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These are notes from an undergraduate course on complex analysis during Jan—Apr 2020 at
CMI.

(1) Ahlfors, Complex Analysis.

(2) Conway, Functions of one complex variable.

(3) Kodaira, Complex Analysis.

(4) Lang, Complex Analysis.

(5) Rodriguez, Kra and Gilman, Complex Analysis, in the spirit of Lipman Bers (2nd ed.).

LECTURE 1. PRELIMINARIES

Casthering R[X]/(X? +1). Write 1 for the image of X in C.

Let ¢ € C;then there exist unique a,b € R such that ¢ = a + bi. We call a the real part of ¢
and b the imaginary part of ¢, and write a = R(c) and b = J(¢). If f : A — Cis a function
(A being some set), then we write R (f) and J(f), respectively, for the functions A — R,
ar R(f(a))anda — I(f(a)).

The function | - | : C — Rso, z — (R (2))2 + (I(2))? is called the modulus or the absolute
value function. This gives a metric on C: take the distance between c,¢’ € C to be |c — ¢/|.
The function C — R?, ¢ — (R(c), I(c)) gives an isomorphism of real vector spaces and a
homeomorphism' of metric spaces (with R? given the usual metric). Therefore C is a complete
metric space.

A subset A C C is connected if there are no open subsets U and V of C such that A = (A N
UD)UANV)with(ANU)#2# (ANnV)and(ANUNV) =0.

Let A C C,and zq, z; € A. Apathin A from z, to z; is a continuous functiony : [0,1] — A
such that y(i) = z;, i = 0,1. Say that A is path-connected if for every zo, z; € A, there is a path
from zo to z;.

1.1. Proposition. An open subset of C is connected if and only if it is path-connected.
Proofis left as an exercise.

1.2. Definition. By a domain, we mean a connected open subset of C.

ILet X and Y be topological spaces, and f : X — Y a function. We say that f is a homeomorphism if it is
bijective and continuous, and its inverse function (which exists since f is bijective) is continuous.
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When we talk of limits and convergence in C, these are with respect to the metric topology.
In particular, a sequence of complex numbers is convergent if and only if it is a Cauchy se-
quence. Consider a series 3", a; of complex numbers.” The sequence of partial sums for this
series is the sequence s, = }1.ya;, n € N. We say that the series converges if the sequence
$05 81, $2, - - . converges. Now suppose that the series Y,y |a;| of real numbers converges. (We
say that Y}, a; is absolutely convergent if this happens.) Let € > O; then there exists N such that
foreveryn > m > N, }.I |ai| < €. Therefore s, — spm| < €, i.e., the sequence (s,) is Cauchy.
Hence }) ;e a; is convergent. We have now shown that every absolutely convergent series is
convergent.

1.3. Notation. Hereafter, when we write a complex number ¢ = a + b1, it should be understood
thata = R(c) and b = J(c). Similarly, when we write f = u + v1 for a C-valued function f,
u=R(f)andy = J(f). O

1.4. Notation. ForR € R ,U{+oo}andc € C,wedenoteby B, gtheopendisc{z € C : [z—c| < R}
and by By, its closure in C.

Exercises.
1.1 Show that every connected open subset of R" is path-connected. The “topologist’s sine

curve”, i.e., the closure of
1
{(x, sin —) | x € (O, I)}
x

inside R? is connected but not path-connected. (It is not open in R?).

1.2 Show that for every positive integer n, R" with the usual metric is a complete metric
space.

1.3 (Polar coordinates). For a nonzero ¢ € C, there exist unique r € R, and non-unique
0 € Rsothatc = r(cosf + 1sinf). (We still do not know what 7 is, or that e =
(cos 0 +1sin 0).) We refer to 0 as an argument of c.

1.4 We think of z as the ‘coordinate’ for C; This is related to the cartesian coordinates (x, y)
of R by x = R(z) and y = J(z). We can also define another coordinate z, with the
property that z = a + b1 (a, b € R) is the same as the point given by z = a — b1. Let nbe a
positive integer; express the equation z" = Z" in polar coordinates and solve.

1.5 Prove the ratio test: Let );c;y a; be a series of non-zero real numbers. If

aiy1

L = lim

i—o0

a;
exists, then the series converges if L < 1and divergesif L > 1.
1.6 Prove the root test: Let ),y a; be a series of real numbers. Let
. 1
L :=lim sup |a,|" .
n—-oo

Then the series converges if L < 1and divergesif L > 1.
1.7 Consider the series ', a, with

1, =0,
an = “"2‘1, n odd,
1 p > 2 even.

sz N, we mean {0,1,2,...}.
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4 MANO] KUMMINI

114 Show that the ratio test is inconclusive, while the root test concludes that the series con-
115 verges.
116 LECTURE 2. DIFFERENTIABILITY

117 2.1. Definition. Letc € C and f a (complex-valued) function defined in an open disc around c.
118 Say that f is (complex-)differentiable at c if

po fer ) = f(o)

h—0 h

119 exists. If this is the case, we call this limit the derivative of f at ¢, and denote it by f’(c).

120 2.2. Remark. We will not explicitly say “complex-differentiable”, hereafter, for C-valued func-
121 tions from subsets of C. When we refer to such a function as being “differentiable”, it should
122 be understood as “complex-differentiable”.

123 By a constant function we mean a function of the form C — C, z +— cforsomec € C. It
124 is immediate that constant functions are differentiable. The identity function on C (i.e., the
125 map z + z) is differentiable. We could also consider the restrictions of these functions to
126 some open U C C. Before we construct more examples, we need some to see some rules of
127 differentiation.

128 2.3. Remark (Rules of differentiation). Let ¢ € C, f and g functions defined on a neighbour-
120 hood? of ¢ and differentiable at c, h a function defined on a neighbourhood of f(c) and differ-
130 entiable at f(c), and « € C. Then

131 M) (f +ag)’(c) = f'(c) +ag'(c).

12 (2) (f9)'(c) = f'(c)g(c) + f(e)g'(c).

133 (3) (ho f)'(c) =hH(f(c))f (c).

134 4) (%), (c) = —% if f(c;) # O for every c; in a neighbourhood of c.

135 2.4.Example. We can now construct two more examples of differentiable functions. Let p(X), q(X) €
136 C[X] with q(X) # 0. The function

C—C, z- p(2)

137 (i.e., the polynomial p evaluated at z) is differentiable at all points in C. Such functions are
138 called polynomial functions. Let U = {z € C | q(z) # 0}. Since the set of zeros of g(X) is finite,
139 U is open. The function

140 is differentiable at every point in U. These are called rational functions.

141 2.5. Remark. Let ¢ € Cand f a (complex-valued) function defined in an open disc around c. If
142 f is differentiable at ¢, then it is continuous at ¢. To see this, note that

fle+h) - f(o)
h

f'(c) -0 = lim -lim h = lim f(c +h) — f(c).
h—0 h—0

h—0

3Let X be a topological space and x € X. A neighbourhood of x in X is a subset V of X such that there exists an
open subset U of X such thatx e U C V.
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2.6. Example. Let f be a real-valued function defined in an open disc around ¢ € C. Suppose
that f is differentiable at c. Then, taking h to be real, we see that

fle+h) - flo)
h

f'(c) = lim
h—o0
is real. On the other hand, taking h = it to be purely imaginary, we get

6 = lim L) = 1O

t—>0 1t
is purely imaginary. Hence f”(c) = 0. We will see this in a general context later. O

2.7. Definition. LetU C Cbe adomain, and f : U — C. Say that f is holomorphic on U if it is
(complex-)differentiable at every point in U. A function f : C — C that is holomorphic on C
is called entire.

2.8. Theorem. Let U be a domain, f : U — Candc = a+ b1 € U. Write f asu(x,y) + v(x, y)1.
Then f is complex-differentiable at c, if and only if u and v are differentiable at (a, b) (as functions from
R? — R) and their partial derivatives satisfy the Cauchy-Riemann equations

(2.9) ux(a, b) = vy(a,b) and uy(a,b) = —v.(a,b).
Further, when this happens, f’(c) = u.(a, b) + 1wy (a,b) = vy(a, b) — wy(a, b).
(Here uy(a, b) is the partial derivative 2%(a, b), etc.)
Proof. Write h = Ax +1Ay and f(c+h) — f(c) = Au +1Av. Assume that f is differentiable at c.
Write f’(c) = p +1q; then
Au +1Av = (p +19) (Ax +1Ay) + r(Ax +1Ay),

where r(h) is a complex-valued function defined in a neighbourhood of 0 € C, but possibly
not at O, such that lim r(h) = 0. Write r(z) = r1(z) +1r,(z). Thus

h—0
Au = pAx — qAy + ri(h);
Av = qAx + pAy + rp(h).

Lete > 0. Thenthere exists § > Osuchthatforeachh € By s\ {0}, |M| < g;sincer; = R(r)

andr, = 3(r), |r1(h)| < eand |r2(h)| < €. Therefore lim rllgr) = 0and Plllm ’jz}l’) = 0. Hence u
h—0 —0

and v are differentiable at (g, b) and (2.9) are satisfied.
Conversely, assume that u and v are differentiable at (a, b) and that (2.9) are satisfied. Write
p = ux(a,b) and g = vy (a, b). Then
Au = pAx — qAy + r1(h);
Av = gAx + pAy + ry(h),

where lim ”'gl’) = Oand }ll1m |h|) = 0. Write r(z) = ri(z) + wr,(z). Then f(c + h) — f(c) =
h—0 —0
r(h) _

(p +1q9) (Ax +1Ay) +r(z). Note that hrré —~ = 0, by the triangle inequality. Hence f”(c) exists

and equals p +1q. O

Satisfying the Cauchy-Riemann equations alone is not a sufficient condition, in general, for
f to be differentiable at a point; see the exercises.

[git] ® Branch: master @ a933e41 o Release: (2021-04-20)
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165 2.10. Remark. Write f, = u, + vy1and f; = u, + v,1 (Wherever the partial derivatives on the
166 right are defined). The Cauchy-Riemann equations can be rephrased in a more concise way, as
167 fx = —1fy. Another description is given in the exercises.

168 Exercises.

169 2.1 Prove the rules of differentiation mentioned in class.
170 2.2 Let
Sl 1—4
Z’|z|™", ifz+#0;
f(z) = .
o, otherwise.
171 Write z = x + y1 and determine R (f) and J(f) as functions of the real variables x and
172 y. Show that these satisfy the Cauchy-Riemann equations at z = 0 € C. Show that the
173 limit "
lim f—( )
h—o h
174 does not exist by considering first h = r and then h = (1 +1)r, withr € R. Hence f is
175 not differentiable.
2.3 Define

f= l(fx —1fy), and

2

fi=S(frif)

176 wherever the RHS is defined.

177 (1) Treating z and z as independent coordinates, show that this definition agrees with
178 the formula one would get from applying the chain rule for the substitutionx = ZZ,
179 y=ZZ.

180 (2) If f is differentiable at ¢, then f’(¢) = f;(c); the Cauchy-Riemann equations sim-
181 plify to give f;(c) = 0.

182 2.4 If f = 2"z", withm,n > O, then f, = mz™ 2" and then f; = nz™z""'. Extend this to
183 ‘polynomials’in z and z.

184 2.5 Show that the function

Xyz(x+yl) ‘f 0.0
o= 35 e 20

0, otherwise

185 is not differentiable at 0.
186 2.6 Let f(z) be a function defined in a neighbourhood of ¢ € C. Show that f(z) is differen-
187 tiable at ¢ if and only if f(Z) is differentiable at ¢.
188 2.7 (Cauchy-Riemann equations in polar coordinates) Write f = u + v, and express u and
189 v as (real-valued) functions of r and 6. Since x = rcosf and y = rsin 0, we have u, =
190 Uy cos 0 +uy sin @, v, = v, cos 0 + vy, sin 0, ug = —u,rsin@ + uyr cos 0, vy = —v,rsin 0 +
101 vyr cos 0. Therefore the Cauchy-Riemann equations are

ru, = 0g;ro, = —uy.
192 LECTURE 3. POWER SERIES

193 3.1. Definition. A (formal) power series in the variable z is an expression of the form

E anpz"

neN
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where the a, are complex numbers. A formal power series 3, anz” is said to converge (re-
spectively, diverge) at ¢ € Cif the series ) ,cpy anc” of complex numbers converges (respectively,
diverges). ForaU C C, a power series is said to converge on U if it converges at ¢ for everyc € U.

We will often drop the word ‘formal’ while talking about power series.
3.2. Definition. The radius of convergence of the series Y.,y anz” is

-1
(lim sup |an|%) )

n—oo

(Here, we mean that the radius of convergence is O (respectively +co) if the lim sup is +co (re-
spectively, 0).) A series is said to be convergent if its radius of convergence is positive.

3.3. Theorem. Let R be the radius of convergence of the series ) ,cn; anz".
(1) It converges absolutely in Bo g; in particular, it converges in Bo g.
(2) ForeveryO < p < R, the sequence of functions

m
c Zanc", m €N,
n=0

converges uniformly in Bo .
(3) Foreveryc € C \ Bop, the series is unbounded at c.

We will often abuse terminology and call a power series ),y a,z" a function on Bog, by
which we mean the function ¢ — },cy; anc” on Bgg.

Proof of Theorem. (1): It suffices to prove the assertion about absolute convergence, i.e., that
> lanll2l"

converges whenever |z| < R. Without loss of generality, the a, are non-negative real numbers;
we want to show that for 0 < x < R, 3}, ey anx" converges. Let x < y < R. There exists N € N

1
such that a < i for every n > N;hence a,x" < (x/y)" for everyn > N. Hence Y ,cp; anX"
converges.

(2): Let p < 0 < R. Then, as earlier, |a,z"| < (p/o)" for all sufficiently large n. Write s,,,(z) =

neo anz". Let € > 0. Then there exists N such that for everym > k > N, [sp(2) — sk (2)| =
| Y @2 < X0 lanz"| < X0 (p/o)™ < €, since the series 3, (p/0)" converges.
Note that by (1), > ,cx anz" converges in Bo g to give a function f(z) on By g. By taking m — oo
(keeping k fixed), we see that |f(z) — sk(2)| < €, 1.e., 3 ,cn an2" converges uniformly on By ,.

1
(3): Let |c| > y > R. Then there are arbitrarily large n such that a; > 5 Hence

lim |a,c"| # 0,

n—»:uoo
so the series does not converge. O
3.4. Remark. The radius of convergence of the complex power series ),y an2" and that of

the real power series )\ |an|x" are the same. Hence the tests for determining the radius of
convergence of real power series can be used to determine the radius of convergence of complex
power series also.

3.5. Example. The radius of convergence of } >, % is 1. The series does not coverge at z = 1,
but converges at z = —1.
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8 MANO] KUMMINI

3.6. Proposition. Let Y, anz" be a convergent power series with radius of convergence R. Then it is
holomorphic on Bo g, with derivative Y., oy nanz"*. Further, the radius of convergence of the derivative
iIsR.

Proof. We will first prove that the radius of convergence of the series Y ,cjy na,z" ' is R. Indeed,

lim sup(nlanl)% = lim n# lim sup |an|% = lim supla,ll% =1/R.
n n n n

Write f(z) and f(z) respectively for the functions ).,cyy anz" and Y.,cp nanz" ! on Bog. We
want to show that f’(c) = fi(c) for every ¢ € Bog. Let ¢ € Bog. We will show that

fesh=f@ (C)‘ _

Write s,(z) = Y1, a;iz'. Thens) (z) = X1, iaiz"l. Write R,(z) = f(z) — su(z) on Bog. Then for
every sufficiently small r and every z € B,

[ 1) f()—(M s;(c))+(8§,(c)—ﬁ(c))+(w)~

lim

h—0

zZ—cC

Choose r above such that|c|+7r < p < R. Lete > 0.

Since
Rn(Z) - Rn(C) _ Z;:nﬂ a;z' — Z‘iinﬂ aic' _ Zlinﬂ ai(zl - Cl) _ Z a chi—l—j
- - - 1 )
z—c z—c z—c¢ S =
we see that

Ra(z) — Ru(c)
z—c¢

(o)
< D, ilailp"™

i=n+1

We already observed that },_ ma,,z™! converges in Bog. The same argument shows that

there exists ng such that for each n > no,

Ra(z) —Ru(c)| €

e
z—c¢

Similarly, there exists nj such that for each n > nj,
€
sh0) = o) < £

Fix n > max{no, n;}. There exists § > O such that forallz € B.s

sn(z) - Sn(c) _ S;(C) <
z—c
Hence forall z € B, s
'f(z) O _ ol <
z—c
Therefore f” = f; on Byg. O

3.7. Corollary. With notation as in the proposition, write f (z) for the function Y., c;y anz" on Bog. Then
forevery k > 1, the derivative X (2) of f(2) exists on Bo g. Moreover, forevery k € N, kla, = £f*)(0).

Proof. Immediate from the proposition. O

3.8. Proposition. Let Y, anz" be a convergent power series such that a,, # O for some m. Then there
exists R > O such that for every ¢ € Bogrwithc # 0, 3,5 anc™ # O.
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Proof. Let mbe the smallestinteger such thata,, # 0. Write the given series as z™ ) ,ciy dn+mz".
There exists R > O such that )}, iy ansmc™ # O for every ¢ € Bog, by continuity. Now note that
for every ¢ € Bog,c™ = Oonlyifc = 0. O

Exercises.

3.1 Read the statement of the Weierstrass M-test in Ahlfors, Chapter 2, Section 2.3 and un-
derstand its proof.

3.2 All the exercises in Ahlfors, Chapter 2, Section 2.4 (‘Power series’)

3.3 Show that the radius of convergence of 3, a;iz' is

sup{reR|r >0, Z |a;|r' converges}.
ieN
3.4 Let Yoy a; and Y,y b; be convergent series of complex numbers, and «, f € C. Show
that the series Y ;i (@a; + Bb;) is convergent and its value is & Y ey ai + f Xien bi-
3.5 Prove the properties of limits superior and inferior listed in Rodriguez, Kra and Gilman,
Section 3.1.1. )
3.6 Show that lim,_,. n» = 1and that for every k, lim, e (f)" =1
3.7 The set C[[z]] of all formal power series ., e anz" form a commutative ring with

addition :Z a,z" + Z b,z" = Z(an +b,)2";

neN neN neN
n
multiplication :Z apz" - Z b,z" = Z Z(akbn_k)z”.
neN neN neN k=0

It contains C as a subring identified with the ‘constant’ power series: ¢ <> ¢+ 0z + 0z +
.-+ Ifap # 0, then Y, )y anz™ has an inverse in C[[z]].

3.8 The subset C{z} of C[[z]] consisting of all the convergent power series is a subring. If
Dinen anz" € C{z} and ao # O, then its inverse in C[[z]] in fact belongs to C{z}. (Hint:
> neiv anz" converges to something non-zero in a neighbourhood of 0.)

3.9 (Some ring-theoretic properties of C[[z]] and of C{z}, not relevant for this course.) The
map C[[z]] — C, X ,ai anz" — ao is a surjective ring homomorphism; its kernel is
generated by z; hence the ideal m generated by z is a maximal ideal. Every element of
C[[z]] \ m is invertible in C[[z]], so m is the unique maximal ideal of C[[z]]. If I is
a proper ideal of C[[z]], then I = m! (i.e., the ideal generated by z') for some ¢t > 1.
Similar statements for C{z} also.

LECTURE 4. ANALYTIC FUNCTIONS

4.1. Definition. Let U be adomain. We say that f : U — Cis (complex-)analytic if for every ¢ €
U, there exist § > O and a convergent power series ;e a;2' such that B.s C U, ¥ e ai(z —c¢)’
converges on B s and f({) = Y ai({ — ¢)' forevery { € B.s.

4.2. Remark. The coeflicients g; in the expansion of f as a power series centred at ¢ € U might
depend on c. It might not be possible to choose g; that will work at every ¢ € U. This is not
surprising. We have seen that for any power series centred at ¢ € C, the set of points at which
it converges contains an open disc B, g and is contained inside the closed disc B, z. However U
might not be of this shape. We will see one such U (occurring in a natural way) when we discuss
branches of the logarithm, later.
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4.3. Remark. Let U be adomainand f : U — C an analytic function. Then for every k > 1,
f®)(z) is an analytic function on U. Moreover, for every ¢ € U, there exists a neighbourhood

on which
f@ =) fP -0
neN
4.4. Remark. Every analytic function is holomorphic. After proving a version of the Cauchy

integral formula for a disc (Theorem 14.1), we will show that every holomorphic function is
analytic (Corollary 15.5). This is not the same situation for functions from R to R. For every
positive integer k, there exist f : R —> R such that the kth order derivative f*) exists, but
is not continuous, so in particular f**!) does not exist. There are functions f : R — R such
that f(F) exists for every positive integer k (such functions are called smooth functions) but f is
smooth but not real-analytic, i.e., f does not have a power-series expansion on its domain.

4.5. Proposition (Lang, Chapter II, §4, Theorem 4.1). Let },c anz" be a convergent power series
with radius of convergence R. Then it is analytic on Bo g.

Proof. Write f(z) = 3 ,en anz" on Bog. Let ¢ € Bogr. We want to show that f can be represented
by a convergent power series centred at ¢ in a neighbourhood of c. To see this, choose € > 0
such that B, C Bog. On B, ., we can write

(o)

f@) =) az—c+o)"
n=0
AL n—k k
= anc" " (z—c)".
N
Claim:
9(2) :Z(Z (Z)anc"—k) (z—c)
k=0 \n=k

converges and equals f(z) in B .
To prove the claim, let z € B, .. Note that |c| + |z — ¢| < R. Hence the series

lanl(lc| + |z —c)" = 3 (" |anllel" ™|z = I,
k

n n=0 k=0

converges. (Recall that inside the open disc of convergence, we have absolute convergence.)
Hence we can change the order of summation:

i i (Z)lan||c|n—k|z - clk = i i (Z)larlllC'n_k'Z _ Clk-

n=0 k=0 k=0 n=k
Therefore g(z) converges absolutely in B, . The same argument also shows that g(z) = f(z) on
Bc,e- O

4.6. Proposition. Let U be a domain and f an analytic function on U that is not identically zero. Then
the zeros of f are isolated, i.e. for every c € U with f(c) = O, there exists € > O such that B, C U and

f({) # Oforevery { € B. \ {c}.

Proof. Let A = {c € U | f(c) # 0}. Since f is continuous and not identically zero, A is open
and non-empty. We may assume that A # U. Write A for the closure of A in U. We want to
show that the points in U \ A are isolated. We will show the following:
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(1) Foreachc € A\ A, there exists € > O such that B, \ {c} C A.

2) A=U.

Letc € A\ A. Let Y, oy a,2" be a convergent power series and € > O such that f(z) =
Yinen dn(z —c)*onB.e € U. Since B, N A # @, it follows that f is not identically zero on B .
Therefore there exists m such that a,, # 0. By Proposition 3.8, we may assume that ({) # O
forevery { € B.e \ {c}.

We now show that A = U. By way of contradiction, assume that A # U. We will show that
U\Aisclosed. Let ¢ € U bealimit point of U \ A. Now, ifc € A\ A, then by above, there exists
e > Osuchthat B¢ \ {c} C A. If ¢ € A, then there exists ¢ > 0 such that B, € A. In both
cases, we cannot have a sequence in U \ A converging to c. Hence ¢ € U \ A4, so it is closed.
This now leads to a contradiction, since U is connected and both A and U \ A are non-empty
and closed. Therefore A = U. O

Exercises.

4.1 Let U be adomain, ¢p € Cand 7 : U — C be the map ¢ + ¢ + ¢o. Then 7 is continuous
and injective; the inverse of 7 on Im(7) (which exists since 7 is injective) is continuous.
Im(7) is a domain. If f is holomorphic (respectively, analytic) on U, then fz ! is holo-
morphic (respectively, analytic) on Im(7). (Using this, we can ‘translate’ many questions
about the local behaviour of holomorphic or analytic functions at ¢ € U to that of holo-
morphic or analytic functions at 0, in an appropriate neighbourhood of 0.)

4.2 Prove analogous statements when f is replaced by the composite f o [{ + ¢{]| where ¢
is a (fixed) non-zero complex number.

4.3 Let f : U —> C be analytic on a domain U. Show that if f¥)(z) = 0 for every z € U,
then f is given by a polynomial of degree at most k, hence, f can be extended to an entire
function as follows:

(1) There is a nonempty open subset of U on which f is given by a polynomial p of de-
gree at most k.
(2) f — pis zero on a nonempty open subset of U, so it is zero on U.

4.4 Let f : U — C be analytic on a domain U, not identically zero. Let A = {¢ € U |
f™(c) = 0 forevery n € N}. Ais closed, since {c € U | f™(c) = 0} is closed, for
every n € N. A is open, since, for every ¢ € A, there is a neighbourhood in U on which
f isidentically zero, and, hence, this neighbourhood is a subset of A. Thus A = @. Now
letc € Uand f(z) = X ,en an(z — ¢)™ in a neighbourhood of ¢. Then there exists k such
that a; # 0. Thus there exists a neighbourhood V of ¢ in U such that f(z) # 0 for every
z €V A{c}.

4.5 Consider the function f(x) = e in a neighbourhood of 0 in R. Show that f*) exists
in a neighbourhood of 0 and that f¥)(0) = 0 for every k > 0. Hence f is not real-
analyticin a neighbourhood of 0. This example was discovered by Cauchy and Hamilton.

4.6 (Not relevant for this course.) Let U be a domain and A(U) the set of analytic functions
onU. Itis a commutative ring with

addition : (f +g)(z) = f(2) + g(2);
multiplication : (fg)(z) = f(2)g(2).

It contains C as the subring of the constant functions on U. It is an integral domain.
Forc € U, thesetm, := {f € A(U) | f(c) = 0} is a maximal ideal of A(U). There is
a ring homomorphism A(U) — C{z — c} (the ring of convergent power series in the
variable z — ¢) which factors through the localisation A(U )y, .
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LECTURE 5. EXPONENTIAL AND LOGARITHMIC FUNCTIONS

By e or exp(z) we mean an analytic function f(z) that f’(z) = f(z) and f(0) = 1. Suppose
that this has a solution. Then in a neighbourhood of 0, it can be written as a convergent power
series Y ey anz". Since f'(z) = Y e nanz" ' and f(0) = ap = 1, we conclude by induction
that a, = . Since

. an+1
lim =0

n—oo an

. n
we see that the series 3,y Z; converges everywhere on C.

5.1. Proposition. (1) e*e™* =1foreveryz € C.
(2) In particular, e* # O forevery z € C.
3) e#*9) = e*e‘ forevery z,c € C.

Proof. (1) NOTE: A priori e~ is not X, but just the composite function [z — exp(z)] o [z >
—z]. Hence e™* is analytic on C,* and, hence, so is e?e™. Its derivative is O, so it is a constant
function.” Now note that its value at O is 1.

(2) Follows immediately from (1).

(3) Fix c and consider

(z+c)
h(z) =&
eC
as a function of z. It is analytic on C ¢ and #’(z) = h(z) and h(0) = 1. Hence h(z) = €. O

From the exponential function, we can define sin(z) and cos(z):

elZ + e—lZ
cosz =————
elZ _ e—lZ
sinz =
21
o . 2 4
5.2. Proposition. (1) cosz=1- % + i_! N

(2) Sinz:z—‘;—?+§—i—'~.

(3) ¥ =cosz+1sinz.

(4) cos®z +sin’z =1.

(5) cos(—z) = cosz.

(6) sin(—z) = —sinz.

(7) cos’(z) = —sinz.

(8) sin’(z) = cosz.

(9) Ifxisreal, then the new definitions of e*, cos x, sin x agree with the definitions in the case of real

numbers.

(10) e = e*(cosy +1siny). In particular, e = 1.

Proof of the above proposition is left as an exercise.

5.3. Definition. Let z € C \ {0}. By an argument arg z of z, we mean an real number 0 such

that z = |z|e*. Define the principal argument Arg z of z to be the argument in (-7, 7].

“Exercise 4.2
Exercise 4.3
Exercise 4.1
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5.4. Definition. For a fixed choice of arg z, we often write log z for log |z| + 1arg z. Define
Logz =log|z| +1Argz
onC \ (—o0,0].

5.5. Remark. Letz € C \ {0}. If 6; and 0, are arguments of z, then 6; — 0, is a multiple of 2.
Note that e°8% = z.

5.6. Proposition. Log z is holomorphic on C \ (—oo, 0] with derivative1/z.

Proof. On the given domain, the real and imaginary parts of Log z, viz., log |z| and Arg z are
differentiable functions of the reals coordinates x and y. Hence it suffices to check that they
satisfy the Cauchy-Riemann equations. For this, use the version in polar coordinates: u = logr,
v=20.Henceru, =1=uvgand ro, = 0 = —uy.

Since Log z is holomorphic, we can use differentiate e°¢% = z to get €1°8%(Log’ z) = 1, i.e.,
(Log’ z) =1/z. O

Let U be adomain and f a continuous function on U. We say that f is a branch of the logarithm
onU if ef(?) = z for every z € U. A branch of the logarithm f on U is principal if f(z) = Log(z)
foreveryz € UNC \ (—o0,0].

5.7. Proposition. The power series

i(—l)"—l—(z — "
n=1

n
is the principal branch of the logarithm in By ;.

Proof. The given power series has radius of convergence 1, so it defines an analytic function
f(z) on Byj. Note that f'(z) = X,en(-1D"(z — 1)" = 1/z. (Exercise: check last equality.) Let
g(z) = ef®) . Then ¢(z) = e/ /zand ¢”(z) = 0. Hence ¢’(z) = « a constant.” Since ¢’(1) =1,

it follows that f(z) is a branch of the logarithm. Since Log1 = f(1), it follows that Log z = f(z),
because two branches differ by an integer multiple of 2. O
Exercises.

5.1 Verify the properties of sin z and cos z listed in class.

5.2 Show thatforx > 0, x — ’%3 < sinx < xandthat1 - x—zz <cosx <1-— %2 + ’ZC—:. (Hint: Use
the fact that sin x < 1and cos x < 1and integrate sin and cos alternately.)

5.3 Since cos 0 = 1and cos(V/3) < 0, there is a smallest real number 8 such that cos 6 = 0.
Then sin 6 = +1. One can then define 7 := 26.

5.4 Expand ! asa power series around z = 1. Find its radius of convergence.

5.5 Show that Log(z1z;) = Log(z;) + Log(z,) + ¢ for an appropriate §.

5.6 Let U be a domain not containing 0 and f and g branches of the logarithm on U. Show
that the function h(z) := (f(z) —g(z))/(2m1) on U takes only integer values, by showing
that e2™"(?) = 1. Hence there exists n € Z such that h(z) = n for every z. Hence f(z) —
g(z) = 2nm. Conversely, if f(z) — g(z) = 2nm for some n, and f(z) is a branch of the
logarithm if and only if g(z) is.

"We cannot prove this with the results we proved so far. It is true that ¢(z) is analytic, being the composite of
the two analytic functions f(z) and e*; we can then use Exercise 4.3 from the last section. However the proof that
the composite of two analytic functions is analytic is long, and we will not discuss it in class. Instead we use the
fact (easily provable, using the chain rule) that the composite of two holomorphic functions is holomorphic and
Proposition 7.5. The proof of Proposition 7.5 does not refer to anything in this section, so our argument is not
circular.
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5.7 Let U be a domain not containing O and f a branch of the logarithm on U. Show that f
is holomorphic on U as follows. If ¢ € U \ (o0, 0], then there is a neighbourhood B, x
which does not intersect (oo, 0]; on that neighbourhood, f(z) differs from Log(z) by a
holomorphic function, so f(z) isholomorphic. If¢c € UN(oo, 0], then ‘rotate the domain
on which Log is holomorphic’ by an appropriate 0 by using the function Log(e'?z) — 16.
Conclude that f'(z) = 1/z.

LECTURE 6. PATH INTEGRALS, I

6.1. Definition. Let U be a domain. A path (also called an arc) in U is a continuous map y :
[a,b] — U. Let y be a path. Say thaty is closed if y(b) = y(a). By —y, we mean the function
[a,b] — U, t + y(a+ b —t), and call it the opposite path of y. Say that y is differentiable if the
functions [a,b] — R, t — R(y(t)) and t — I(y(t)) are in C!([a, b]). For a differentiable
path y, write y’(t) for (R (y(2)))’ +1(I(y(t)))’. Say that y is piecewise differentiable if there exists
apartitiona =ty < t; < --- < t, = bsuch that y|p;,.,; is in C'([#;, tix]) for every 0 < i < n;
we also say that the partitiona = to < t; < --- < t, = b is good for y to denote this fact.

6.2. Proposition. Between any pair of points in a domain, there exists a piecewise-differentiable path
connecting them.
Proof. Let U be a domain and ¢ € U. We show that the set

A :={{ € U | there exists a piecewise-differentiable path from c to {'}

is both open and closed. Let { € A. Then there exists R > O such that By C U. For every
{’ € By g, the radial straight line joining { and {” extends a piecewise-differentiable path from
cto {;hence By C A. Hence A is open. Nowlet p € A. Letr > 0. Let { € B,, N A. Then the
radial straight line joining ¢ and p extends a piecewise-differentiable path from c to {; hence
p € A, soAisclosed.

Note thatc € A, so A # @. Now, since U is connected, we see that A = U. O

6.3. Definition. Leta < b € Rand f : [a, b] — C a continuous function. Define

b b b
/f(t)dt=/ %(f(t))dtﬂ/ I(f(t))de.

6.4. Lemma. Leta = s < s < - < sy, = banda = to < ty < --- < t, = b begood
partitions for a piecewise-differentiable path y : [a,b] — U. Let uy, ..., uy be distinct elements of
{sos--sSms b1, . . ., tn_1} arranged in the ascending order. Then the partitiona = ug < --- < up = bis
good fory.

Proof. We need to show that y|[y, 4,1 is in C'([u;, uix1]). Note that there exists j such that
[ui, uisa] C [s), sjs1] or [ws, uia] C [t), tj41]; this proves the assertion. O

6.5. Definition. Let U be a domainand f : U — C. Lety : [a,b] — U be a piecewise
differentiable path, with a good partitiona =t, < t; < --- < t, = b. Define

n-l tiv1
/ f@dz=>" [ fym)y ().
Y

i=0 /1
This is independent of the choice of the good partition.
Exercises.
6.1 Show that the definition of fy f(z)dz (Definition 6.5) does not depend on the choice of
the partition.
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6.2 Lety; : [a;, b1] — Cand y, : [ay, by] — C be paths in C such that y;(b1) = y2(ay).
Define a new path y, : [b1, b, — ay + b;] — C by setting 7,(t) = y,(t + a, — b1). Note
that the images of y, and j, are the same; this is an example of reparametrization of a
path, discussed in the next lecture. Define the concatenation of y; and j, to be the path
Y : [al,b2—612+b1] — C

n(t), te€la,bil,
t— <
V2(t), t € [b,by—ay+0bi].

Show that if y; and y, are piecewise-differentiable paths, then so is y. This is used in the
proof of Proposition 6.2 to a piecewise-differentiable path from c to ¢’ (while showing
that A is open) and from c to p (while showing that A is closed).

6.3 Let U be a domain. A piecewise-linear path in U is a continuous functiony : [a,b] — U

such that there exists a partition 0 = to < t; < ... < t, = bsuchthat |, : t —

(t=t)y (tix) +(tia1 =)y (&
. gti-i-'l_ti)

path joining them.

). Show that for every pair points in U, there is a piecewise-linear

LECTURE 7. PATH INTEGRALS, I1

7.1. Definition. Let U be a domain and y : [a,b] — U a path. A reparametrization of y is a
path of the form y o 7 : [@/,b’] — U where 7 : [@,b'] — [a, b] is a continuous piecewise
differentiable non-decreasing surjective function.

Note that Im(y) = Im(y o 7). The next example shows that this is not sufficient.

7.2. Example. Lety : [0,1] — C,t +— e*™. Theny : [0,2] — C,t — e™isa
reparametrization of y. To see this, let 7y : [0,2] — [0,1] bethemap ¢ — ;theny; =y o 7.
On the other hand, y; : [0,2] — C, t — 2™, is not a reparametrization of y. Intuitively, y,
involves going round the circle twice, while y involves going round only once.

7.3. Discussion (invariance under reparametrization). LetU beadomainandy : [a,b] — Ua
pathandr : [d/,b’] — [a, b] a continuous piecewise differentiable non-decreasing surjective
function. Writey = yo 7. Leta’ = so < s < -+ < s, = b’ be a good partition for r and
a=1t <t < - <t, =bbeagood partition for y. Letup < ... < uy be the distinct
elements of {so, ..., sm} U{r7 (to),..., 7 (tn)}. Thena' =up < --- < uy = b’ is good for j. Let
a=uvy < --- <o = bbe the distinct elements of {r(uo), . . ., 7(ux)}; this is good for y. Thus,

k-1 Uit
[rad=Y [ oo
Y i=0 Y Ui
k-1 Ui+l
DN AN OIELE
i=0 YU

-1 Ui+l

=2 | fa@)y(nde

= Zf(;)dz.

Question: where did we use the hypothesis that 7 is a non-decreasing function? O
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7.4. Discussion (integration along the opposite path). Let U be adomainandy : [a,b] — U
a piecewise differentiable path, with a good partitiona = sg < ... <s, = b. For0 < i < n,
write t; = (a+b) — s,_;. Then

_Y|[ti,fi+1] = Yl[sn—i—l,sn—i] °© (t = (a + b) - t) :
Thereforea =ty < ... < t, = bis a good partition for —y.

n-l1 tisl
[ r@a=3 [ snmr o
-y i=0 Yti
n-l tit1
=30 [ @b -0y (/@b - 0) (-nde
i=0 i

n-l Sn—i-1
= "(s)d
. / ey @

=—/yf(z)dz. |

7.5. Proposition. Let U be a domain and f holomorphicon U. If f” is identically zeroon U, then f isa
constant function.

Proof. Letcy,c, € U. We want to show that f(¢;) = f(cy). Lety : [a,b] — U a piecewise-
differentiable path with y(a) = ¢;and y(b) = ¢;. Leta =ty < ... < t, = b be a good partition
for y. It suffices to show that f(y(t;)) = f(y(t41)). Replacing a by t; and b by t;4;, we may
assume that y is differentiable on [a, b].

The function

g:labl — Ct - f(y(1)
is differentiable, with derivative ¢’(¢t) = f’(y(t))y’(t) = 0. Hence f(c;) = g(b) = g(a) =
f(a). O

Exercises.

(1) Check that in Example 7.2, y, is not a reparametrization of y.
(2) Read Discussion 7.3 about reparametrization and understand where we used the hy-
pothesis that 7 is a non-decreasing function.

LECTURE 8. ABSOLUTE VALUE OF A PATH INTEGRAL

8.1. Lemma. Let f : [a,b] — C be a continuous function and c € C. Then

bcf(t)dt =c bf(t)dt.
Jerwae=e |

Proof. Write f(t) = u(t) + 1w(t) and ¢ = « + 1. Then both sides of the asserted equality are
equal to

b b
/ (au(t) — Po(t)) dt + 1/ (av(t) + pu(t)) dt. O

8.2. Corollary. Let f : [a,b] —> C be a continuous function. Then

/ " Fdr] < / ol
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490 Proof. Without loss of generality, we may assume that fa ’ f(t)dt # 0. Let 0 be an argument of

491 fab f(t)dt. Then
/bf(t)dt -~ ‘R(e‘“’/bf(t)dt)

b
= / R (e‘lgf(t)) dt (by Lemma 8.1)

ab
< |f(t)|dt. O

492 8.3. Definition. Lety : [a,b] — C be a piecewise-differentiable path and f a C-valued func-
493 tion defined and continuous on Im(y). The integral of f with respect to arc length denoted ® by

494 /yf|dz| is
b
/f(y(t))ly’(t)ldt.

495 8.4. Proposition. Lety : [a,b] —> C be a piecewise-differentiable path and f a C-valued function

496  defined and continuous on Im(y). Then
[ razt= [ el
-y Y

497 Proof. We repeat the argument from Discussion 7.4, with suitable changes.

n-l tit1
/ IOLSEDY / FIEN Oy (1)]de
Y i=0 Yt
n-l Lit1
:Z/ flyla+b=1)ly (a+b—1)|dt
i=0 Yl

n-1 Sn—i-1
-\ _ '(s)d
,E:o /S ) f(y(s))y'(s)ds

n

= [ f@)Idl. :

Y
498 8.5. Proposition. Lety : [a,b] —> C be a piecewise-differentiable path and f a C-valued function

499  defined and continuous on Im(y). Then
/fdz S/Iflldzl.
Y Y

b b
"(Hdt| < "(H)|dt = dz|.
/a FO @)Y (Ddr / Fa )Y (0lde /Y flidz 0

500 Proof. Use Corollary 8.2 to see that

/Y fdz

501 8.6. Definition. Let y be a piecewise-differentiable path. The arclength of y is /y |dz|.

8Many textbooks, including Ahlfors, also use /y fds denote this, but we will avoid this usage, since sometimes

we use s to denote a real or complex variable.
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8.7.Corollary. Lety : [a, b] — Cbeapiecewise-differentiable path and f a C-valued function defined
and continuous on Im(y). Let C > max{|f(z)| : z € Im(y)}. Write L for the arc length of y. Then

ijdz

Proof. Observe thatif g is a real-valued continuous function on Im(y) taking non-negative real
values, then fy gldz| is anon-negative real number. Now apply this observation with g = C—|f]|

<CL

to see that
/fdz S/IflldzlSCL. O
Y Y
Exercises.
(1) Show that the arc length of a piecewise-linear path is the sum of the lengths of the line
segments in it. (See Exercise 6.3 in Lecture 6.)
(2) Lety : [a,b] — C be a piecewise-differentiable path. Then the arc length of y is the
supremum of the set
n—1
{Z|y(ti+1)—y(ti)| n>la=to<th<..< tn:b}.
i=0
(3) Let y be a piecewise-differentiable path in C and j a reparametrization. Show that the
arc lengths of y and y equal each other.
LECTURE 9. PRIMITIVES
9.1. Definition. Let U be a domain and f : U — C. A primitive F of f on U is a (holomorphic)

function F : U — Csuchthat ' = fonU.
Note that f need not have a primitive on U; see Proposition 9.4.

9.2. Proposition. IfF; and F, are primitives of a function f on a domain U, then F; — F, is a constant
function.

Proof. Note that (F; — F,)" = F] — F, = 0; now apply Proposition 7.5 to F; — F;. O

9.3.Example. Letm € Zand f(z) = 2™ (wherever it canbe defined). If m > O, thenz™*'/(m+1)
is a primitive of 2™ on C. If m < -1, then 2™ /(m + 1) is a primitive of z™ on C \ {0}. Now
suppose m = —1. If there is a branch of the logarithm on U, then it is a primitive of f(z).
(Branches of the logarithm are holomorphic, with derivative % ; see exercise in Section 5.) Hence
% has a primitive on C \ (—oo, 0], while, using the next proposition, one of the exercises will
show that it does not have a primitive on C \ {0}. O

9.4. Proposition. LetU beadomainand f : U —> C be a continuous function. Then the following are
equivalent:

(1) f hasaprimitiveonU.

(2) Thereexistsafunction F : U —> Csuch that forevery piecewise-differentiablepathy : [a, b] —
U, [, f()dz = F(y(b)) - F(y(a)).

(3) For every piecewise-differentiable closed path y in U, fy f(z)dz = 0.
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Proof. (1) = (2): Let F be a primitive of f onU. Then/yf(z)dz = /y F’(z)dz; we want to show

thatits value is F(y(b)) — F(y(a)). Leta =ty < t; < --- < t, = b be a good partition fory. It
suffices to show that for every i

[ oo = Pt - Fot)

Without loss of generality, we may assume that y is a differentiable path. Write G = Foy. Then
G'(t) = F'(y(1))y'(t) = f(y(t))y’(¢) is a continuous function, so we see that

b
/ G'(t)dt = G(b) — G(a)

by evaluating its real and imaginary parts (which are continuous, and, hence the fundamental
theorem of calculus applies).

(2) = (1): We prove that F is a primitive of f on U. Letc € U. Let € > 0. We want to show
that there exists § > O such that for all h € Cwith |h| < 6,

‘F(c+h) —F(c) _fo)] < e

(9.5) P

First, choose § such that B.s C U. Then, for every h with ¢ + h € B.s, we can evaluate F(c +
h) — F(c) as frf(z)dz, where 7 is the function

[0,1]] = C, t—>t(c+h)+(1-1t)c.

(That is, we are going from c to ¢ + h along the line segment joining ¢ to ¢ + h at a constant
speed.) Write f(z) = f(c) + ¢(z) on B, s. Using one of the exercises (or equation (3) of Ahlfors,
Chapter 4, Section 1.1 (‘Line integrals’) we see that

1
/ $(2)dz / B (D)7 (1)dt
T ]
1
= |h| </o lp(t(c+h)+(1— t)c)|dt

Since f is continuous, we may assume, possibly replacing § by a smaller real number, that
|#(z)| < € for every z € B.s. Now

’F(c+h})l—F(c) —f(c)‘ _

= - flo)| <e

fof(2)dz f() -+ [ $(z)dz
—w Y h

thus proving (9.5).

* mk: [Rewriting the above argument using integration w.r.t. arc length:] Since f is
continuous, we may assume, possibly replacing § by a smaller real number, that |¢(z)| < € for
every z € B.s. By Corollary 8.7

/ng(z)dz < €l|hl.
Now '
_ d - h d
F(c+h21 F(c) —f(c)‘ _ fff(hz) z —f(c)‘ _ ‘f(c) +hfr¢>(z) z o) <e
thus proving (9.5).
(2) < (3): Exercise. O
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553 Exercises.
554 (1) Let f : [a,b] — Cbe a function. Show that

/abfdt s/ab|f|dt

555 (This is proved in equation (3) of Ahlfors, Chapter 4, Section 1.1 (‘Line integrals’).)

556 (2) Prove the assertion (2) <= (3) in Proposition 9.4.

557 (3) Let r be a positive real number. Lety : [0,27] — C, t > re''. Show that /y(l/z)dz =
558 2. On the other hand, if y is a piecewise-differentiable closed path that avoids some
559 rayinC (i.e., {re'* | r € R,r > 0} for some fixed «) then /Y(I/z)dz =0.

560 LECTURE 10. CAUCHY INTEGRAL THEOREM, |

561 10.1. Theorem (Cauchy integral theorem for a rectangle). (Ahlfors, Chapter 4, Section 1.4, Theorem
562 2, p. 109) Let U be a domain and f a holomorphic functionon U. Let R C U be a rectangle. Then

/ f(z)dz =o0.
R

563  Note that dR is the union of four line segments, parallel to the real and imaginary axes. It
s64 is thought of as a closed curve in U, starting from one corner, and going once along the line
565 segments.

566 Proof. Proof given in Ahlfors (due to Goursat). O

s67  The following lemma should help clarify the estimation of |(R,)| in equation (16) and the
s6s following paragraph on page. 111 of Ahlfors’ book. In the proof of (9.5), we estimated

[t

560 where 7 is a linear path, i.e., a line segment parametrized by a linear function. We want to do
570 a similar for dR,, which is a piecewise-linear path.

571 10.2.Lemma. LetU beadomain, g : U —> Ca continuous functionandy : [a,b] — U a piecewise-

572 linear path, i.e., a continuous function such that there exists a partitiona =ty < t; < ... < t, = bsuch
=ty (tirn) +(tin—t)y (1) Then

(tisi—t:)
n—1 t
L —v(t; i+
i=0 t

573 thatYl[ti,tiH] it

z)dz
./yg( ) tis1 — £
574 Inparticular, if C > |g(z)| forevery z € Im(y), then

/g(Z)dz
Y

n-l tiv1
/ 9()dz= ), / g(r()y (t)de.
Y i=0 Y1

n-l bivl
[o@a <Y, [T oy @i
Y i=0 Yt

i

n—1
<C ) Iy(tuw) = y(®)l.
i=0

575 Proof. Since

576 it follows that
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Now note that
tiv) — y(t
yl(t) — Y( +1) Y( )
tivi — t

on [t; tiy1], proving the first assertion. The second assertion follows immediately from the
first. |

10.3. Corollary. With notation as in Ahlfors’ book, |n(R,)| < €L,d,.
Proof. Note that

/ [f(2) - f(z") = (z=2")f'(2)]de= | f(a)de—f(z") [ dz-f(z") | (2—-2")dz
JRy, OR,, OR,, OR,
= n(Rn)

since 1 and (z — z*) have primitives on C. Hence we want to estimate

R =| [ 1@ - 1) - (2= 20 ()] e
Ry
Note that n is large enough so that

If(2) = f(z") = (z=2) f(2")| < ez = 2| < edn.
forall z € 9R,. Now apply Lemma 10.2. x mk: [Or, directly | dR, is a piecewise-linear path,

and its arc length is the length L, of the perimeter of R, (Exercise 1 of Lecture 8). Now apply
Corollary 8.7. O

Exercises.
(1) Show that in the proof of the theorem (with notation as in Ahlfors’ book),

M=

LECTURE 11. CAUCHY INTEGRAL THEOREM, II

=1

11.1. Theorem (Cauchy integral theorem for a disc). (Ahlfors, Chapter 4, Section 1.5, Theorem 4,
p-113) Let U be an open disc, f a holomorphic function on U. Then f has a primitive on U. In particu-

lar,
/f(z)dz =0,
Y

for every piecewise-differentiable closed path y in U.

Proof. The second assertion follows from the first and Proposition 9.4; therefore we will prove
the first. Without loss of generality, we may assume that U is centred at O (Exercise). Define
F:U-—Cbyl /Uf(z)dz, where o is the piecewise-differentiable path from 0O to { that
goes from 0 to (R({), O) (the line segment parallel to the real axis) and from there to { (the line
segment parallel to the imaginary axis).

We will show that F is holomorphic on U with F” = f. Letc € U. Lete > 0. We want to show
that there exists § > 0 such that for all A € C with |h| < 6,

F(c+h) —F(c)

(11.2) . — ol <e

There exists § > O such that B.s C U, that |f(z) — f(c)| < 5 forevery z € B, since f is
continuous. Let h € By s. Let o (respectively, o) be the piecewise-differentiable path from 0 to
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¢ (respectively, c+h) that goes from 0 to (‘R (¢), 0) (respectively, to (R (c+h), 0)) and from there
to ¢ (respectively c+h). Let 7 be the piecewise-differentiable path from c to (R (c+h), I(c)) and
from there to c+h. Applying Theorem 10.1to the rectangle with vertices (R (¢), 0), (R (c+h),0),
(R(c+h),TI(c)) and c we see that

F(c+h)=/f(z)dz=/f(z)dz+/f(z)dz
:F(c)+/f(z)dz.

Write ¢(z) = f(z) — f(c) on B, 5. Now,

/Tf(z)dz:‘/ff(c)dz+/r¢(z)dz

= FO(c+h) —c] + / $(2)dz
=hf(c) + /¢(z)dz.

(We have used the fact constant functions have primitives on C.) Hence we can rewrite (11.2)
as

/Tgb(z)dz

(11.3) 0

< €.

Let 71 (respectively 7,) be the piecewise-differentiable path from ¢ to (R(c + h), I(c)) (re-
spectively, from (R (c + h), I(c)) to ¢ + h). Then 7 as the concatenation of 7; and r,. Therefore
the arc length of 7 is at most |R (h)| + |3 (h)| < 2|h|. Now apply Corollary 8.7 after noting that
|$(z)| < €/2 on Im(y) to obtain (11.3). O

Exercises.

(1) Show thatin the proofof Theorem 11.1, we can assume that the centre of U is 0 as follows:
Let ¢ be the centre of U. Let r : U —> C be the function z — z — c. Let U; = Im(7).
Then r maps U homeomorphicallyto U;. Let fi = for 'and y; = roy. Then fyf(z)dz =

f : fi(z)dz.

2) Dyepending on the generality of Green’s theorem that you are familiar with, one can es-
tablish a version of Cauchy integral theorem, as follows. Let y be a Jordan curve in C
(i.e., a closed piece-wise differentiable path that is injective, except at the end-points).
Let U be a domain that contains y and the open subset of C bounded by y. Let f be a
holomorphic function on U. Write z = x + 1y, f = u(x,y) + w(x,y). We showed that if
f is holomorphic, then u and v are differentiable on U.

(@) fdz = udx — vdy + 1(vdx + udy).
(b) Suppose that f” is continuous. Then /dez =0.

(3) Let U be a domain containing Bo; and y : [0,1] — C, t > €2™. Compute

1
/ 1dz
)

as follows. (Note that neither is the integrand holomorphic on U nor is y centred at 2,
so earlier arguments do not apply immediately.)
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(@ Leto <r <lando:[0,1] — C,t > 1 +re?™. Compute

1
/ 1dz
o235

(b) For 0 < € < 1, define the following four points and paths in U: p € Imy with
R(p) > 0and J(p) = ¢;q € Imy with R(g) > 0and J(q) = —€; a € Im o with
R(p) > 3and J(p) = e;b € Imo with R(q) > 2 and I(q) = —€; 1 from p to ¢
counter-clockwise, following the same path as y; y; from a to b counter-clockwise,
following the same path as o; 7; from a to p, parallel to the real axis; 7, from b to
q, parallel to the real axis. Let T be the closed piecewise differentiable path at p
obtained by concatenating y;, —7,, —o7 and 77. Show that

1
/ -dz = 0.
rz—s

(Hint:T C U\ {3 +r | r € R,r > 0}, on which Z_% has a primitive.)
2
(c) Show that

) 1 1
hm/ 1dz=/ 1dz.
“0JInz=3 yZ=3

. 1 1
lim —dz = / ~dz.
€—0 o1 zZ— = o Zz— =

2 2

. 1 ) 1
lim - dz = lim - dz
e—0 TIZ—E e—0 rzz_‘

2
1 1

/ 1dz:/ 1dz.

) 7Z73

(€) Generalize the result, after replacing 1 by an arbitrary ¢ € Bo;.

(d) Conclude that

LECTURE 12. CAUCHY INTEGRAL THEOREM, III

General background: We need to show that if g(z) is holomorphic on B,z (R > 0) and y is
the closed path [0,1] — C, t +> ¢ + re?™ (with O < r < R) then
1 [9()

2m J,z—¢

dz = g({).

for every { € B.,. One way to evaluate the integral (a la Lang or Rodriguez-Kra-Gilman) is to

observe that y can be ‘continuously deformed’ to a closed path y; : [0,1] — C,t > { + pe*™

with a small p (so that y; is inside B,,), and therefore we may try to evaluate the integral on y;.
Another option (a la Ahlfors) is to look at the function

9(z) — g(?)
z=¢
and observe that it is holomorphic on B, g except at {, where it has the property thatlim,_,; (z—

{)f(z) = 0. We now strengthen CIT 11.1 to include such functions with this property. In fact,
we will see later that we can extend f to a holomorphic function which is defined also at {.

f(2) =
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12.1. Theorem. Ahlfors, p. 113, Theorem 5 (the version with ‘mild singularities’.) Let U be an open disc,
U’ an open subset of U obtained by omitting finitely many points of U, f a holomorphic function on U’
and y a closed path in U’. Assume thatlim,_,;(z — {) f(z) = Oforevery{ € U \ U’. Then

/Yf(z)dz =0.

Proof. Without loss of generality, U is centred at 0. Define F : U" — C, { /G f(z)dz, where
o be an rectilinear path in U’ (a path consisting of finitely many segments, parallel to the real
and the imaginary axes) from O to ¢. (This path needs to avoid the points in U \ U’.) We need
to show that

(1) the value of F({) does not depend on the choice of o, for every { € U’

(2) Fisholomorphic with F' = f.
To prove the first assertion, we will prove an analogous version of Theorem 10.1, in which some
points in the interior of the rectangle are omitted; see Theorem 12.2 below. The holomorphicity
of F can be proved exactly as in the proof of Theorem 11.1, since for every { € U’, there exists
8 > OsuchthatB;s Cc U'. m

12.2. Theorem (Cauchy integral theorem for a rectangle, with ‘mild singularities’). (Ahlfors,
Chapter 4, Section 1.4, Theorem 3, p. 111) Let U be a domain, U’ an open subset of U obtained by omit-
ting finitely many points of U. Let f a holomorphic function on U’ such thatlim,_,;(z — {) f(z) = 0 for
every{ € U\ U’. Let R C U be a rectangle, such that 9R C U’. Then

f(z)dz =o0.
oR

Proof. Proofgivenin Ahlfors, p.112. After subdividing R, we may assume that R contains exactly
one element of U \ U’; call this element {'. Let Ry C R be a square of size 2a (with sides parallel
to the axes) with centre {. Then

f(z)dz = / f(z)dz.
R Ro
Let € > 0. We may choose a such that

[(z=0)f(2)] <e

for every z € Ry. Therefore for each z € dRy, |z — {| > a and so

€
@<
The length of the perimeter of Ry is 8a. Hence by Corollary 8.7
f(z)dz| < € . 8a=3ge.
dRo a
Therefore
/ f(z)dz =o0. m|
R

12.3. Remark. We will later see thatin this situation, lim,_,; f(z) exists forevery{ € U’. Hence
we can extend the function to a holomorphic function on U, by setting f({) = lim,_,; f(z) for
every { € U’. The proof of this result will require some knowledge about the local behaviour
of holomorphic functions, for which we need to know this result. Otherwise, the argument
would be circular.
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LECTURE 13. INDEX OF A POINT
The following proposition generalizes Exercise 3 of Lecture 11.

13.1. Proposition. Lety : [a, b] — Ca closed piecewise differentiable path. Let { € C \ Imy. Then
there exists n({,y) € Zsuch that
d
/ - n({,y) - 2m.
Y

z=¢

Sy (t)dt
a Y(t) - g
This is a continuous function on [a, b]. Since y’(t) is continuous except on a finite subset of
[a, b],

Proof. Fors € [a, b], write

: Y'(s)
h'(s) =
RO
on the complement of that finite set. Therefore
_r@®-¢
hi(t) = O

is differentiable except on a finite subset of [a, b]. Note that

, y () (y(t)-On(t)
mt) = Ge = ©

Since hy(s) is continuous, it is constant, so
() y() ¢

y(a) - ¢
foreveryt € [a,b]. Since y(a) = y(b), we conclude that e"(@ = ") = 1, Therefore there exists
n({,y) € Zsuch that

d
/y i = h(b) = n(l,y) - 2. 0

13.2. Lemma. Lety : [a,b] —> C be a closed piecewise differentiable path. Then the function C \
Imy — Z,{ v n({,y) islocally constant.

Proof. Let{ € C \ Imy. We want to show that there exists § > 0 such that for every {’ € B s,

13.3) /dz _/ dz
' yz=¢ Jyz=0

Let § > Obesuchthat By sNImy = @. Let {’ € Bys. Let f(z) : C\ {{"} — Cbe the function
z-¢
fo=1=%
Let L be the line segment joining { and {" and U = C \ L. Then f(U) N (—o0,0] = @, i.e., for
everyz € U, 3(f(z)) # Oor R(f(z)) > O (Exercise). Hence we can define

g:CNL— C,z Log(f(2)).
Note that g is holomorphic on U and that
flm 1 1
fl z2-C 2=

g (z) =
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Since U is a domain and y is a closed path in U, it follows that

/{zig‘zjgldzzq
Y

establishing (13.3). O

The following corollary recovers Exercise 3 of Lecture 11.

13.4. Corollary. Letc € C,r > Oandy : [0,1] —> Cthepatht > c+re*™. Thenforevery{ € B,
n(l,y) =1L

Proof. Note thatn(c,y) =1.LetU = {{ € B., | n({,y) = 1}. By thelemma, U and B., \ U are
open. Since B, is connected and U non-empty, B., = U. O

Exercises.

(1) Show that f(U) N (—o0,0] = @ in the proof of Lemma 13.2.

(2) Lety : [a,b] — C be a piecewise-differentiable path. Show that n({,y) = 0 for all
{ € Cwith || > 0.

(3) Ahlfors, Chapter 4, Section 2.1 (‘Index of a point ...), Exercise 3 (p. 118). (proof of the
Jordan curve theorem).

(4) Here is another proof of Lemma 13.2. Let {, € be such that By, € C \ Im(y). Let 0 <
0 < eand {’ € By . For every z € Im(y),

¢
(z=0(z-7)

5
S =0

1 3 1
z—=( z-=(
Let L be the arc length of y. Then

/[1 _ ]dz‘< oL <2
ylz=¢ z=0 e(e — 0) '

LECTURE 14. CAUCHY INTEGRAL FORMULA

14.1. Theorem (Cauchy integral formula for a circular path). (Ahlfors, Chapter 4, (22), p.119, for
circles.) Let U be a domain, c € U, r > OsuchthatB., C U. Let{y,...,{m € UandU’ = U \
{1, ... zm}. Let f be a holomorphic function on U’ such thatlim,_,,(z — {;) f(z) = Oforeveryl < i <
m. Lety be the circular path on the boundary of B.,. Then forall{ € B., N U’,

1 f(z)dz
FO=0n [0
Proof. Let
sy - L1
z-¢
Then gisholomorphiconU\{{, &, ..., {n},andlim,_,,(z—a)g(z) = Oforeverya € {{, 3, ..., {m}-
Therefore
JREEY
y 276 y 2-¢
Now apply Corollary 13.4. O
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14.2. Lemma. Lety be a piecewise-differentiable closed pathin C. Let g : Im(y) — C be a continuous
function. For positive integers n, define F,, : C \ Im(y) — Chy

Y (év - Z)n
Then foreach n > 1, F, is holomorphic on C \ Im(y) with F, = nFp4;.
Proof. We will prove that F; is holomorphic with F| = F,. For the rest, read the proof of Ahlfors,
Chapter 4, Section 2.3 (‘Higher derivatives’), Lemma 3.

Let zo, € be such that B, . C C\ Im(y). Let0 < § < eand z € B, ;.
Step 1:lim,_,,, Fi(z) = F;(zo). Proof: Note that

9({)
- 2)({ - 20)

Forevery { € Im(y), |({ — z0)| > eand |({ — z)| > € — §. By Proposition 8.5

dz.

(14.3) Fi(z) — Fi(z0) = (z = 20) / %
Y

IFi(2) - Fi(z0)] < —>
E\E

d?|.
ey o
Therefore lim,_,,, |F1(z) — Fi(z0)| =0

Step 2: F{(z0) = F,(zo0). Proof: Consider the function

/ 9(%) a7
(¢ =2)({ - 20)
on C \ Im(y). Applying the previous step with g({)/({ — zo) replacing g(z), we see that

lim,_,,, G(z) = G(zo) = F,(20). Now by (14.3)
Fi(z) - Fi(z0) _

lim = lim G(z2) = F,(zo). m|
Z—20 Z—20 20
14.4. Corollary. With notation as in Theorem 14.1,
YL O

In particular, f is infinitely complex-differentiable on U’ .

B f(z)dz
Fn+1 —/y(z_ g)nﬂ-

By Theorem 14.1, F; = f. By Lemma 14.2, Fyyq = 3 f(7. O

Proof. Write

Exercises.

(1) Complete the proof of Lemma 14.2. (Ahlfors, Chapter 4, Section 2.3 (‘Higher deriva-
tives’), Lemma 3 (p. 121))

(2) Let U be a domain and y a piecewise-differentiable path in U. If f, is a sequence of
continuous functions on U converging uniformly to f, then

lirl:n/yfn(z)dz=/yf(z)dz.
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If 3%, f» converges uniformly to f, then

Zn: /y fu(z)dz = /y f(2)dz.

() Letr e Rand f; : R* — R, (x,y) = (x* + y* — 1)r. Show that for each r, f; is a real-
analytic function. f,(p) does not depend onr if p € dBy;, but dependsonrifp € Bo;.
This is in contrast with the behaviour of holomorphic functions (on a domain containing

Bo .
LECTURE 15. HOLOMORPHIC FUNCTIONS ARE ANALYTIC.
In this lecture, we will prove that holomorphic functions are analytic.

15.1. Lemma. Let U be a domain, ¢ € U and f holomorphicon U’ := U \ {c}. Then the following are
equivalent:

(1) lim f(z) exists (in C).

) lim(z-¢)f(z) =

(3) there exists a holomorphic function f on U such that f|y: = f;
Morever, in this situation, f is uniquely determined by f.
Proof. (1) = (2):lim(z —¢)f(z) =lim(z — ¢) lim f(z) =

(2) = (3):Letr >0 be such thatB_c,, C U.Lety : [0,1] — U be the path t > ¢ + ¢*™,
Define f : U — Cby

- if U,
ﬂ0={?2mz e e
Y

=C.
z—c °’

We need to show that f is holomorphic on U; for which it suffices to check that it is differ-
entiable at c. We may therefore restrict our attention to B.,. Using Cauchy integral formula
(Theorem 14.1) for U’ N B, ,, we can rewrite f on B, as

z f(z)dz
©-[
fo= 2%
Now apply Lemma 14.2, f is holomorphic on Be,.

3) = :lim = f(¢).

Proving uniqueness is left as an exercise. O

15.2. Definition. Let U be a domain, ¢ € U and f holomorphicon U’ := U \ {c}. We say that ¢
is a removable singularity of f if the equivalent conditions of the previous lemma are satisfied.

15.3. Theorem. Let U be a domain, ¢ € U and f a holomorphicon U. Let n € N. Then there exists a
holomorphic function f,(z) on U such that

@) = }]f © - o+ (- D)

onU. Lety bethe circular path around the boundary of B, g where R > Ois such that B.g C U. Then

f(z)dz
€)= yn/}z 0"(z-0)
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on B.g.

Proof. (Ahlfors, Chapter 4, Section 3.1, pp. 124ff.) The function J% (on U \ {c}) has a
removable singularity at z = ¢, so there exists a holomorphic function fi(z) on U such that

fi(z) = iG] (z) f © onU {c} Repeating this argument for fi, and by induction, we see that
for each pos1t1ve integer k, there exists a holomorphic function f;,; on U such that fi41(z) =

f2-fi(© (Z) f" © onU \ {c}. Putting this together, we get the following:

f(@) =f(c)+(z=)fi(2)
= f(e) +(z= o) file) + (z = ©)* fo(2)
=fleo)+(z-o)filc) +(z=c)*f(c)+- -+ (z=c)" f1(c) + (z = )" fu(2)
Note that f¥)(z) is the k-th order derivative of (z — ¢)* fi(2), so f*)(¢) = k! fi(c). This proves

the first assertion.
Now note that on B, g

g
Y

(15.4)

_ 1 f(2) f(k)(C)
T 2m Y(z—c)"(z—gv)dz 4 2mik! /(z—c)” k(z—g”)

Let {1, {, € B.grand

1
Gm({1 &2) = /y (z=0)™(z—-0) &

as a function of {;, with ¢, fixed. We first show that G;({;, {3) = 0. First assume that {7 # .
Then

1
e e A CHRC R

Now assume that {; = . Since (2+§1)2 has a primitive on C \ {0}, we see that

/ﬁdz: 0.

By Lemma 14.2 applied to the function ¢ g ) We see that Gy, for m > 2 are successive deriva-
tives of G; (thought of as a function of {1) so G, = O for each m > 1. Therefore in (15.4), we

obtain -
/ ! dz=0
y (z=c)"k(z-0)

foreachk =0,...,n —1, thus completing the proof of the theorem. O

15.5. Corollary. Let U be a domain and f holomorphicon U. Let c, R be such that B.g C U. Then

o=y 0o

keN

on B g. In particular, every holomorphic function on U is analyticon U.
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Proof. Let y be the circular path on the boundary of B, . To prove the assertion, it suffices to
show that for every € > 0, there exists N such that for everyn > N,

—c”i f(z)dz .
4 )mey(z—c)”(z—g)’< )

Let M = sup{f(z) | z € Im(y)}. Then

_ oL f(z)dz M|{ - |
’(g ) zm/yS (z—c)”(z—{)‘ S ROR-[C—c])

The assertion now follows, since |{ — ¢| < R. |

Exercises.

(1) Prove the uniqueness of f in Lemma 15.1.

(2) Show that kth order derivative of (z — ¢)kg(z) at z = cis k!g(c).

(3) With fixed ¢, € B.y, use an appropriate result to conclude that G;({3, {;) is a holomor-
phic function of {; € B.g, the proof of Theorem 15.3. Then show that G;({;, {o) = O by
taking a limit.

(4) Let ¢ be a removable singularity of f (which is defined on U \ {c} for some open neigh-
bourhood U of ¢). Show that there exists m € N and a holomorphic function f; on U
such that f(z) = (z — ¢)" fi(z) such that fi(c) # 0.

(5) Let U be adomain and f a holomorphic function on U. Then the zeros of f are isolated.
Show that f has only finitely many zeroes in any compact subset of U. If ¢ € U is a zero,
then there exists a unique positive integer m such that f(z) = (z—¢)" fi(z) on U, where
fi is holomorphic on U and fi(c) # 0. Itis called the order (or multiplicity) of the zero at
.

LECTURE 16. MORERA’S THEOREM, LIOUVILLE’S THEOREM
16.1. Corollary (Morera’s theorem). Let U be a domainand f : U — C a continuous function. If
fy f(z)dz = 0 for every closed piecewise-differentiable path y in U, then f is analytic.

Proof. By Corollary 15.5, it suffices to show that f is holomorphic. By Proposition 9.4, f has
a primitive F on U. Since F is holomorphic, it is infinitely complex-differentiable by Corol-
lary 14.4; in particular, f = F’ is holomorphic. O

16.2. Proposition (Liouville’s theorem). Every bounded entire function is constant.

Proof. Let f : C — Cbe abounded holomorphic function. Let M € R be such that |f(z)| < M
foreveryz € C. Let { € Cand r > 0. By Corollary 14.4,

ro= [ L

271 Jow,, (2= 0)?

Hence |f'({)| < Mr,so f’ = 0onC. Now apply 7.5. O

16.3. Theorem (Fundamental theorem of algebra). Cisan algebraically closed field.

We need to show that complex polynomials of positive degree have a zero. First we prove a
lemma about such polynomials.

16.4. Lemma. Let f € C[X] be a polynomial of positive degree. Then for every positive real number M,
there exists R > O such that |f(z)| > M forevery zwith |z| > R.
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Proof. Write f(X) = ;.’l:o a; X', withd > Oand ag # 0. Foreveryz € C, |f(z)| > |ag||z|¢ -
?:_01 |ai||z|'. (Use az¢ = f(z)—Z?:_o1 a;z'.) The assertion now follows from Exercise 1below. O

Proof of Theorem 16.3. Let f € C[X] be a polynomial of positive degree. We want to show that
there exists ¢ € Csuch that f(c) = 0. By way of contradiction, assume that this is false. Hence
g(z) = % is an entire function. We now claim that g is bounded. Assume the claim. Then g
and, therefore, f are constant functions by Proposition 16.2, contradicting the hypothesis that
f has positive degree.

To prove the claim, assume, on the contrary, that for each positive integer n, there exists
cn € C such that [g(c,)| > n. Then |f(cy)| < é If the sequence c, is bounded (i.e., con-
tained in a compact subset of C), then it would have a convergent subsequence c,,,,, m > 1. (We
implicitly assume that the function m — n,, is an increasing function.) Then f(lim,, c,,) =
lim,, f(c,,) = O, a contradiction. Hence for every positive real number R, there exists n such
that |c,| > R. Now use Lemma 16.4 to obtain a contradiction. |

Exercises.

(1) Let Z?:o b;X' € R[X] with by > 0. Then for every positive real number M, there exists
R > O such that g(x) > M for every x € Rwith x > R.

(2) Show that Lemma 16.4 does not hold for entire functions in general, by looking at the
exponential function.

LECTURE 17. ISOLATED SINGULARITIES

Let U be a domain, ¢ € U and f a holomorphic function on U \ {c}. We say that c is an
isolated singularity of f. Recall that an isolated singularity c is said to be a removable singularity
iflim(z — ¢) f(z) = 0 (Definition 15.2).

(We do not rule out the situation that f is defined or is differentiable at c.)

17.1. Definition. An isolated singularity c is said to be a pole of f if it is not a removable singu-
larity of f and it is a removable singularity of 1/ f.

17.2. Example. z™ with m < O hasa pole at 0.

17.3. Remark. With notation as above, let U be a neighbourhood of ¢ such that f is defined and
holomorphic on U \ {c}. Since the zeros of a holomorphic function are isolated (use Corol-
lary 15.5 and Proposition 4.6), we may assume, by replacing U by a smaller neighbourhood if
necessary, that f({) # Oforeach { € U, { # c. Hence we can talk of)% in U \ {c} and consider

whether c is a removable singularity or not.

17.4. Proposition. Let ¢ bea pole of f. Then

(M lim #75 = 0.
zZ—C
(2) There exists a positive integer N and a neighbourhood V of ¢ in U such that
f@ =) alz-cf
k=—N

onV \ {c}.
(3) Forevery positive real number M, there exists § > O such that |f (z)| > M forevery { € Bs.
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Proof. (1): By Lemma 15.1, there exists a neighbourhood V of ¢ and a holomorphic function g on

V such that g(z) = J% onV \ {c}.Ifg(c) # O, thenlim f(z) = g(%), which would imply that f

has a removable singularity at c. Hence lim g(z) = g(c) = 0.
zZ—C

(2): Since ¢ is a removable singularity of}%, Wwe can write j% = (z-¢c)Vfi(z) forsome N € N
and a holomorphic function fi(z) in a neighbourhood of ¢ with fi(c) # 0. (See Exercise 4 in
Lecture 15.) Since lim ﬁ =0, N > 0. Note that ]ﬁ is holomorphic in a neighbourhood of c,

zZ—C

so it admits a convergent power series expansion around c.
(3): Exercise. O

The next two propositions characterise zeros and poles of holomorphic functions by looking
at the limit of |z — ¢|"|f(z)| for various n. Their proofs are left as exercises.

17.5. Proposition. Let U be a domain, c € U and f a non-zero holomorphic function on U \ {c}. Then
the following are equivalent:

(1) f can be extended to a holomorphic function f on U with f(c) = 0;
2) lim f(z) = ©;
(3) thereexist m,n € Zwithm < Oandn < Osuch thatlim |z — ¢|™|f(z)| = Oand lim |z —

c[*|f(z)| = o
(4) thereexists N € Zwith N < Osuchthatlim |z — ¢|™|f(z)| = O foreverym > N andlim |z —
zZ—C z—C

c|"|f(z)| = coforeveryn < N.

17.6. Proposition. Let U be a domain, ¢ € U and f a holomorphic function on U \ {c}. Then the
following are equivalent:

(1) cispoleof f;

(2) thereexistm,n € Nsuchthatlim |z — ¢|™|f(z)| = Oandlim |z — ¢|"|f(2z)| = o
zZ—C zZ—C
(3) thereexists N € Zwith N > Osuch thatlim |z — ¢|™|f(z)| = O foreverym > N andlim |z —
zZ—C zZ—C
c|"|f(z)| = coforeveryn < N.

17.7. Definition. Let U be a domain, ¢ € U and f a holomorphic function on U \ {c}. Say that
c is an essential singularity of f if it is not a removable singularity or a pole of f.

17.8. Proposition. c is an essential singularity of f if and only iflim |z — ¢|"|f(z)| does not exist for
z—C
anyn € Z.

Proof. ‘If’: by definition. ‘Only if’: By way of contradiction, assume that lim |z—c|V | f(z)| exists.
zZ—cC

Then c is a removable singularity of (z — ¢)Nf(z). If N < 0, then c is a removable singularity
of f.If N > 0, thencisapoleof f. O

17.9. Proposition. Let U be adomain, ¢ € U and f a holomorphic functionon U \ {c}. Suppose that
is an essential singularity of f. Then forevery A € C, every e > O and every § > O, thereexists { € B
suchthat |f({) — Al < é.

Proof. By way of contradiction, let A € C, e > 0, > 0 be such that for every { € B, \ {{},
|f({) — Al = 8. Then for everyn < O, lim |z — ¢|"|f(z) — A] = o0, s0 ¢ is not an essential
zZ—C

singularity of f(z) — A. Then there exists m > 0 such that lim |z — ¢|™|f(z) — A| = 0. Note that
zZ—C
lim |z — ¢|"|f(2)| < lim |z — ¢|"|f(z) — A] +lim |z — ¢|"|A| =0
zZ—C zZ—C z—C

so ¢ is not an essential singularity of f. O
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17.10. Definition. Let U be a domain. By a meromorphic function on U, we mean a a holomorphic
function f : U" — Cwhere U’ C U, and points in U \ U’ are isolated in U and are poles of f.

17.11. Example. If f isaholomorphic function onadomain U thenits zeros are isolated, by Corol-
lary 15.5 and Proposition 4.6; hence ]lc is meromorphiconU. E.g., 1 is a meromorphic function

on C. Every rational function is meromorphic on every domain in C.

Exercises.

(1) Let c be a pole of f. For every positive real number M, there exists § > 0 such that
|f(z)] > M for every { € B,s.
(2) Prove Proposition 17.5.
(3) Prove Proposition 17.6.
(4) Let U be a domain, ¢ € U and f holomorphic on U \ {c}. Suppose that ¢ is a pole of f.
Write
f@= ) alz-of

k=—N

in a punctured neighbourhood V \ {c} of ¢, with N > 0Oand a_y # 0. Letr > 0 be such
thatB., C V. Lety : [0,1] — V be the path t — ¢ + re*™. Then

/fdz = 2ma_y.
Y

We say that a_; is the residue of f at ¢, and denote it by Res¢(c).

(5) Let U be adisc, f a meromorphic function on U and y a piecewise-differentiable closed
pathin U. Let {{;} be the poles of f. Assume that y does not pass through {; for any ;.
Show that n({j, y) = 0 except for finitely many j and that

1
— /dez = Z n(Zj,y) Resy(gj).

J

(6) Let U be a domain and M(U) be the set of meromorphic functions on U. For f,g €
M(U)andc € U, let

(f +9)(e) = lim(f(2) +9(2))
(fo)(e) = lim(£(2)g(2))

Show that cisa pole of f+gifand onlyif cisa poleof f or of g. State and prove a similar
characterization of poles of fg.

(7) (Not relevant for this course.) Let U be a domain. Then M(U) is the field of fractions of
AU).

(8) Let N be an integer and suppose that c is a removable singularity of (z — ¢)V f(z). If
N < 0, then c is a removable singularity of f(z). If N > 0, then c is a pole of f(z) of
order < N.

(9) e: has an essential singularity at 0.

(10) Let f(z),g(z) be a holomorphic functions defined in a neighbourhood of ¢ € C. Sup-
pose that f(z) has an essential singularity at ¢. Show that f(z)g(z) has an essential
singularity at c.
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LECTURE 18. LOCAL MAPPING

18.1. Example. Consider the holomorphic function f(z) = z™, m > 0, on C. It has a zero at
z = 0, of order m. Note that for every b € C, there exist m solutions (counted with multiplicity)
for the equation f(z) = b. O

We now show that every holomorphic function exhibits the same behaviour locally. Here is
the result:

18.2. Proposition. Let U be a domain and f a non-constant holomorphic functionon U. Let{ € U.
Writea = f({). Let m be the order of the zero of f (z) —aatz = {. Thenforevery O < € < 1, there exists
8 > Osuch that forevery b € B, s, there exists m solutions in By . to the equation f(z) = b.

As an immediate corollary, we get the following:

18.3. Corollary. Let U be a domain and f a non-constant holomorphic function on U. Then f(U) is an
open subset of C. In other words, every non-constant holomorphic function is an open map.

Proof. With notation as in Proposition 18.2, Br(¢)s S f(By,) for every { € U and every 0 <
€ < 1. Since the open discs B . form a basis for the topology of U, f is open. O

Before proving Proposition 18.2, we need to develop a method to count zeros. In the above
example with f = 2", we note that if y is a closed piecewise-differentiable curve in C not pass-
ing through 0, then

f'(2)

Y f(2)
£y,

In particular, if y is a circular path such that 0is in the bounded region, thenm = 5- fy 7

dz=m/%:2m-n(0,y)-m.
y Z

18.4. Proposition. Let U be a disc and f holomorphic on U. Let {;} be the distinct zeros of f; denote
the ovder of {j by m;. Lety be a closed piecewise differentiable path in U, not passing through any of the
{j. Then

() n(j,y) = Oforall but finitely many j.

1 f'(2) 17 = z : .

Proof. We will use Exercise 5 from Lecture 15 in this proof. (1): Since Imy is compact, there
exists an open subset V of U such that its closure V in C contains Imy and is a subset of U.
Note that f has only finitely many zeros in V. Forany { € C\V,n(Z,y) = 0, since the function
ﬁ is holomorphic on V.

(2): By (1), we may assume that the (distinct) zeros of f are {j, .. ., {,, with orders my, ... m,.
Write f(2) = [1-,(z - {;)™ g(2) where g is holomorphic on an open set V containing Im y and
does not have any zeros. Then

f@ 474" 4k
The assertion now follows from noting that % is holomorphicon V. O

Proof of Proposition18.2. LetO < € < 1. Then B;. C U. Lety : [0,1] — U, t > { + ee*™ . Let

T = f oy. Moreover, since € < 1, we may assume that { is the only solution to f(z) = ain By ;
in particular, a ¢ ImT. Let § > O be such that B,s N ImT = @.
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Let b € B, 5. Let {{;} be the distinct zeros of f(z) — b in B; ¢, with m; the order of {;. Then

f'(2) 1 dw
ZJ: n(y) - mj = - o pdz=— Bt = n(b,T);
f(2) 1 dw
T om f(z)—ad 2m Jrw—a =n(a,D).

In both rows, the first equality is by Proposition 18.4 and the second by the substitution w =
f(z). Observe that n(a,T') = n(b,T) since a and b belong to the same connected component of
C\ Im(T). Now note that n({;,y) = 1for each {;. Hence },; m; = m. |

Exercises.

@

LECTURE 19. MAXIMUM PRINCIPLE, DEFINITE INTEGRALS ETC.
In this short lecture, we tie various loose ends.

19.1. Proposition. Let U be a domain and f a non-constant holomorphic function on U.
(1) There does not exist { € U such that|f({)| = sup{|f(z)| : z € U}
(2) AssumethatU is bounded and that f can be extended to a continuous function f onU. There exists
¢ € U such that|f(0)| = sup{|f(z)| : z € U}.

Proof. (1): Let { € U. For every O < e < 1, there exists § such that Brs)5 € f(Byc), by
Proposition 18.2. Now note that there exists b € By () s such that b > |f({)].

(2): Since U is compact, there exists { € U such that |f(§)| = sup{lf(z)l cz € U} =
sup{|f(z)| : z € U}. |

Here is a generalization of Proposition 18.4 to meromorphic functions.

19.2. Proposition. Let U be a disc and f meromorphicon U. Let a; be the distinct zeros of f, with orders
l;, respectively; let b; be the distinct poles of f, with orders mj, respectively. Let y be a closed piecewise
differentiable path in U, not passing through any of the a; and any of the b;. Then

@4, —Zli-n(ai,)’)—zmj'”(bf’y)
,~ 7

% , f(2)

Proof. As in the proof of Proposition 18.4, we may assume that the number of zeroes and the
number of poles are finite. Hence we may write

f@=]]GE-a)"] |-ty
i J
finite finite
in some open subset V containing Im y, where g(z) is holomorphic on V and does not have any

zeros. Hence ) @)
z) B ml g z
f@) - Z z—a Z 9

J

finite ﬁnlte

from which the assertion follows. O

We now look at an example of evaluating definite real integrals using complex integration.
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/” do
o a+cost

where a > 1is a real number. Write b for its value. Note that

/27[ de
2b = —_—
o a+cosf

Writez = . Thendf = —1% and cos 6§ = 1 (z +1). Lety : [0,27] — C, 0 = ¢¥™. Then

dz
y 2 +2az+1

The meromorphic function o — has two poles @ = —a+Va? — 1and f = —a—Va? - 1. Since
la| < 1,n(a,y) =1;Since || > 1, n(a,y) = 0; Note that

19.3. Example. Integrate

11 (1 1
22+2az+1 a-flz—a z-p)

Hence
LA PN S S o
a-p a’? -1
Exercises.
@
LECTURE 20. CONFORMALITY
20.1. Definition. Let n > 2 be an integer, U C R”" an open subset and p € U. A function

f : U — R"is said to be conformal at p if it is differentiable at p and it preserves angles and
orientation at p. We say that f is conformal on U if it is conformal at p for every p € U.

What does this mean? Letey, . . ., e, denote the standard basis for R”,and let xy, . . ., x,, be the
coordinates of R" with respect to this basis. Write f = (f;, ..., f,), with respect to this basis.
Let1 < i < n. Consider the curve y : (—¢,€) — U, t > p + te;. Since f is differentiable at p,
the composite curve fy is differentiable at 0, with derivative

2L (p)
ofa
o (P)
2L (p)
This is the ith column of the jacobian matrix J of f at p.
The jacobian of f at p gives the map df : Q(U), — Q(R")(;), when these are identified

with R". Here, Q(-) is the cotangent bundle, and Q(-), the cotangent space at q.
Saying that f preserves angles at p is same as saying that J preserves angles, i.e.,

v-w  Ju-Jw
lollwl [ Jol|Jw|

for every non-zero v, w € R". We now have the following:

20.2. Proposition. Let J be an n X nreal matrix. Then ] preserves angles if and only if there exist A > O
and an orthogonal matrix A such that | = AA.
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Proof. ‘Only if’: Note that Je; and Je; are orthogonal to each other if i # j, so Je; - Je; = O for
i # j. Write A; = |Je;j|,1 < i < n. Note that A; > O for each i. Let A be the matrix whose
ith column is ]/1—611 Since the columns of J are orthogonal to each other, it follows that A is an
orthogonal matrix. Therefore |Av| = |A'o| = |0] for every v € R".

Now consider the linear transformation A’ J. For every v, w € R",
AJu-AlJw  Ju-AA'Jw _ Ju-Jw _ ov-w
|A Jo||A! Jw| |JollJwl [JollJw| — fol|w]|’
i.e., A'J preserves angles. Note that A’Je; = };A'Ae; = Ase; for each i, i.e., A'J is a diagonal
matrix (with respect to the basis e;). Hence it must be a multiple of I, (Exercise), i.e, A; = 4, for
alli, j. Set A = A;.
‘If:

Ju-Jw  AAv-AAw  Av-Aw 0 -AlAw  o-w

JollJwl — [AAvl[AAw] — |Aol|Aw| — Jollw] — Jollw|’

O

An orientation on U is a choice of a basis (i.e. a non-zero vector) in A"Q(U). Since we have
already looked at the jacobian matrix with respectto xi, . . ., x,, let us take dx; A - - - A dx,. Then
theinduced map A"Q(U), — A"Q(R")¢(,) is multiplication by det J. To preserve orientation
is to say thatdet J > 0.

We summarise this discussion as follows.

20.3. Proposition. Letn > 2 be an integer, U C R" an open subset and f : U — R" a differentiable
function. Then f is conformal on U if and only ifthe jacobian matrix of f at p is a multiple of an orthogonal
matrix and its determinant is positive, forevery p € U.

We now restrict out attention to dimension 2. Let x, y be coordinates of R%. Write f = (u,0v).

Then
J= [ux(P) uy(p)]
ux(p) Oy (P)
Since the columns are orthogonal to each other, there exists A # 0 such that u,(p) = —Av,(p)
and vy (p) = Aux(p). Thendet J = A(ux(p)* + vk (p)?), so A > 0. Thus

= [ux (p) —Aox (p)]
ux(p)  Aux(p)
For the rows of ] to be orthogonal, A* = 1, s0 A = 1. Hence
J= [ux(p) _Ux(p)]
ux(p)  ux(p)
Summarising this, we get the following relation between conformality and holomorphicity.

20.4. Proposition. LetU C Cbeopenand f : U — C. Then the following are equivalent:

(1) f is holomorphic and f’(z) has no zeroes on U;
2) fisconformalonU.

20.5. Remark. Some books might require conformal maps to be injective, by definition.

20.6. Remark. A conformal map preserves angles and orientation only, but not length. To see
this, let U C Cbe a domain and f holomorphic on U. Suppose that f’(p) # 0. Lety : (—¢,¢€) :
U be a C'-path with y(0) = p. Write T = fy. Then |T’(0)| = |f’(p)|ly’(0)|. Hence the length of
an infinitesimal arc through p gets multiplied by | f'(p)|.
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Exercises.

(1) Show that the map z + Z preserves angles, but not orientation.

(2) Orientation in the case of R%. Let vy, v, be a basis of R2. Plot them as vectors based at 0.
We can think of orientation as the direction (clockwise, or counter-clockwise) in which
we have to go from v; to v, traversing the smaller of the angles between them. (One of
these angles must be in (0O, ); this is the smaller angle.) Let f : R* — R? be a linear
transformation. Show that f preserves orientation if and only if the direction in which
one hastotraverse smaller angle from f(v;) to f(v,) is the same as the direction in which
one has to traverse the smaller angle from v; to v,.

(3) Show thatif f : U — C s conformal, then for every p € U, it maps a neighbourhood
of p homeomorphically onto its image.

(4) Show thatif U C Cisadomain and f is an injective holomorphic function on U, then
f is conformal.

LECTURE 21. RIEMANN SPHERE

We want to discuss Moebius transformations next.
Consider the unit sphere S? in R?, with the map

X1+ 11X,

SZ AN {(O, O, ].)} e C, (.X'I, X2, .X'3) d .
1- X3

What is this map? Identify the hyperplane x; = 0 with C, with x; as the real part and x, the
imaginary part. Then o ((x1, x2, x3)) is the point where the line through (0, 0,1) and (xi, x3, x3)
meets C. I.e., we need to solve for A in

(1 - A) (Os O’ 1) + A’(xli X2, x3) = (yl: st O)

Hence A = . This gives the above description of . ¢ is 2 homeomorphism, with S* given

the subspace topology of R®. Points of S* \ (0,0,1) with x; > 0 are mapped to C \ B}, the
points with x3 < 0 are mapped to Bo;. With this, S* is a one-point compactification of R* = C
(Exercise). The map o is called stereographic projection.

By the Riemann sphere, we mean S%, with a complex manifold structure given on it. Cover S
with two open subsets, U := §2 \ {(0,0,1)} and V := §% \ {(0,0,-1)}. We identify U with C,
using o. Note that 6((0,0, 1)) = 0. We can now define 7 : V. — C by

o) = {o,1 if p = (0,0,1)

oL otherwise.

This identifies V with C, and on C \ {0}, the map ro7lis z %, which is a biholomorphic

map, i.e., a bijective holomorphic map whose inverse is holomorphic. We will write C for the
Riemann sphere.

Using the Riemann sphere, we can reinterpret the notion of poles. Identify C with U using
o, and write oo for the point (0,0,1). This is sometimes called the point at infinity (w.r.t this
identification). Let p € Cand f a holomorphic function defined in a neighbourhood W of p,
with a pole at p. The function f : W\ {p} —> C = U extends to a function f : W —> $2, with
f(p) = oco. Shrink W so that f does not have a zero in W. Hence Im f C V. The composite f
is the holomorphic map z — f(z) onW.
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Exercises.

(1) Show that the map o in the definition of the Riemann sphere is a homeomorphism and
that the Riemann sphere is a one-point compactification of R? = C.

(2) Letc € (=1,1). Show that 0 maps S N {x3 = ¢} to acircle in C and S N {x; < c} to the
open set bounded by the circle.

LECTURE 22. MOEBIUS TRANSFORMATIONS

References for this lecture are Ahlfors Chapter 2, Section 1.4, and Chapter 3, Section 3. See
also Rodriguez, Kra and Gilman, Chapter 8, especially the early parts.

NOTE: We identify C with C \ {oo} through the stereographic projection . When you read
this lecture and the next, you should keep this in mind. Sometimes, we will switch between C
and its image under o without explicitly mentioning it.

By a Moebius transformation, we mean a meromorphic function on C given by a rational func-

tion of the form
az+b

=)= cz+d
where a, b, ¢, d are complex numbers with ad # bc.

22.1. Remark. We make the following observations (notation as above):

(1) f(z)is holomorphic on Cif and only if ¢ = O; otherwise f has exactly one pole, at —‘;i.
(2) f(z)isinjective on the complement of the pole. (Exercise)
(3) We can think of f as being given by

il

We can extend f to bijective function from C to C, still denoted by f, by setting

{f(oo) = o, ifc=0;

f(—%l) = o0 and f(c0) = ¢, otherwise.

c’
22.2. Proposition. The extended function f : C — Cisa homeomorphism.

Proof. The extended function is bijective (check). I will show that it is continuous and open,
treating the two cases ¢ = 0 and ¢ # O separately for your convenience.

¢ = 0: Thend # O. Replacing a by § and b by g, we may assume that f is given by the
polynomial az + b. The inverse function is z +— %. It is continuous and open. Hence f is a
homeomorphism of C to itself. Now consider the extension of f to C.LetUbean open subset
of C. We want to show that f(U) and f71(U) are open. If U C C, then f(U) and f'(U) are
open. Otherwise, i.e. if co € U, then C\Uis compact and, hence, closed, so

F(U) :@\f(@\u)
YUy =C~ £ (@ N U)
are open. (Note: f is bijective.)
az+b

¢ # O: Let us compute f~': Write w = %5, Rewrite as (cz + d)w = (az + b), so we get
(cw — a)z = —dw + b. Define a meromorphic functiong : C — Cby

—dz+b

cz—a

9(z) =
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| T [

Hence on C \ {—— Y, (fo)(z) = (gf)(z) i.e, g is the inverse of f. It is easy to check that

its extension to C is the inverse of f (on C). Since C is a metric space, we can check that f is

continuous by taking limits. Let { € C. Let (i be a sequence converging to {. If { = oo, then

|o(£i)| — oo (see the description of ¢ in the previous lecture). Hence f({;) — 2. Similarly, if

Note that

(= —%l, then |f(;)| — oo. Hence f is continuous. This applies to every Moebius transforma-
tion, including to g = f~*. Hence f is a homeomorphism. O

We will come back to Moebius transformations in the next lecture. For now, we look at ra-
tional functions, in general.

Let p, g € C[z] be relatively prime non-zero polynomials. Let m = deg p and n = deg q. Then
we get a meromorphic function

r(2)
f(z) = 72
on C. We can extend f to C as follows. Let { € C. If{ € Cand q({) # 0, f({) = 20 (nothing

q(0)
new here). For { € Cis a zero of g, then for every sequence {; — ¢, |%| —> 00, SO We can

define () =
Now assume { = co. Write p(z) = amz™ + -+ + ap and q(z) = bpz" + -+ - + bo. Ifm > n,

then |§g‘;| —> 00, s0o we can define f(o0) = co0. If m = n, then we can define f(oo) , since

f]% — 2. If m < n, then zg’; —> 0, so define f(o0) = 0. Consider the nelghbourhood

vV cC of0<>, from the last lecture. We identify V with C using 7. Since {; — oo, 7({;) — O.
On a neighbourhood W C V of oo, f is holomorphic, and has the form

am(%)m+am—1(%)m_l+"'+ao am+am—1zl+"'+a02m
Iyn Iyn-1 ... —Z by 4+ by 1zl 4+ boz"
bu()" +bp1(5)" 1+ -+ bo ntbpaz +---+00z

Hence the order of the zero of f at o isn — m.

Exercises.

(1) Let a, b, ¢, d be complex numbers such that ad — bc # 0. Let U = Cifc = O;let U =
C~ {—%}, otherwise. Show that the function

az+b

cz+d
is injective. Hint: Look at the linear map C*> — C? given by the matrix

4

(2) Complete the proof (by filling in the missing steps) of Proposition 22.2.

(3) Read Ahlfors, Chapter 2, Section 1.4 about partial fraction expansions. Do Exercise 1 of
that section.

(4) Let p, g € C[z] be relatively prime non-zero polynomials. Assume without loss of gen-
erality that deg g > 0. Let f be the meromorphic function

p(z)
q(z)

f:U—C z—
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on C. Show that f” is meromorphic and the poles of f” are exactly the poles of f. If { is
a pole of f of order m, then the order of the pole of " at {is m + 1.

LECTURE 23. MOEBIUS TRANSFORMATIONS, CONTINUED.

References for this lecture are Ahlfors, Chapter 3, Section 3.2 and Rodriguez, Kra and Gilman,
Section 8.1.
Leta,b,c,d € Cwithad — bc # 0. Forevery { € C,{ # O,

az+b  {az+{b

cz+d {cz+{d
as meromorphic functions on C. Hence we may assume that ad — bc = 1. In other words, every
Moebius transformation can be represented by an element of SL, (C). Hereafter, we will make

this assumption.
Recall that a Moebius transformation is typically only a meromorphic function on C, but a

well-defined function on C.

23.1. Lemma. Assume that the Moebius transformation

f(Z) - cz+

(considered as a function on @) fixes O, 1and oo, then it is the identity map:a =d =1,b = ¢ = 0.

az+b

(with ad — bc =1)

Proof. Since f(o0) = o0, and f is bijective, f is holomorphic on C, and the only zero of f is 0.
Hence ¢ = 0. Without loss of generality, we may assume thatd = 1, i.e, f is given by a linear
polynomial az + b. Since we have assumed that ad — bc = 1, a = 1. Since O is the only zero of f,
f is the identity map. O

23.2. Proposition. Let {5, &1, (s be distinct points on C. Then there is a unique Moebius transformation

. az+b
z cz+d
such that {o — 0,1 — land (s > .
Proof. Let
_ 2~ $o &1 — oo
&= e

It is a Moebius transformation, with f({,) = 0, f({1) = 1and f({s) = oo. Let g(z) be any
Moebius transformation such that g({,) = 0, g(&;) = 1and g({s) = o0. Thengf 'and fg ! are
Moebius transformations, fixing 0, 1 and co. Hence gf ! = fg~* = id. Thereforeg = (f )7 =

/- O

23.3. Definition. Let {, {, {1, {- be distinct points on C. Their cross-ratio is the image of { under
the unique Moebius transformation that sends {5 to 0, {; to 1 and { to co. We will denote the

cross-ratio by (¢, o, {1, {o)-

In other words

_ -l b -l
ot = o

23.4. Proposition. Let {, (o, {1, s be distinct points on Cand f a Moebius transformation. Then

(f(9): f (o), f(ED), f(Ee0)) = (£, Gos C1s Goo)-
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Proof. Let g be the unique Moebius transformation that sends ¢, to 0, {; to 1 and (s, to co. Then

(¢, 40 81, Co0) = g(0).
Then the Moebius transformation gf ! sends f({o) to 0, f({1) to1and f({w) to co.

(f(D, £ (L) f(5). f(G)) = gf 7 (f() = g(0) = (£ {os 1. 8o O

23.5. Proposition. Let (, (o, (1, (s be distinct points on C. Then the cross ratio ({, (o, {1, () is real if
and only if the points lie on a circle or a straight line.

Proof. We start with the following observation. Leta, b, ¢ € Cbe distinct. Then theyare collinear
if and only if the (non-zero) elements a — b, a — ¢ € C are linearly dependent over R if and only
if % is real.

We now prove the proposition. ‘If’: Suppose that ¢, {o, {1, {~ lie on a straight line. Then

{=6 g 8=8
{ =l G1= %o
are real numbers, so the cross ratio is a real number.

If the four points lie on a circle, the proof involves a calculation with the angle between the
line segments z — {, and z — (., and similarly between { — ¢y and { — {. Please see the file
rkg p204.pdf uploaded in moodle.

‘Only if’: First assume that (o, {j, { are collinear, then %__ii: is a real number, and, if, further,
(%o

the cross-ratio is real, then isreal,i.e., {, (o, {~ are collinear.

If {o, {1, {» are not collinear, then we need to consider the circle containing these points and
show, using the a calculation of angles, that { also lies on the same circle. Please see the file
rkg p204.pdf uploaded in moodle. O

23.6. Corollary. A Moebius transformation maps circles and straight lines to circles and straight lines.

Exercises.
(1) Show that the composite of two Moebius transformations is a Moebius transformation.

LECTURE 24. SINGULARITY AT INFINITY

In Lecture 22, we looked at extending rational functions to co and the resulting singularity
at oco.

24.1. Definition. Let f be an entire function. We say that f has a removable singularity (respec-
tively, a pole, an essential singularity) at oo if the function f(£) has a removable singularity (re-
spectively, a pole, an essential singularity) at O.

Note that an entire function has a power series expansion that is convergent everywhere;
take ¢ = 0 and R = oo in Corollary 15.5.

24.2. Proposition. An entire function has a removable singularity at oo if and only if it is constant.

Proof. Let f be an entire function. If it is constant, it has a removable singularity at co. Con-
versely assume thatithasaremovable singularity at co. Write f(z) = X ,cpy @n2". Then Y, oy anz ™"

has a removable singularity at 0. Therefore
lim ) a,z7"' =o0.

z—0
neN

Hencea, =0if—-n+1< 0,i.e., f(z) = ap + a;z. Then a; = lim,_,o zf(%) = 0. Hence a,, = 0 for
eachn > 0,1i.e., f is constant. O
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24.3. Proposition. Let f be an entire function. Then the following are equivalent:
(1) f hasa pole at co;
(2) Forevery M > O thereexists R > O such that |f(z)| > M forall |z| > R;
(3) f isanon-constant polynomial.

Proof. (1) = (2): Apply Proposition 17.4 (3) to the function f (%) at its pole 0, to see that for
every M > O there exists r > O such that [f(1)| > M forall |z| < r. Take R = }

(2) = (1): By Proposition 17.9, f does not have an essential singularity at co. By Proposi-
tion 24.2, f does not have a removable singularity at co.

(1) = (3): Note that f is a non-constant function. We have already established that for
every M > O there exists R > O such that |f(z)| > M for all |z| > R; hence the zeros of f are
in a compact subset of C, so f has only finitely many zeros, say, c;, ..., ¢, of orders my, ..., m,
respectively. Therefore we can write f(z) = [[1;(z — ¢;)™g(z) where g(z) is an entire function
without any zeros.

It suffices to show that g is constant. Assume the contrary. By hypothesis, f does not have
an essential singularity at co. Therefore by Exercise 10 of Lecture 17 and Proposition 24.2, we
see that g has a pole at co. Therefore for every M > O there exists R > O such that |g(z)| > M
forall |z| > R. Hence ﬁ which is an entire function is bounded, so it is constant by Liouville’s

theorem (Proposition 16.2), contradicting the hypothesis that g is not constant.
B) = (1): Write f(z) = ao + a1z + -+ + a,z" withn > Oand a, # 0. Then f(%) =
anz "+ -+ -+ ag has a pole of order n at 0. |

24.4. Corollary. Let f(z) = X,en anz" be an entire function with a, # O for infinitely many n. Then
forevery A € C, every R > O, every & > O, there exists { ¢ Bog suchthat |f({) — Al < .

Proof. Using the above propositions, we see that f(1) has an essential singularity at 0. Now
apply Proposition 17.9 to f(%) at 0. O

LECTURE 25. AUTOMORPHISMS OF THE COMPLEX PLANE

This lecture is based on Rodriguez, Kra and Gilman, Sections 8.1, 8.2.

25.1. Definition. Let U C C be a domain. By an automorphism of U, we mean a holomorphic
function f : U — U such that there exists g : U — U such that fg = gf = idy.

25.2. Proposition. LetU C Cbheadomain. Let f : U —> U be a bijective function. Then the following
are equivalent:

(1) f is holomorphic;

2) f is biholomorphic, i.e, f and f~ are holomorphic;

() f and ! are conformal.

Proof. If f and f* are conformal, then they are holomorphic. Conversely, if f is bijective and
holomorphic, thenitis conformal, since if f’(¢) = 0 for some ¢, then f would not be injective in
an neighbourhood of c. Therefore it remains to show that if f is holomorphic, then f~! is holo-
morphic. We will think of U as a subset of R* and show that £ is differentiable as a function
of two real variables and that the Cauchy-Riemann equations are satisfied (Theorem 2.8)

We first show that £~ is differentiable as a function of two real variables. Let p € U and
write g = f(p). Note that f'(p) # 0, for, otherwise, f would not be injective on B, s \ {p} for
some 0 < § < 1. Write f = u + 1. Hence the derivative of (u, v) at p is the jacobian matrix
2 (p) 3—;(19)] ) —5 )

J(fp) = [é_iy?(p) w5 Fp)
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We have used the Cauchy-Riemann equations for f. From Theorem 2.8, we see that
ou S g
F(p)* = (a—(P)) + (—(p)) = det J(f. p)-
X ox

Therefore J(f, p) is invertible since f’(p) # O. Note that (u, v) is continuously differentiable,
since f is complex-analytic. Now using the inverse function theorem (e.g., Rudin, Principles
of Mathematical Analysis, Chapter 9), we see that f~! is differentiable in a neighbourhood of
g, as a function of two real variables.

Now to show that f~ satisfies the Cauchy-Riemann equations, observe that

JELQIfp) =Tie J(F L9 =Up) ™"

Since J(f, p) is a non-zero real matrix of the form

b ]

(such matrices are invertible) its inverse J(f 7%, q) too is of the same form (Exercise). Hence f™*
satisfies the Cauchy-Riemann equations. O

25.3. Proposition. The map C — C, z + az + b, where a, b € C, a # O is an automorphism, with
inverse z — ‘—Il(z —b). Conversely, if f : C —> Cis an automorphism, then there exista,b € C,a # O
suchthat f(z) = az + b forevery z € C.

Proof. The map z — az+b (with a # 0)is bijective and holomorphic, i.e., an automorphism. Its
inverse is the map z — 1(z — b). Now assume that f : C — C is an automorphism. Since f
is entire, it has a convergent power series expansion, valid everywhere on C. (In Corollary 15.5,
we can take ¢ = O and R = o0.) Write f(z) = Y, anz". Suppose that a, # O for infinitely
many n. Then by Corollary 24.4 we see that for each R > 0, the set f(C \ Byy) is dense in C.
However, since f is injective, f(Bo;) is non-empty but

F(C\Boy) N f(Boy) = @.

Hence a, = O foralln > 0. Write f(z) = ap + a1z + - - - + a 2" withm > O and a,, # 0. Since
f is injective, it is not constant, som > 1.

We need to show that m = 1. By way of contradiction, assume that m > 1. Then deg f” > O,
so there exists { € C such that f’({) # 0. Hence there exists a neighbourhood of { on which f
is not injective, a contradiction. O

25.4. Example. The map
s 2 F
zZ+1

the upper half plane {z € C | J(z) > 0} to the open unit disc. If z = x + y1, with y > O, then

x+(y—1n
x+ (y+1)n

since |y—1| < |y+1|. Itis a Moebius transformation, and holomorphic on the upper half plane,
so the map is conformal.

(The Riemann mapping theorem says that every simply connected domain U ¢ C is biholo-
morphic to the open unit disc. Above, we have given a specific map that works for the upper
half plane.) O

We now prove the Schwarz lemma, which describes maps from By to itself.
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25.5. Proposition. Let f : Bo; —> Bo; is holomorphic with f(0) = O, then |f(z)| < |z| for every
z € Boyand |f'(0)| < L If|f(2)| = |z| forsome z € Bo1, z # Oorif|f'(0)| = 1, then f(z) = cz for
some constant c with |c| = 1.

Proof. Write f(z) = Y2 anz". Let

) - 9 ifz o0
9% = ai, ifz=0.

(Note that 7(0) = ¢g(0).) Then, for every O < r < 1, and every z with |z| = r,
f@]_If@I _1

z |z r

l9(2)| =

Hence by the maximum principle (Proposition 19.1) |g(z)| < # for every z € By, for every
0 < r < 1. Hence |g(z)| < 1foreveryz € Bo;. Hence |f(z)| < |z| for each z € Boy; and
£/(0) = g(0) < 1.

Now suppose that |f(z)| = |z| for some z € Byj, z # O or that [f’(0)| = 1. Equivalently,
|g(z)| = 1for some z € By, then gisa constant function, again by the maximum principle. O

As an immediate corollary, we get a property of holomorphic automorphisms of the unit
disc. There is a more precise statement, characterising holomorphic automorphisms of the
unit disc. The proof of the general statement is not difficult, but we will skip it. If you are
interested, you can look at Rodriguez, Kra and Gilman, Section 8.2, Theorem 8.18, or Lang,
Complex Analysis, Chapter VII, Section 2.

25.6. Corollary. Let f : Bo; — Bo1 be a bijective holomorphic map. Then it is a Moebius transforma-
tion.

Proof. Letc = f(0). Then check that the Moebius transformation
z—c

g:z+> ——
1-cz

is an holomorphic automorphism of By ;. Hence gf a holomorphic automorphism of By ;, with

gf(0) = 0. Therefore it suffices to show that gf is a Moebius transformation. Replacing f by

gf, we may assume that f(0) = 0. Write w = f(z). Then

2l = 1f 7 (W)l < [wl = f(2)] < Iz]

by the use of the the Schwarz Lemma (Proposition 25.5) once for £~ and then for f. Hence
|f(2)| = |z| for every z € Bo;. Again by Proposition 25.5, there exists a with |a| = 1 such that
f(z) = az. Hence f is a Moebius transformation. O

Exercises.

(1) Show that the inverse of a non-zero real matrix of the form

b ]

is a matrix of the above form. (Hint: after appropriate scaling, this matrix representa-
tion rotation in R2.)

(2) Determine the images of horizontal and vertical lines in the upper half plane under the
map in Example 25.4.

(3) Find the inverse of the map in Example 25.4.
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(4) Show that the map
-1
zZ —zz—
z+1

conformally maps the upper half disc ({|z| < 1, 3z > 0}) to the first quadrant.
(5) Find a conformal map from the upper half unit disc to the unit disc.
(6) Show that C and By are not biholomorphic to each other.

LECTURE 26. AUTOMORPHISMS OF THE RIEMANN SPHERE

We want to understand holomorphic functions from C to itself. In Lecture 21, we described
the following open covering of C: (Here we change our notation a little bit.) Uy := C \ {o0},
Us == C\ {0}, 0 : Uy — C the stereographic projection map, and 7 : U, — C.

26.1. Definition. Let f : C—C and p € Cand q = f(p). Say that f is differentiable at p if f is
differentiable at ¢, where

(cfoto(p)) ifp e Usand g € Upy;

(tfo Y o(p)) ifp € Upand q=oo;

(oft™L7(p)) ifp=ocoandgq e Uy

(cfrz(p)) ifp=co=gq.

Say that f is holomorphic if it is differentiable at p for each p € C.

(f.0) =

It might appear that we have given preference to U, over U, while making the above defini-
tion. This is not the case. For example, suppose that {p, g} € Uy N Us. Then the following are
equivalent:

(1) ofo!isdifferentiable at o(p);
2) ofr!is differentiable at 7(p);
3) tfolis differentiable at o (p);
@) rfr!is differentiable at 7(p).
Assume that o fo ! is differentiable at o(p); let us show that o fr7! is differentiable at 7(p).

Note that, in a neighbourhood of 7(p),
oft?=(cfo o (z — %)
so o fr!is differentiable at 7(p).

26.2. Proposition. Let f : C —s Chea bijective holomorphic map. Then £~ is holomorphic.

Proof. Letp € Cand q = f(p). We will assume that p € Uy and q € Up; the other cases can be
handled similarly. Hence we need to show that o f 0" is differentiable at o(q). But note that
of'o7!is the inverse of the bijective holomorphic map ofo™!, so of o7 is differentiable at

o(q)- O

26.3. Definition. By an automorphism of C, we mean a bijective holomorphic map from C to
itself.

The special linear group SL,(C) is the group of 2 X 2 complex matrices with determinant 1. It
is a group, under usual matrix multiplication. Let f and g be Moebius transformations:

f(2) =

az+b az+b
d = )
and 9(2) cz+d

cz+d
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Then

oz = SmT b _ (ad +b)z 4 (b +bd)
9 &zt g (ca +dc)z+ (cb +dd’)’

c’z+d’
which is a Moebius transformations. Hence the set of Moebius transformations form a group
M under composition.
Note that the group operation in SL,(C) is given by:

a bfla V| _|ad +bc" ab' +bd
c d

¢ d'|  |ed+dd b +dd
Hence there is a group homomorphism

az+b
cz+d

abH
¢ d

SLz(C) — M, [

We have seen in Lecture 23 that every Moebius transformation can be represented by an ele-
ment of SL,(C). Hence the above group homomorphism is surjective, with kernel {+I}. The

group
SLo(C)/{+1}

is usually written PSL,(C).

26.4. Proposition. Every element of M = PSL,(C) is a meromorphic conformal automorphism of C.
Conversely, every a meromorphic conformal automorphism of C is given by an element of ML.

Proof. Itis easy to check that elements of M are automorphisms. Conversely, let f be an auto-

morphism of C. If f(c0) = oo, then f(z) = az + b by Proposition 25.3. If f(c0) = ¢ # oo, then

let g(z) = =&~ Now gf is an automorphism, and fixes o, so it is in M.. Hence f € M. O

z—c"
Exercises.

(1) Let ¢, {o, &1, {eo be distinct points of C and ¢ a permutation of four symbols. Determine
the relation between the cross ratio (, o, {1, () and (o(¢, (o, {1, {w))-

LECTURE 27. REVIEW OF PATH HOMOTOPY

Reference for this section is Munkres, Topology, the chapter on covering spaces and funda-
mental groups.

Let U be an open subset of C. Lety,n : [a,b] — U be two paths with y(a) = n(a) and
y(b) = n(b). We say that y and n are path-homotopic to each other if there exists a continuous
map H : [0,1] X [a,b] — U such that

H(O,t) = y(t) forall ¢t € [a,b];

H(1,t) =n(¢t) forall t € [a,b];

H(s,0) =y(0) =n(0) forall s € [0,1];

H(s,1) = y(1) = n(1) forall s € [0,1].
We can think of this as a continuously varying family of paths [a,b] — U parameterised
by [0,1] such that for every member of the family is a path from y(0) to y(1). We say that H
is a path-homotopy between y and n. We will say that a closed path y is null-homotopic if y and
the constant path ey (o) at y(0) (i.e, the map [a,b] — U, t + y(0)) are path-homotopic to

each other. Note that being path-homotopic is an equivalence relation; we will refer to the
equivalence classes under this relation as path-homotopy classes.
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We say that U is simply-connected if for every closed path in U is null-homotopic. For example,
C is simply connected, but C \ {0} is not.
The result we want to prove is that if f is holomorphic on U, then fy fdz depends only on

the path-homotopy class of y. However, there is (at least) one issue that needs to be sorted out:
even if y and n are path-homotopic piecewise-differentiable paths, with path homotopy H, the
paths H(s, —) need not be piecewise-differentiable for s € (0,1). Hence we need to understand
what fT fdz is, when 7 is merely a continuous path.

Reference for the remainder of this section is Lang, Complex Analysis, Chapter I1I, Section
4.

27.1.Lemma. LetU C Cbheanopensetandy : [a,b] — U a continuous path in U. Then there exists
r > O such that forevery x € Im(y) and foreveryy € C\ U, |x —y| > r.

Proof. The functiond : U — R, t +— inf{|y(t) —y| : y € C \ U is attained by some y ¢ U,
since it suffices to consider y lying inside a closed and bounded subset of C. It is continuous:
Lett, — t.lety,y, ¢ U be such that §(¢) = |y(t) — y| and 6(¢,) = |y(tn) — ya|. Lete > O.
Then there exists N such that for everyn > N, |y(¢,) — y(¢)| < €. Hence §(¢) < (t,) + € and
S(ty) < 8(t) + €, foreveryn > N. Hence 6(t,) — 5(t). Therefore there exists ¢, € [a, b] such
that §(tp) = inf{5(¢t) | t € [a, b]}. Since U is open, §(ty) > O. |

27.2. Discussion. For now, assume that y is piecewise-differentiable. Let ¢ > O be small
enough such that B, C U for every t € [a,b]; such an € exists by Lemma 27.1. Since y
is uniformly continuous, there exists § > 0 such that y(B;s5) C By(;).. Then there exist
(1) apartitiona =1, < f; < ... < t, = b such that
@) tiy1 —t; < 5;
(b) y is differentiable on (¢, t;41);
(2) acovering of Im(y) by open discs B;,0 < i < n—1such thaty([t;,ti+1]) € B;.
For 0 < i < n-—1,letg; beaprimitive of f in B;. Then

tiv1

f @)y (1)dt = gi(y(tis1)) — gi(t;), and hence,

n-1
/fdz = Zgi(tm) - gi(t;). O
14 i=0

In view of the discussion above, we can extend the definition of fy fdz to continuous paths

ti

y as follows. Note that we did not use all the information about the partition, in the above
discussion.

27.3. Definition. Let U be a domainand y : [a,b] — U a continuous path. Leta = to < t; <
. < t, = bbe apartition and B, . .., B,—1 be open discs in U such that y([¢;, t;11]) € B; for
every O < i < n— 1. Let g; be a primitive of f on B;. Define

n—1
[1d2= 3 vt - antyia)
Y i=0

27.4. Proposition. The definition of /y fdz is independent of the choice of the partitiona = to < t; <
... < ty, = b, theopendiscs B;,0 < i < n — 1and the primitives g;,0 < i < n—1of f.

Proof. For the sake of clarity, we will write I({t;}, {B:}, {g:}) todenote 315 gi (y (ti+1)) —gi(y (£:))
in Definition 27.3. Let {#;}, {B;} and {g;} another set of choices.
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Step 1: Assume that {f;} = {t;}. Theny([¢;, tiz1]) € B; N B;, on which gi and g; are primitives
of f. Then there exists ¢; € C such that g;(z) — §i(z) = ¢; for every z € B; N B;. Hence

9i(y(tin1)) = gi(y (1)) = Gi(y (tina)) = Gi(y ()

soI({t:}, {Bi}, {gi}) = I({t:}, {Bi}. {gi})-

Step 2: Assume that {;} is a refinement of {t;}. Then the covering {B;} and the primitives
{g:} (which were defined for {¢;}) induced a covering and primitives with respect to {f;}. More
precisely, if ;, = t; and f;,, = t;41, then use B; and g; for the intervals [}, ;,1], ji < j < tj,,. We
abuse notation and continue to use {B;} and {g;} for the induced covering and primitives. Itis
easy to see that I({t;}, {Bi}, {g:}) = I({Z:}, {Bi}. {g:}). By the earlier case, I({#i}, {B}, {9:}) =
I({#:}, {Bi}. {g:})-

Step 3: Consider the general case. Let {f;} be a common refinement of the {t;} and the {;}.
Asin Step 2, the covering {B;} and the primitives {g;} induce a covering and primitives on {;},
which we abuse notation and denote by {B;} and {g;}. Similarly, we get {B;} and {4;} from the
partition {f;}. Then

It} {Bi} {g:}) = I({E:}, {Bi}. {9:})
= I({&:}, {B:}. {g:})
= I({E:}, {Bi}. {g:})

where the first and the third equalities follow from Step 2 and the second one from Step1. O

We emphasise that order to make sense of Definition 27.3, we need to know that holomor-
phic functions on discs have primitives (Theorem 11.1).

Exercises.

LECTURE 28. GENERAL VERSION OF CAUCHY INTEGRAL THEOREM.

Let U be a domain.
The following lemma is Lang, Complex Analysis, Chapter III, Section 4, Lemma 4.3.

28.1. Lemma. Let y and n be two continuous paths [a,b] — U. Assume that there exist a partition
a =1t <t <...< t, = bandopendiscs Bo,...,B,—1in U such that y([t;, ti+1]) € B; and
I]([ti, t,‘+1]) c Biforeveryo <i<n-1Then

/y fdz = /H fdz.

Proof. Write z; = y(t;) and w; = n(#;). Let g; be a primitive of f on B;, 0 < i < n — 1. Since gj4;
and g; are primitives of f on B;;; N B;, the function g;4; — g; is constant on B;;; N B;. It follows
that

9i+1(Zi+1) - gi(zi+1) = gi+1(Wi+1) - gi(Wi+1)
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forallo <i < n-1. Hence

/fdz - /fdz = [9i(zis1) — gi(zi)] = [gi(wis1) — gi(wi))]
Y n i

1=

[=

—~ O

n—

[gi+1(zi+1) - gi(zi))] - [9i+1(Wi+1) - gi(Wi))]

gn(zn) - gO(ZO)] - [gn(wn) - gO(WO)]

o

—

I
o

since zo = wp and z, = w,,. O

28.2. Theorem. Let y and n be path-homotopic continuous paths [a,b] — U. Let f be holomorphic

onU. Then
/fdz:/fdz.
Y ]

Proof. Let H = [0,1] X [a,b] — U be a path homotopy. Since Im(H) is compact, there exists
r > O such that for every x € Im(H) and foreveryy € C\ U, |x — y| > r, as in Lemma 27.1.
Hence there exists € such that B, . C U for every x € Im(H). Since H is uniformly continuous,
there exists & > 0 such that for every p € [0,1] X [a,b], H(B,s5) C By(p)e- Hence there exist
partitions O = sp < s < ... < sy =landa =1ty < f; < ... < t, = b such that for each i, j,
there exists an open disk B; ; such that H([s;, sia] X [t), tjx1]) € B;j € U. (For example, choose
the s; and the ¢; such that the diagonal of the rectangle [s;, si1] X [¢;, tj41] has length at most
28.) Fori = 0,...,m, define paths y; : [a,b] — U by y;(¢t) = H(s;, t). Note that yo = y and
Ym = 1. We now induct on i and apply the lemma to conclude that /Y S dz = fy fdz for every
I1<i<m. O

28.3. Corollary. IfU issimply connected, then /y fdz = Oforevery holomorphic f on U and every closed
pathy.
Exercises.

(1) Let U < Cbe abounded domain. Show that it is simply connected if and only if C \ U
is connected.

(2) Let y be a closed path in C, not passing through 0. Assume further that there exists a
ray through the origin {r{ | r € R,r > 0,{ € C,{ # 0} that does not intersect Im(y).
Find a simply connected domain U containing y that admits a branch of the logarithm.
Conclude that /Y ldz=o0.

(3) Let U be a domain. Show that U is simply connected if and only if for every closed path
yinU andevery{ ¢ U, n({,y) = 0.
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