer for the action of Nw0si
on Y .

Since X0
w0

is an orbit of N and X0
w0si

is an orbit of Nw0si
, we see that

there is an isomorphism of varieties

N ×Nsi
P1

i → Y

given by [n, a] 7→ na.
Now, we have our line bundle L(λ) on Y and our N -invariant section s

over X0
w0

. We can restrict the line bundle L(λ) to P1
i and restrict our section

s to P1
i r ∞. By the equivariance and the above isomorphism, it suffices to

check that s extends over ∞ in P1.
The restriction of L(λ) to P1

i is SL2-equivariant (via Ψi) and thus is
determined by the action of the Borel B ⊂ SL2 on the fibre over w0si. By
Lemma 6.39, C× ⊂ B acts on the fibre by the weight

〈α∨
i ,−(w0si)

−1λ〉 = −〈α∨
i , λ

∗〉,

since Ψ|C× is given by the coweight α∨
i . Since λ∗ is dominant, −〈α∨

i , λ
∗〉 ≤ 0

and thus L(λ)|P1
i

is the line bundle O(k) for some k ≥ 0. Since s|P1r0 is

N invariant (for N ⊂ SL2), this section extends by the SL2 version of this
theorem, proved above. Thus s extends over all of Y and so the result
follows.

7 The Weyl character formula

Now that we have defined the irreducible representations V (λ), the next
step is to discuss their characters. Our first main result in this direction is
the Weyl character formula.
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7.1 The formula

There are a few equivalent ways to formulate the Weyl character formula.
Let χλ denote the character of V (λ). Define ρ = 1

2

∑

α∈R+
α to be half the

sum of the positive roots.

Theorem 7.1.

χλ =
∑

w∈W

(−1)l(w)ew(λ+ρ)−ρ 1
∏

α∈R+
1 − e−α

Here 1
1−

Q

α∈R+
eα is an infinite sum which is equal to the character of

Sym n∗ = O(N), which entered our story earlier.
Let WCFλ denote the right hand side of the Weyl character formula.
We can rewrite WCFλ as

WCFλ =
∑

w∈W

(−1)l(w)ew(λ+ρ)−ρ
∑

µ∈Q+

kpf(µ)e−µ (3)

which “converges” in the sense that for any ν the coefficient of eν is given
by a finite sum over the Weyl group.

It is not immediately clear that this expression is W -invariant however.
To see this, we use the following lemma.

Lemma 7.2.

eρ
∏

α∈R+

1 − e−α

transforms by (−1)l(w) under the action of w.

Proof. We can write

eρ
∏

α∈R+

1 − e−α =
∏

α∈R+

eα/2
∏

α∈R+

1 − e−α

=
∏

α∈R+

eα/2 − e−α/2

If w ∈W , we see that

w(
∏

α∈R+

eα/2 − e−α/2) =
∏

α∈R+

ewα/2 − e−wα/2 = (−1)l(w)
∏

α∈R+

eα/2 − e−α/2

and so the result follows.
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From the Lemma, we deduce the following corollaries.

Corollary 7.3. (i) WCFλ is Weyl invariant.

(ii) WCFλ is supported on the convex hull of Wλ and the coefficient of eλ

is 1. In other words, we have

WCFλ = mλ +
∑

µ∈X+,µ<λ

aλµmµ,

for some aλµ ∈ Z.

(iii)
∏

α∈R+

1 − e−α =
∑

w∈W

(−1)l(w)ewρ−ρ

Proof. (i) Since WCFλ is the ratio of two expressions which both trans-
form by (−1)l(w) under a Weyl group element w, we see that WCFλ

is Weyl-invariant.

(ii) From (i), WCFλ can be written as a sum of the monomial symmetric
functions mµ, where µ ranges over X+. From (3), we see that the
coeffiecient of eλ in WCFλ is 1 and that the coeffiecient of eµ is 0,
unless µ ≤ λ. The result follows.

(iii) By definition WCF0 is the ratio of the left hand side and the right
hand side. However, by (ii), WCF0 = 1.

Using part (iii) of the above corollary, we can rewrite the Weyl character
formula as

χλ =

∑

w∈W (−1)l(w)ew(λ+ρ)

∑

w∈W (−1)l(w)ewρ
(4)

There are various different proofs of the Weyl character formula. We
will give some details about a few of them.

7.2 Compact groups proof

Recall that we defined the inner product 〈, 〉 on the space C∞(K) of complex-
valued smooth functions on a compact group K by

〈f1, f2〉 =

∫

K
f1f2dg

67



If V,W were irreducible representations of a compact group K, then
we saw that their characters χV , χW were orthonormal with respect to this
inner product. We also saw that since χV , χW were class functions, they
were completely determined by their restriction to the maximal compact
T ⊂ K. However, we did not previously study the relationship between the
inner product and the restriction to T . This relationship follows from the
Weyl integration formula.

Theorem 7.4. Let f be a class function on K. Then
∫

K
fdg =

1

|W |

∫

T
f |T

∏

α∈R

1 − eαdt

Proof. We give a sketch of the proof.
Define a map

π : T ×K/T → K, (t, [k]) 7→ ktk−1

Note that π is generically a |W | : 1 cover, so
∫

K
fdg =

1

|W |

∫

T
π∗(f)π∗(dg)

where π∗(f) denotes the pullback of f to T ×K/T , and π∗(dg) denotes the
pullback of the top form dg to T ×K/T .

Since f is a class function, π∗(f) is just the function on T ×K/T which
is the restriction of f to T (and constant along the K/T factor). Similarly
π∗(dg) is constant along the K/T factor. In fact at a point (t, [k]),

π∗(dg) = det(Tt,[1]π)dtd[k],

where
Tt,[1]π : TtT ⊕ T[1]K/T → TtK

To compute this determinant, let us identify TtT with t and TtK with k by
left multiplication. Then we have

Tt,[1]π : t ⊕ k/t → k

and it makes sense to talk about its determinant as a number, since it is a
map det(k) = det(t) ⊗ det(k/t) → det(k).

Now, to understand Tt,[1], we let X ∈ t and Y ∈ k/t and compute

π(t+ εtX, 1 + εY ) = (1 + εY )(t+ εtX)(1 − εY ) = t+ εt(X + Y − t−1Y t)
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and thus
Tt,[1]π(X,Y ) = X + Y − t−1Y t

To compute det(Tt,[1]π), we complexify k to g and then with respect to the
decomposition g = tC ⊕ (n ⊕ n−), Tt,[1]π is given by the matrix

[

I 0
0 I − adt

]

where adt denotes the adjoint action of t on g. Thus we conclude that

det(Tt,[1]π) =
∏

α∈R

det(1 − α(t))

which gives the desired result.

Motivated by this theorem, we introduce an inner product 〈, 〉K on the
W -invariant smooth functions on T by

〈f1, f2〉K =

∫

T
f1f2

∏

α∈R

1 − eαdt

and we note that by the above reasoning, 〈χλ, χµ〉 = δλµ.

Proposition 7.5. The characters χλ of the irreducible representations are
uniquely determined by the following facts.

(i) χλ = mλ +
∑

µ<λ aλµ for aλµ ∈ Z.

(ii) {χλ} forms an orthonormal set with respect to 〈, 〉K .

Proof. This follows from the Gram-Schmidt process applied to {mλ}λ∈X+
.

Thus in order to prove the Weyl character formula, it suffices to prove
the following result.

Lemma 7.6. The set {WCFλ}λ∈X+
forms an orthonormal set with respect

to 〈, 〉K . In other words, 〈WCFλ,WCFµ〉K = δλµ

Proof. We apply the Weyl integration formula to get

〈WCFλ,WCFµ〉K =
1

|W |

∫

T
WCFλWCFµ

∏

α∈R

1 − eαdt
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Since 1 − eα = 1−e−α, the “extra factor” coming from the Weyl integration
formula cancels the denominators in WCFλ and WCFµ and we deduce that

〈WCFλ,WCFµ〉K =
1

|W |

∫

T

∑

w∈W

(−1)l(w)ew(λ+ρ)−ρ
∑

w′∈W

(−1)l(w′)ew
′(µ+ρ)−ρdt

=
1

|W |

∑

w,w′

(−1)l(w)+l(w′)〈ew(λ+ρ)−ρ, ew
′(µ+ρ)−ρ〉T

Now, we use the fact that the eν are the characters of the irreducible rep-
resentation of T and hence they form an orthonormal basis with respect to
〈, 〉T . Hence we see that

〈WCFλ,WCFµ〉K =
1

|W |

∑

w,w′

(−1)l(w)+l(w′)δw(λ+ρ),w′(µ+ρ)

Suppose that w(λ+ρ) = w′(µ+ρ) for some w,w′. Since λ+ρ and µ+ρ are
both dominant, we see that this forces λ = µ. Also since λ+ ρ is dominant
regular (i.e. 〈α∨, λ〉 > 0 for all α ∈ R+), it has no stabilizer in W and thus
w = w′.

Hence we deduce that 〈WCFλ,WCFµ〉K = 1 if λ = µ and is 0 otherwise.

7.3 Topological proof

For this proof, we will first need an extension of the Borel-Weil theorem.
If L is a line bundle on a complex projective variety X, in addition to
the space of sections Γ(X,L), we also have the higher cohomology groups
H i(X,L) for i = 1, . . . ,dimX. These are defined as the derived functor of
the global sections functor and they measure the failure of local sections to
glue together to form global sections. We have H0(X,L) = Γ(X,L).

Bott’s extension of the Borel-Weil theorem is the following result.

Theorem 7.7. Let λ be a dominant weight. Then H i(G/B,L(λ)) = 0 for
i > 0.

This is quite useful, since information about higher cohomology groups
is often useful, in particular, it is useful in the following result, called the
Atiyah-Bott fixed point theorem.

Theorem 7.8. Let X be a smooth complex projective variety and let L be
a line bundle on X. Let f : X → X be an automorphism of X with finitely
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many fixed points Xf . Assume that there is a lift of f to L and choose such
a lift. Then

dim X
∑

i=0

(−1)i tr(f |Hi(X,L)) =
∑

x∈Xf

tr(f |Lx)

det(1 − Txf)

where Txf : TxX → TxX is the derivative of f at x ∈ X.

This theorem is very powerful since it relates global information about
the action of f on H i(X,L) to local information at each fixed point.

We will now apply these results to prove the Weyl character formula.

Proof. Let λ be a dominant weight. By the Borel-Weil theorem and Bott’s
extension, we have that H0(G/B,L(λ))∗ = V (λ) and H i(G/B,L(λ)) = 0 if
i > 0.

Choose t ∈ T such that the t-fixed points are the same as the T -fixed
points, which are the elements of the Weyl group by Lemma 6.2. Applying
the Atiyah-Bott fixed point theorem gives us that

tr(t|V (λ)∗) =
∑

w∈W

tr(t|L(λ)w
)

det(1 − Twt)

We know from Lemma 6.39 that the action of t on L(λ)w is by the scalar
(−w−1λ)(t) = (w−1λ)(t−1).

To understand det(1 − Twt), let us note that we have a natural iden-
tification TwG/B = g/wbw−1, since wBw−1 is the stabilizer of w in G.
Since

g = tC ⊕
⊕

α∈R

gα, and wbw−1 = tC ⊕
⊕

α∈wR+w−1

gα

there is a T -equivariant isomorphism

g/wbw−1 = ⊕α∈wR−w−1gα

Hence we see that

det(1 − Twt) =
∏

α∈wR−w−1

1 − α(t) =
∏

α∈wR+w−1

1 − α(t−1)

Note that tr(t|V (λ)) = tr(t−1|V (λ)∗). Putting this all together and replac-
ing w with w−1, we see that

tr(t|V (λ)) =
∑

w∈W

(wλ)(t)
∏

α∈w−1R+w 1 − α(t)
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The RHS is almost the Weyl character formula. We just need to massage
the denominator a little bit.

Take α ∈ w−1R+w ∩R+. Then

1

1 − α(t)
= −

α(t)−1

1 − α(t)−1

Hence

1
∏

α∈w−1R+w 1 − α(t)
= (−1)l(w)

∏

α∈w−1R+w∩R+
(−α)(t)

∏

α∈R−
1 − α(t)

Finally note that
∑

α∈w−1R+w∩R+
−α = wρ− ρ, which completes the proof.
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