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These are expository lectures on the “big Cohen-Macaulay algebras”
conjecture (Hochster) and its proof in the prime characteristic case.

This lecture: the conjecture and some applications.

Next lecture: proof in the prime characteristic case (Huneke-Lyubeznik).
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Throughout this talk R is a noetherian ring.

(But not R-algebras, necessarily.)

Definition
Let R be a local ring. An R-algebra S is said to be a Cohen-Macaulay
R-algebra if a system of parameters of R is a S-regular sequence.

big Cohen-Macaulay R-algebra: to emphasise that it is not necessarily
finitely generated as an R-module.

Definition
Let R be a local ring and S a Cohen-Macaulay R-algebra. Say that S is
balanced if every system of parameters of R is S-regular.



Absolute Integral Closure

Definition
Let R be a domain. The absolute integral closure R+ of R is the integral
closure of R in an algebraic closure of its fraction field.

Theorem ([HH92, Theorem 1.1])

Let R be an excellent local domain of characteristic p > 0. Then R+ is a
balanced (big) Cohen-Macaulay R-algebra.

Theorem ([HL07, Corollary 2.3])

Let R be a local domain of characteristic p > 0, that is a homomorphic
image of a Gorenstein local ring. Then R+ is a balanced (big)
Cohen-Macaulay R-algebra.



Weak functoriality

Let R → S be be a local map of excellent local domains (or local domains
that are homomorphic images of Gorenstein rings) of characteristic p > 0.
Then there exists a commutative diagram

R+ // S+

R //

OO

S

OO

We can consider R ↪→ S and R � S separately.
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Weak functoriality

Injective case: R ⊆ S .

K ⊆ L : respective fraction fields.

K ⊆ L

R+
?�

OO

⊆ S+
?�

OO

R
?�

OO

⊆ S
?�

OO



Weak functoriality

Surjective case: R � S .

In general: for a domain A, A+ is characterised by

1. A+ is a domain and contains A as a subring;

2. A+ is integral over A;

3. every monic f (T ) ∈ A+[T ] splits into monic linear factors over A+.

Write S = R/p.

Let q ⊆ R+ be a prime ideal lying over p.

Then
S+ ' R+/q



Characteristic zero

The above results do not hold verbatim in characteristic 0 in dim ≥ 3.

Example

R normal local domain containing Q, dimR = 3.
x , y , z system of parameters.
Let a ∈ ((x , y)R :R z). Then a ∈ ((x , y)R+ :R+ z).
Suppose a ∈ (x , y)R+. Write a = s1x + s2y for some s1, s2 ∈ R+.
Let S ⊆ R+ be a finite extension of R with s1, s2 ∈ S .
K ⊆ L fraction fields of R and S .
Then there exists a non-zero integer m (invertible in R) such that

ma = TraceL/K (a) = xTraceL/K (s1) + yTraceL/K (s2) ∈ (x , y)R.

Hence x , y , z cannot be R+-regular unless R is Cohen-Macaulay.
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Characteristic zero

Nonetheless, we have the following:

Theorem ([HH92, Theorem 8.1])

Let (R,m) be an equi-characteristic local domain. Then there exists a
local (not necessarily noetherian) ring (S , n) with a local map R → S such
that S is a balanced (big) Cohen-Macaulay R-algebra.

I In characteristic > 0, R → R̂ → R̂/p→
(
R̂/p

)+
=: S , where p is a

prime ideal of R̂ of maximum dimension.
Since R̂/p is complete, S is local.

I In characteristic 0, Artin approximation and reduction to
characteristic > 0.
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Vanishing of maps of Tor.

Theorem
Let R → S → T be equi-characteristic noetherian rings, with R and T
regular, R a domain, and S module-finite and torsion-free over R. Then
for every R-module M and for every i ≥ 1, the map

TorRi (M,S)→ TorRi (M,T )

is zero.

Proof:
We follow [Hun96, Chapter 9].

If the map is non-zero, it would remain non-zero if we replace T by T̂q for
a suitable prime ideal q of T .

Hence T is a RLR.

May assume M a finitely generated R-module.



Vanishing of maps of Tor.

Theorem
Let R → S → T be equi-characteristic noetherian rings, with R and T
regular, R a domain, and S module-finite and torsion-free over R. Then
for every R-module M and for every i ≥ 1, the map

TorRi (M,S)→ TorRi (M,T )

is zero.

Proof:
We follow [Hun96, Chapter 9].

If the map is non-zero, it would remain non-zero if we replace T by T̂q for
a suitable prime ideal q of T .

Hence T is a RLR.

May assume M a finitely generated R-module.



Vanishing of maps of Tor.

Theorem
Let R → S → T be equi-characteristic noetherian rings, with R and T
regular, R a domain, and S module-finite and torsion-free over R. Then
for every R-module M and for every i ≥ 1, the map

TorRi (M,S)→ TorRi (M,T )

is zero.

Proof:
We follow [Hun96, Chapter 9].

If the map is non-zero, it would remain non-zero if we replace T by T̂q for
a suitable prime ideal q of T .

Hence T is a RLR.

May assume M a finitely generated R-module.



Vanishing of maps of Tor.

Theorem
Let R → S → T be equi-characteristic noetherian rings, with R and T
regular, R a domain, and S module-finite and torsion-free over R. Then
for every R-module M and for every i ≥ 1, the map

TorRi (M,S)→ TorRi (M,T )

is zero.

Proof:
We follow [Hun96, Chapter 9].

If the map is non-zero, it would remain non-zero if we replace T by T̂q for
a suitable prime ideal q of T .

Hence T is a RLR.

May assume M a finitely generated R-module.



Localize R, S and M at the contraction of the maximal ideal of T to R,
and complete.

Hence R and T are complete RLRs.

ker(S → T ) is a prime ideal of S , so it contains a minimal prime ideal p of
S . Note that p ∩ R = 0 (∵ torsion-free).

Given map factors as:

TorRi (M,S) //

''

TorRi (M,T )

TorRi (M,S/p)

77

Replace S by S/p and assume S complete local domain.
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We have a commutative diagram

A // B

R // S //

OO

T

OO

where A and B are balanced Cohen-Macaulay algebras for S and for T .

R → S finite, so A is a balanced Cohen-Macaulay algebra for R.

Fact: Since R is regular, an R-algebra C is a balanced big
Cohen-Macaulay R-algebra if and only if C is faithfully flat over R.

Hence, A is faithfully flat over R, and B is faithfully flat over T .
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We get a commutative diagram: For i ≥ 1,

0
A flat

=

TorRi (M,A) // TorRi (M,B)

TorRi (M, S)

∴ 0

//

OO

TorRi (M,T )

injective since B is f. flat over T

OO

Explanation:

TorRi (M,T )→ TorRi (M,T )⊗T B is injective.

Let F• be a free resolution of M over R.

TorRi (M,T )⊗T B ' Hi (F• ⊗R T )⊗T B ' Hi (F• ⊗R B) ' TorRi (M,B)
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Pure subrings of regular rings

A ring map R → S is pure if M → M ⊗R S is injective for every R-module
M.

1. Faithfully flat maps are pure.

2. Let R
φ→ S be a ring map. If it splits, i.e, there exists an R-linear

σ : S → R such that σφ = idR , then φ is pure. Converse holds if φ is
finite.

3. Let G be a finite group and V a finite-dimensional representation of
G over a field k such that |G | is invertible in k. Let S = SymV ∗ and
R = SG . Then R → S splits.
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Theorem
Let R → S be a pure morphism of equi-characteristic rings, with S a
regular ring. Then R is Cohen-Macaulay.

Sketch (assuming φ splits):

Reduce to R complete local, S regular

Take A ⊆ R with A regular and R module-finite over A.

Let x1, . . . , xd regular system of parameters for A.

Let M = A/(x1, . . . , xd).
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The commutative diagram (of A-modules)

R // S

��
R

gives, for i ≥ 1,

TorAi (M,R)

0

// TorAi (M,S)

ww
TorAi (M,R)

Hence TorAi (M,R) = 0 for every i ≥ 1.

R is a free A-module, so it is a Cohen-Macaulay ring.
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Direct summand conjecture

Conjecture

If R ⊆ S is a module-finite extension of rings and R regular, then R is a
direct summand of S as an R-module.

Vanishing of the maps of Tor implies the direct summand conjecture.



Tight closure

Definition
Let R be a domain of characteristic p > 0 and I an R-ideal. The tight
closure of I is the set

I ∗ := {z ∈ R | ∃c ∈ Rr0 such that for every e ≥ 0, czp
e ∈ I [pe ]}.

I ∗ is an R-ideal containing I .

has various nice properties; is very useful.

If S is a module-finite extension of R, IS ∩ R ⊆ I ∗.
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Question: Is IR+ ∩ R = I ∗?

Theorem ([Hoc94, Theorem 11.1])

Let (R,m) be a complete local domain of characteristic p > 0. Let I be an
R-ideal. Let x ∈ R. Then x ∈ I ∗ if and only if there exists a balanced
Cohen-Macaulay R-algebra S such that x ∈ IS.

Theorem ([Smi94, Theorem 5.1])

Let R be a locally excellent noetherian domain of characteristic p > 0. Let
x1, . . . , xd be elements of R such that they form a part of a system of
parameters in Rp for every prime ideal p containing x1, . . . , xd . Write
I = (x1, . . . , xd). Then IR+ ∩ R = I ∗.
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Mixed characteristic

There exist weakly functorial big Cohen-Macaulay algebras in mixed
characteristic also.

These have been used to study singularities in mixed characteristic.

André, Bhatt, Heitman, Ma, Schwede, Shimomoto, ....
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Thank you!
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