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Lecture 1. Preliminaries63

C as the ringR[𝑋 ]/(𝑋 2 + 1). Write 𝚤 for the image of𝑋 inC.64

Let 𝑐 ∈ C; then there exist unique 𝑎, 𝑏 ∈ R such that 𝑐 = 𝑎 + 𝑏𝚤. We call 𝑎 the real part of 𝑐65

and 𝑏 the imaginary part of 𝑐, and write 𝑎 = <(𝑐) and 𝑏 = =(𝑐). If 𝑓 : 𝐴 −→ C is a function66

(𝐴 being some set), then we write<(𝑓 ) and =(𝑓 ), respectively, for the functions 𝐴 −→ R,67

𝑎 ↦→ <(𝑓 (𝑎)) and 𝑎 ↦→ =(𝑓 (𝑎)).68

e function | · | : C −→ R≥0, 𝑧 ↦→
√︁
(<(𝑧))2 + (=(𝑧))2 is called themodulus or the absolute69

value function. is gives a metric on C: take the distance between 𝑐, 𝑐′ ∈ C to be |𝑐 − 𝑐′|.70

e function C −→ R2, 𝑐 ↦→ (<(𝑐),=(𝑐)) gives an isomorphism of real vector spaces and a71

homeomorphism1 ofmetric spaces (withR2 given the usual metric). ereforeC is a complete72

metric space.73

A subset 𝐴 ⊆ C is connected if there are no open subsets𝑈 and𝑉 of C such that 𝐴 = (𝐴 ∩74

𝑈 ) ∪ (𝐴 ∩𝑉 ) with (𝐴 ∩𝑈 ) ≠ ∅ ≠ (𝐴 ∩𝑉 ) and (𝐴 ∩𝑈 ∩𝑉 ) = ∅.75

Let𝐴 ⊆ C, and 𝑧0, 𝑧1 ∈ 𝐴. A path in𝐴 from 𝑧0 to 𝑧1 is a continuous function 𝛾 : [0, 1] −→ 𝐴76

such that 𝛾 (𝑖) = 𝑧𝑖 , 𝑖 = 0, 1. Say that 𝐴 is path-connected if for every 𝑧0, 𝑧1 ∈ 𝐴, there is a path77

from 𝑧0 to 𝑧1.78

1.1. Proposition. An open subset ofC is connected if and only if it is path-connected.79

Proof is left as an exercise.80

1.2.Definition. By a domain, we mean a connected open subset ofC.81

1Let 𝑋 and 𝑌 be topological spaces, and 𝑓 : 𝑋 −→ 𝑌 a function. We say that 𝑓 is a homeomorphism if it is
bijective and continuous, and its inverse function (which exists since 𝑓 is bijective) is continuous.
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When we talk of limits and convergence in C, these are with respect to the metric topology.82

In particular, a sequence of complex numbers is convergent if and only if it is a Cauchy se-83

quence. Consider a series
∑

𝑖∈N 𝑎𝑖 of complex numbers.
2 e sequence of partial sums for this84

series is the sequence 𝑠𝑛 =
∑𝑛

𝑖=0 𝑎𝑖 , 𝑛 ∈ N. We say that the series converges if the sequence85

𝑠0, 𝑠1, 𝑠2, . . . converges. Now suppose that the series
∑

𝑖∈N |𝑎𝑖 | of real numbers converges. (We86

say that
∑

𝑖∈N 𝑎𝑖 is absolutely convergent if this happens.) Let 𝜖 > 0; then there exists𝑁 such that87

for every 𝑛 ≥ 𝑚 > 𝑁 ,
∑𝑛

𝑖=𝑚 |𝑎𝑖 | < 𝜖. erefore |𝑠𝑛 − 𝑠𝑚 | < 𝜖, i.e., the sequence (𝑠𝑛) is Cauchy.88

Hence
∑

𝑖∈N 𝑎𝑖 is convergent. We have now shown that every absolutely convergent series is89

convergent.90

1.3.Notation. Hereafter, whenwewrite a complex number 𝑐 = 𝑎 +𝑏𝚤, it should be understood91

that 𝑎 = <(𝑐) and 𝑏 = =(𝑐). Similarly, when we write 𝑓 = 𝑢 + 𝑣𝚤 for a C-valued function 𝑓 ,92

𝑢 = <(𝑓 ) and𝑦 = =(𝑓 ). �93

1.4.Notation. For𝑅 ∈ R+∪{+∞} and𝑐 ∈ C,wedenoteby𝐵𝑐,𝑅 theopendisc {𝑧 ∈ C : |𝑧−𝑐 | < 𝑅}94

and by 𝐵𝑐,𝑅, its closure inC.95

Exercises.96

1.1 Show that every connected open subset of R𝑛 is path-connected. e “topologist’s sine97

curve”, i.e., the closure of98 {(
𝑥, sin

1
𝑥

)
| 𝑥 ∈ (0, 1)

}
insideR2 is connected but not path-connected. (It is not open inR2).99

1.2 Show that for every positive integer 𝑛, R𝑛 with the usual metric is a complete metric100

space.101

1.3 (Polar coordinates). For a nonzero 𝑐 ∈ C, there exist unique 𝑟 ∈ R+ and non-unique102

𝜃 ∈ R so that 𝑐 = 𝑟 (cos𝜃 + 𝚤 sin𝜃 ). (We still do not know what 𝜋 is, or that 𝑒𝚤𝜃 =103

(cos𝜃 + 𝚤 sin𝜃 ).) We refer to 𝜃 as an argument of 𝑐.104

1.4 We think of 𝑧 as the ‘coordinate’ forC; is is related to the cartesian coordinates (𝑥,𝑦)105

of R2 by 𝑥 = <(𝑧) and 𝑦 = =(𝑧). We can also define another coordinate 𝑧, with the106

property that 𝑧 = 𝑎 + 𝑏𝚤 (𝑎, 𝑏 ∈ R) is the same as the point given by 𝑧 = 𝑎 − 𝑏𝚤. Let 𝑛 be a107

positive integer; express the equation 𝑧𝑛 = 𝑧𝑛 in polar coordinates and solve.108

1.5 Prove the ratio test: Let
∑

𝑖∈N 𝑎𝑖 be a series of non-zero real numbers. If109

𝐿 := lim
𝑖→∞

����𝑎𝑖+1𝑎𝑖

����
exists, then the series converges if 𝐿 < 1 and diverges if 𝐿 > 1.110

1.6 Prove the root test: Let
∑

𝑖∈N 𝑎𝑖 be a series of real numbers. Let111

𝐿 := lim sup
𝑛→∞

|𝑎𝑛 |
1
𝑛 .

en the series converges if 𝐿 < 1 and diverges if 𝐿 > 1.112

1.7 Consider the series
∑
𝑎𝑛 with113

𝑎𝑛 =


1, 𝑛 = 0,
𝑎𝑛−1
2 , 𝑛 odd,

𝑎𝑛−1
8 , 𝑛 ≥ 2 even.

2ByN, we mean {0, 1, 2, . . .}.
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Show that the ratio test is inconclusive,while the root test concludes that the series con-114

verges.115

Lecture 2. Differentiability116

2.1.Definition. Let 𝑐 ∈ C and 𝑓 a (complex-valued) function defined in an open disc around 𝑐.117

Say that 𝑓 is (complex-)differentiable at 𝑐 if118

lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

exists. If this is the case, we call this limit the derivative of 𝑓 at 𝑐, and denote it by 𝑓 ′(𝑐).119

2.2.Remark. Wewill not explicitly say “complex-differentiable”, hereafter, forC-valued func-120

tions from subsets of C. When we refer to such a function as being “differentiable”, it should121

be understood as “complex-differentiable”.122

By a constant function we mean a function of the form C −→ C, 𝑧 ↦→ 𝑐 for some 𝑐 ∈ C. It123

is immediate that constant functions are differentiable. e identity function on C (i.e., the124

map 𝑧 ↦→ 𝑧) is differentiable. We could also consider the restrictions of these functions to125

some open 𝑈 ⊆ C. Before we construct more examples, we need some to see some rules of126

differentiation.127

2.3. Remark (Rules of differentiation). Let 𝑐 ∈ C, 𝑓 and 𝑔 functions defined on a neighbour-128

hood 3 of 𝑐 and differentiable at 𝑐,ℎ a function defined on a neighbourhood of 𝑓 (𝑐) and differ-129

entiable at 𝑓 (𝑐), and 𝛼 ∈ C. en130

(1) (𝑓 + 𝛼𝑔)′(𝑐) = 𝑓 ′(𝑐) + 𝛼𝑔′(𝑐).131

(2) (𝑓 𝑔)′(𝑐) = 𝑓 ′(𝑐)𝑔(𝑐) + 𝑓 (𝑐)𝑔′(𝑐).132

(3) (ℎ ◦ 𝑓 )′(𝑐) = ℎ′(𝑓 (𝑐)) 𝑓 ′(𝑐).133

(4)
(
1
𝑓

)′
(𝑐) = − 𝑓 ′(𝑐)

𝑓 (𝑐)2 if 𝑓 (𝑐1) ≠ 0 for every 𝑐1 in a neighbourhood of 𝑐.134

2.4.Example. Wecannowconstruct twomoreexamplesofdifferentiable functions. Let𝑝 (𝑋 ), 𝑞(𝑋 ) ∈135

C[𝑋 ] with 𝑞(𝑋 ) ≠ 0.e function136

C −→ C, 𝑧 ↦→ 𝑝 (𝑧)

(i.e., the polynomial 𝑝 evaluated at 𝑧) is differentiable at all points in C. Such functions are137

called polynomial functions. Let𝑈 = {𝑧 ∈ C | 𝑞(𝑧) ≠ 0}. Since the set of zeros of𝑞(𝑋 ) is finite,138

𝑈 is open. e function139

𝑈 −→ C, 𝑧 ↦→ 𝑝 (𝑧)
𝑞(𝑧)

is differentiable at every point in𝑈 . ese are called rational functions.140

2.5.Remark. Let 𝑐 ∈ C and 𝑓 a (complex-valued) function defined in an open disc around 𝑐. If141

𝑓 is differentiable at 𝑐, then it is continuous at 𝑐. To see this, note that142

𝑓 ′(𝑐) · 0 = lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

· lim
ℎ→0

ℎ = lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐).

3Let𝑋 be a topological space and 𝑥 ∈ 𝑋 . A neighbourhood of 𝑥 in𝑋 is a subset𝑉 of𝑋 such that there exists an
open subset𝑈 of𝑋 such that 𝑥 ∈ 𝑈 ⊆ 𝑉 .
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2.6. Example. Let 𝑓 be a real-valued function defined in an open disc around 𝑐 ∈ C. Suppose143

that 𝑓 is differentiable at 𝑐. en, takingℎ to be real, we see that144

𝑓 ′(𝑐) = lim
ℎ→0

𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

is real. On the other hand, takingℎ = 𝚤𝑡 to be purely imaginary, we get145

𝑓 ′(𝑐) = lim
𝑡→0

𝑓 (𝑐 + 𝚤𝑡) − 𝑓 (𝑐)
𝚤𝑡

is purely imaginary. Hence 𝑓 ′(𝑐) = 0. We will see this in a general context later. �146

2.7.Definition. Let𝑈 ⊆ C be a domain, and 𝑓 : 𝑈 −→ C. Say that 𝑓 is holomorphic on𝑈 if it is147

(complex-)differentiable at every point in𝑈 . A function 𝑓 : C −→ C that is holomorphic on C148

is called entire.149

2.8.eorem. Let𝑈 be a domain, 𝑓 : 𝑈 −→ C and 𝑐 = 𝑎 + 𝑏𝚤 ∈ 𝑈 . Write 𝑓 as𝑢 (𝑥,𝑦) + 𝑣 (𝑥,𝑦)𝚤.150

en 𝑓 is complex-differentiable at 𝑐 , if and only if𝑢 and 𝑣 are differentiable at (𝑎, 𝑏) (as functions from151

R2 −→ R) and their partial derivatives satisfy theCauchy-Riemann equations152

(2.9) 𝑢𝑥 (𝑎, 𝑏) = 𝑣𝑦 (𝑎, 𝑏) and 𝑢𝑦 (𝑎, 𝑏) = −𝑣𝑥 (𝑎, 𝑏).
Further, when this happens, 𝑓 ′(𝑐) = 𝑢𝑥 (𝑎, 𝑏) + 𝚤𝑣𝑥 (𝑎, 𝑏) = 𝑣𝑦 (𝑎, 𝑏) − 𝚤𝑢𝑦 (𝑎, 𝑏).153

(Here𝑢𝑥 (𝑎, 𝑏) is the partial derivative 𝜕𝑢
𝜕𝑥
(𝑎, 𝑏), etc.)154

Proof. Writeℎ = Δ𝑥 + 𝚤Δ𝑦 and 𝑓 (𝑐 +ℎ) − 𝑓 (𝑐) = Δ𝑢 + 𝚤Δ𝑣. Assume that 𝑓 is differentiable at 𝑐.155

Write 𝑓 ′(𝑐) = 𝑝 + 𝚤𝑞; then156

Δ𝑢 + 𝚤Δ𝑣 = (𝑝 + 𝚤𝑞) (Δ𝑥 + 𝚤Δ𝑦) + 𝑟 (Δ𝑥 + 𝚤Δ𝑦),
where 𝑟 (ℎ) is a complex-valued function defined in a neighbourhood of 0 ∈ C, but possibly
not at 0, such that lim

ℎ→0

𝑟 (ℎ)
ℎ

= 0. Write 𝑟 (𝑧) = 𝑟1(𝑧) + 𝚤𝑟2(𝑧). us

Δ𝑢 = 𝑝Δ𝑥 − 𝑞Δ𝑦 + 𝑟1(ℎ);
Δ𝑣 = 𝑞Δ𝑥 + 𝑝Δ𝑦 + 𝑟2(ℎ).

Let𝜖 > 0.en there exists𝛿 > 0 such that for eachℎ ∈ 𝐵0,𝛿r{0}, | 𝑟 (ℎ)ℎ
| < 𝜖 ; since𝑟1 = <(𝑟 )157

and 𝑟2 = =(𝑟 ), | 𝑟1 (ℎ)
ℎ

| < 𝜖 and | 𝑟2 (ℎ)
ℎ

| < 𝜖. erefore lim
ℎ→0

𝑟1 (ℎ)
|ℎ | = 0 and lim

ℎ→0

𝑟2 (ℎ)
|ℎ | = 0. Hence 𝑢158

and 𝑣 are differentiable at (𝑎, 𝑏) and (2.9) are satisfied.159

Conversely, assume that𝑢 and 𝑣 are differentiable at (𝑎, 𝑏) and that (2.9) are satisfied. Write
𝑝 = 𝑢𝑥 (𝑎, 𝑏) and 𝑞 = 𝑣𝑥 (𝑎, 𝑏). en

Δ𝑢 = 𝑝Δ𝑥 − 𝑞Δ𝑦 + 𝑟1(ℎ);
Δ𝑣 = 𝑞Δ𝑥 + 𝑝Δ𝑦 + 𝑟2(ℎ),

where lim
ℎ→0

𝑟1 (ℎ)
|ℎ | = 0 and lim

ℎ→0

𝑟2 (ℎ)
|ℎ | = 0. Write 𝑟 (𝑧) = 𝑟1(𝑧) + 𝚤𝑟2(𝑧). en 𝑓 (𝑐 + ℎ) − 𝑓 (𝑐) =160

(𝑝 + 𝚤𝑞) (Δ𝑥 + 𝚤Δ𝑦) + 𝑟 (𝑧). Note that lim
ℎ→0

𝑟 (ℎ)
ℎ

= 0, by the triangle inequality. Hence 𝑓 ′(𝑐) exists161

and equals 𝑝 + 𝚤𝑞. �162

Satisfying the Cauchy-Riemann equations alone is not a sufficient condition, in general, for163

𝑓 to be differentiable at a point; see the exercises.164
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2.10. Remark. Write 𝑓𝑥 = 𝑢𝑥 + 𝑣𝑥𝚤 and 𝑓𝑦 = 𝑢𝑦 + 𝑣𝑦𝚤 (wherever the partial derivatives on the165

right are defined). e Cauchy-Riemann equations can be rephrased in amore concise way, as166

𝑓𝑥 = −𝚤 𝑓𝑦. Another description is given in the exercises.167

Exercises.168

2.1 Prove the rules of differentiation mentioned in class.169

2.2 Let170

𝑓 (𝑧) =
{
𝑧5 |𝑧 |−4, if 𝑧 ≠ 0;
0, otherwise.

Write 𝑧 = 𝑥 + 𝑦𝚤 and determine<(𝑓 ) and=(𝑓 ) as functions of the real variables 𝑥 and171

𝑦. Show that these satisfy the Cauchy-Riemann equations at 𝑧 = 0 ∈ C. Show that the172

limit173

lim
ℎ→0

𝑓 (ℎ)
ℎ

does not exist by considering first ℎ = 𝑟 and then ℎ = (1 + 𝚤)𝑟 , with 𝑟 ∈ R. Hence 𝑓 is174

not differentiable.175

2.3 Define

𝑓𝑧 =
1
2
(𝑓𝑥 − 𝚤 𝑓𝑦), and

𝑓𝑧 =
1
2
(𝑓𝑥 + 𝚤 𝑓𝑦)

wherever the RHS is defined.176

(1) Treating 𝑧 and 𝑧 as independent coordinates, show that this definition agrees with177

the formula onewouldget fromapplying the chain rule for the substitution𝑥 = 𝑧+𝑧
2 ,178

𝑦 = 𝑧−𝑧
2𝚤 .179

(2) If 𝑓 is differentiable at 𝑐, then 𝑓 ′(𝑐) = 𝑓𝑧 (𝑐); the Cauchy-Riemann equations sim-180

plify to give 𝑓𝑧 (𝑐) = 0.181

2.4 If 𝑓 = 𝑧𝑚𝑧𝑛, with𝑚,𝑛 ≥ 0, then 𝑓𝑧 = 𝑚𝑧𝑚−1𝑧𝑛 and then 𝑓𝑧 = 𝑛𝑧𝑚𝑧𝑛−1. Extend this to182

‘polynomials’ in 𝑧 and 𝑧.183

2.5 Show that the function184

𝑓 (𝑥 + 𝑦𝚤) =
{
𝑥𝑦2 (𝑥+𝑦𝚤)
𝑥2+𝑦4 , if(𝑥,𝑦) ≠ (0, 0)

0, otherwise

is not differentiable at 0.185

2.6 Let 𝑓 (𝑧) be a function defined in a neighbourhood of 𝑐 ∈ 𝐶. Show that 𝑓 (𝑧) is differen-186

tiable at 𝑐 if and only if 𝑓 (𝑧) is differentiable at 𝑐.187

2.7 (Cauchy-Riemann equations in polar coordinates) Write 𝑓 = 𝑢 + 𝚤𝑣, and express 𝑢 and188

𝑣 as (real-valued) functions of 𝑟 and 𝜃 . Since 𝑥 = 𝑟 cos𝜃 and 𝑦 = 𝑟 sin𝜃 , we have 𝑢𝑟 =189

𝑢𝑥 cos𝜃 + 𝑢𝑦 sin𝜃 , 𝑣𝑟 = 𝑣𝑥 cos𝜃 + 𝑣𝑦 sin𝜃 ,𝑢𝜃 = −𝑢𝑥𝑟 sin𝜃 + 𝑢𝑦𝑟 cos𝜃 , 𝑣𝜃 = −𝑣𝑥𝑟 sin𝜃 +190

𝑣𝑦𝑟 cos𝜃 . erefore the Cauchy-Riemann equations are191

𝑟𝑢𝑟 = 𝑣𝜃 ; 𝑟𝑣𝑟 = −𝑢𝜃 .

Lecture 3. Power series192

3.1.Definition. A (formal) power series in the variable 𝑧 is an expression of the form193 ∑︁
𝑛∈N

𝑎𝑛𝑧
𝑛
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where the 𝑎𝑛 are complex numbers. A formal power series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 is said to converge (re-194

spectively, diverge) at 𝑐 ∈ C if the series∑𝑛∈N 𝑎𝑛𝑐
𝑛 of complex numbers converges (respectively,195

diverges). For a𝑈 ⊆ C, a power series is said to converge on𝑈 if it converges at𝑐 for every𝑐 ∈ 𝑈 .196

Wewill often drop the word ‘formal’ while talking about power series.197

3.2.Definition. e radius of convergence of the series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 is198 (

lim sup
𝑛→∞

|𝑎𝑛 |
1
𝑛

)−1
.

(Here, we mean that the radius of convergence is 0 (respectively +∞) if the lim sup is +∞ (re-199

spectively, 0).) A series is said to be convergent if its radius of convergence is positive.200

3.3.eorem. Let𝑅 be the radius of convergence of the series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛.201

(1) It converges absolutely in𝐵0,𝑅 ; in particular, it converges in𝐵0,𝑅.202

(2) For every 0 ≤ 𝜌 < 𝑅, the sequence of functions203

𝑐 ↦→
𝑚∑︁
𝑛=0

𝑎𝑛𝑐
𝑛, 𝑚 ∈ N,

converges uniformly in𝐵0,𝜌 .204

(3) For every 𝑐 ∈ C r 𝐵0,𝑅 , the series is unbounded at 𝑐.205

We will often abuse terminology and call a power series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 a function on 𝐵0,𝑅, by206

which wemean the function 𝑐 ↦→ ∑
𝑛∈N 𝑎𝑛𝑐

𝑛 on 𝐵0,𝑅.207

Proof ofeorem. (1): It suffices to prove the assertion about absolute convergence, i.e., that208 ∑︁
𝑛∈N

|𝑎𝑛 | |𝑧 |𝑛

converges whenever |𝑧 | < 𝑅. Without loss of generality, the 𝑎𝑛 are non-negative real numbers;209

we want to show that for 0 ≤ 𝑥 < 𝑅,
∑

𝑛∈N 𝑎𝑛𝑥
𝑛 converges. Let 𝑥 < 𝑦 < 𝑅. ere exists 𝑁 ∈ N210

such that 𝑎
1
𝑛
𝑛 < 1

𝑦
for every 𝑛 ≥ 𝑁 ; hence 𝑎𝑛𝑥𝑛 < (𝑥/𝑦)𝑛 for every 𝑛 ≥ 𝑁 . Hence

∑
𝑛∈N 𝑎𝑛𝑥

𝑛
211

converges.212

(2): Let 𝜌 < 𝜎 < 𝑅. en, as earlier, |𝑎𝑛𝑧𝑛 | ≤ (𝜌/𝜎)𝑛 for all sufficiently large𝑛. Write 𝑠𝑚 (𝑧) =213 ∑𝑚
𝑛=0 𝑎𝑛𝑧

𝑛. Let 𝜖 > 0. en there exists 𝑁 such that for every𝑚 > 𝑘 ≥ 𝑁 , |𝑠𝑚 (𝑧) − 𝑠𝑘 (𝑧) | =214

|∑𝑚
𝑛=𝑘+1 𝑎𝑛𝑧

𝑛 | ≤ ∑𝑚
𝑛=𝑘+1 |𝑎𝑛𝑧𝑛 | ≤

∑𝑚
𝑛=𝑘+1(𝜌/𝜎)𝑛 < 𝜖, since the series

∑
𝑛∈N(𝜌/𝜎)𝑛 converges.215

Note that by (1),
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 converges in 𝐵0,𝑅 to give a function 𝑓 (𝑧) on 𝐵0,𝑅. By taking𝑚 → ∞216

(keeping 𝑘 fixed), we see that |𝑓 (𝑧) − 𝑠𝑘 (𝑧) | < 𝜖, i.e.,
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 converges uniformly on 𝐵0,𝜌 .217

(3): Let |𝑐 | > 𝑦 > 𝑅. en there are arbitrarily large 𝑛 such that 𝑎
1
𝑛
𝑛 > 1

𝑦
. Hence218

lim
𝑛−→∞

|𝑎𝑛𝑐𝑛 | ≠ 0,

so the series does not converge. �219

3.4. Remark. e radius of convergence of the complex power series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 and that of220

the real power series
∑

𝑛∈N |𝑎𝑛 |𝑥𝑛 are the same. Hence the tests for determining the radius of221

convergenceof real power series canbeused todetermine the radiusof convergenceof complex222

power series also.223

3.5. Example. e radius of convergence of
∑∞

𝑖=1
𝑧𝑛

𝑛
is 1. e series does not coverge at 𝑧 = 1,224

but converges at 𝑧 = −1.225
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3.6. Proposition. Let
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 be a convergent power series with radius of convergence 𝑅. en it is226

holomorphic on 𝐵0,𝑅 , with derivative
∑

𝑛∈N 𝑛𝑎𝑛𝑧
𝑛−1. Further, the radius of convergence of the derivative227

is𝑅.228

Proof. Wewill first prove that the radius of convergence of the series
∑

𝑛∈N 𝑛𝑎𝑛𝑧
𝑛−1 is𝑅. Indeed,229

lim sup
𝑛

(𝑛 |𝑎𝑛 |)
1
𝑛 = lim

𝑛
𝑛

1
𝑛 lim sup

𝑛

|𝑎𝑛 |
1
𝑛 = lim sup

𝑛

|𝑎𝑛 |
1
𝑛 = 1/𝑅.

Write 𝑓 (𝑧) and 𝑓1(𝑧) respectively for the functions
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 and

∑
𝑛∈N 𝑛𝑎𝑛𝑧

𝑛−1 on 𝐵0,𝑅. We230

want to show that 𝑓 ′(𝑐) = 𝑓1(𝑐) for every 𝑐 ∈ 𝐵0,𝑅. Let 𝑐 ∈ 𝐵0,𝑅. We will show that231

lim
ℎ→0

���� 𝑓 (𝑐 + ℎ) − 𝑓 (𝑐)
ℎ

− 𝑓1(𝑐)
���� = 0.

Write 𝑠𝑛 (𝑧) =
∑𝑛

𝑖=0 𝑎𝑖𝑧
𝑖 . en 𝑠′𝑛 (𝑧) =

∑𝑛
𝑖=1 𝑖𝑎𝑖𝑧

𝑖−1. Write 𝑅𝑛 (𝑧) = 𝑓 (𝑧) − 𝑠𝑛 (𝑧) on 𝐵0,𝑅. en for232

every sufficiently small 𝑟 and every 𝑧 ∈ 𝐵𝑐,𝑟 ,233

𝑓 (𝑧) − 𝑓 (𝑐)
𝑧 − 𝑐

− 𝑓1(𝑐) =
(
𝑠𝑛 (𝑧) − 𝑠𝑛 (𝑐)

𝑧 − 𝑐
− 𝑠′𝑛 (𝑐)

)
+

(
𝑠′𝑛 (𝑐) − 𝑓1(𝑐)

)
+

(
𝑅𝑛 (𝑧) − 𝑅𝑛 (𝑐)

𝑧 − 𝑐

)
.

Choose 𝑟 above such that |𝑐 | + 𝑟 < 𝜌 < 𝑅. Let 𝜖 > 0.234

Since235

𝑅𝑛 (𝑧) − 𝑅𝑛 (𝑐)
𝑧 − 𝑐

=

∑∞
𝑖=𝑛+1 𝑎𝑖𝑧

𝑖 − ∑∞
𝑖=𝑛+1 𝑎𝑖𝑐

𝑖

𝑧 − 𝑐
=

∑∞
𝑖=𝑛+1 𝑎𝑖 (𝑧𝑖 − 𝑐𝑖)

𝑧 − 𝑐
=

∞∑︁
𝑖=𝑛+1

𝑎𝑖

𝑖−1∑︁
𝑗=0

𝑧 𝑗𝑐𝑖−1− 𝑗 ,

we see that236 ����𝑅𝑛 (𝑧) − 𝑅𝑛 (𝑐)
𝑧 − 𝑐

���� ≤ ∞∑︁
𝑖=𝑛+1

𝑖 |𝑎𝑖 |𝜌𝑖−1.

We already observed that
∑∞

𝑚=1𝑚𝑎𝑚𝑧
𝑚−1 converges in 𝐵0,𝑅. e same argument shows that237

there exists 𝑛0 such that for each 𝑛 > 𝑛0,238 ����𝑅𝑛 (𝑧) − 𝑅𝑛 (𝑐)
𝑧 − 𝑐

���� < 𝜖

3
.

Similarly, there exists 𝑛1 such that for each 𝑛 > 𝑛1,239 ��𝑠′𝑛 (𝑐) − 𝑓1(𝑐)
�� < 𝜖

3
.

Fix 𝑛 ≥ max{𝑛0, 𝑛1}. ere exists 𝛿 > 0 such that for all 𝑧 ∈ 𝐵𝑐,𝛿240 ����𝑠𝑛 (𝑧) − 𝑠𝑛 (𝑐)
𝑧 − 𝑐

− 𝑠′𝑛 (𝑐)
���� < 𝜖

3
.

Hence for all 𝑧 ∈ 𝐵𝑐,𝛿241 ���� 𝑓 (𝑧) − 𝑓 (𝑐)
𝑧 − 𝑐

− 𝑓1(𝑐)
���� < 𝜖.

erefore 𝑓 ′ = 𝑓1 on 𝐵0,𝑅. �242

3.7.Corollary. With notation as in the proposition, write 𝑓 (𝑧) for the function∑
𝑛∈N 𝑎𝑛𝑧

𝑛 on𝐵0,𝑅. en243

for every𝑘 ≥ 1, the derivative 𝑓 (𝑘) (𝑧) of 𝑓 (𝑧) exists on𝐵0,𝑅. Moreover, for every𝑘 ∈ N,𝑘!𝑎𝑘 = 𝑓 (𝑘) (0).244

Proof. Immediate from the proposition. �245

3.8. Proposition. Let
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 be a convergent power series such that𝑎𝑚 ≠ 0 for some𝑚. en there246

exists𝑅 > 0 such that for every 𝑐 ∈ 𝐵0,𝑅 with 𝑐 ≠ 0,
∑

𝑛≥1 𝑎𝑛𝑐
𝑛 ≠ 0.247
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Proof. Let𝑚 be the smallest integer such that𝑎𝑚 ≠ 0.Write the given series as𝑧𝑚
∑

𝑛∈N 𝑎𝑛+𝑚𝑧
𝑛.248

ere exists 𝑅 > 0 such that
∑

𝑛∈N 𝑎𝑛+𝑚𝑐
𝑛 ≠ 0 for every 𝑐 ∈ 𝐵0,𝑅, by continuity. Now note that249

for every 𝑐 ∈ 𝐵0,𝑅, 𝑐𝑚 = 0 only if 𝑐 = 0. �250

Exercises.251

3.1 Read the statement of theWeierstrass𝑀-test in Ahlfors, Chapter 2, Section 2.3 and un-252

derstand its proof.253

3.2 All the exercises in Ahlfors, Chapter 2, Section 2.4 (‘Power series’)254

3.3 Show that the radius of convergence of
∑

𝑖∈N 𝑎𝑖𝑧
𝑖 is255

sup{𝑟 ∈ R | 𝑟 ≥ 0,
∑︁
𝑖∈N

|𝑎𝑖 |𝑟 𝑖 converges}.

3.4 Let
∑

𝑖∈N 𝑎𝑖 and
∑

𝑖∈N 𝑏𝑖 be convergent series of complex numbers, and 𝛼, 𝛽 ∈ C. Show256

that the series
∑

𝑖∈N(𝛼𝑎𝑖 + 𝛽𝑏𝑖) is convergent and its value is 𝛼
∑

𝑖∈N 𝑎𝑖 + 𝛽
∑

𝑖∈N 𝑏𝑖 .257

3.5 Prove the properties of limits superior and inferior listed inRodŕıguez,Kra andGilman,258

Section 3.1.1.259

3.6 Show that lim𝑛→∞ 𝑛
1
𝑛 = 1 and that for every 𝑘, lim𝑛→∞

(𝑛
𝑘

) 1
𝑛 = 1260

3.7 e setC[[𝑧]] of all formal power series∑𝑛∈N 𝑎𝑛𝑧
𝑛 form a commutative ring with

addition :
∑︁
𝑛∈N

𝑎𝑛𝑧
𝑛 +

∑︁
𝑛∈N

𝑏𝑛𝑧
𝑛 =

∑︁
𝑛∈N

(𝑎𝑛 + 𝑏𝑛)𝑧𝑛;

multiplication :
∑︁
𝑛∈N

𝑎𝑛𝑧
𝑛 ·

∑︁
𝑛∈N

𝑏𝑛𝑧
𝑛 =

∑︁
𝑛∈N

𝑛∑︁
𝑘=0

(𝑎𝑘𝑏𝑛−𝑘)𝑧𝑛 .

It containsC as a subring identified with the ‘constant’ power series: 𝑐 ↔ 𝑐 + 0𝑧 + 0𝑧2 +261

· · · . If 𝑎0 ≠ 0, then
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 has an inverse inC[[𝑧]].262

3.8 e subset C{𝑧} of C[[𝑧]] consisting of all the convergent power series is a subring. If263 ∑
𝑛∈N 𝑎𝑛𝑧

𝑛 ∈ C{𝑧} and 𝑎0 ≠ 0, then its inverse in C[[𝑧]] in fact belongs to C{𝑧}. (Hint:264 ∑
𝑛∈N 𝑎𝑛𝑧

𝑛 converges to something non-zero in a neighbourhood of 0.)265

3.9 (Some ring-theoretic properties ofC[[𝑧]] and ofC{𝑧}, not relevant for this course.) e266

map C[[𝑧]] −→ C,
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 ↦→ 𝑎0 is a surjective ring homomorphism; its kernel is267

generated by 𝑧; hence the ideal𝔪 generated by 𝑧 is a maximal ideal. Every element of268

C[[𝑧]] r 𝔪 is invertible in C[[𝑧]], so𝔪 is the unique maximal ideal of C[[𝑧]]. If 𝐼 is269

a proper ideal of C[[𝑧]], then 𝐼 = 𝔪𝑡 (i.e., the ideal generated by 𝑧𝑡 ) for some 𝑡 ≥ 1.270

Similar statements forC{𝑧} also.271

Lecture 4. Analytic functions272

4.1.Definition. Let𝑈 be a domain. We say that 𝑓 : 𝑈 −→ C is (complex-)analytic if for every 𝑐 ∈273

𝑈 , there exist 𝛿 > 0 and a convergent power series
∑

𝑖∈N 𝑎𝑖𝑧
𝑖 such that𝐵𝑐,𝛿 ⊆ 𝑈 ,

∑
𝑖∈N 𝑎𝑖 (𝑧 −𝑐)𝑖274

converges on 𝐵𝑐,𝛿 and 𝑓 (𝜁 ) =
∑

𝑖∈N 𝑎𝑖 (𝜁 − 𝑐)𝑖 for every 𝜁 ∈ 𝐵𝑐,𝛿 .275

4.2.Remark. e coefficients𝑎𝑖 in the expansion of 𝑓 as a power series centred at 𝑐 ∈ 𝑈 might276

depend on 𝑐. It might not be possible to choose 𝑎𝑖 that will work at every 𝑐 ∈ 𝑈 . is is not277

surprising. We have seen that for any power series centred at 𝑐 ∈ 𝐶, the set of points at which278

it converges contains an open disc 𝐵𝑐,𝑅 and is contained inside the closed disc 𝐵𝑐,𝑅. However𝑈279

might not be of this shape.Wewill see one such𝑈 (occurring in a naturalway)whenwediscuss280

branches of the logarithm, later.281
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4.3. Remark. Let𝑈 be a domain and 𝑓 : 𝑈 −→ C an analytic function. en for every 𝑘 ≥ 1,282

𝑓 (𝑘) (𝑧) is an analytic function on𝑈 . Moreover, for every 𝑐 ∈ 𝑈 , there exists a neighbourhood283

on which284

𝑓 (𝑧) =
∑︁
𝑛∈N

𝑓 (𝑛) (𝑐) (𝑧 − 𝑐)𝑛 .

4.4. Remark. Every analytic function is holomorphic. After proving a version of the Cauchy285

integral formula for a disc (eorem 14.1), we will show that every holomorphic function is286

analytic (Corollary 15.5). is is not the same situation for functions from R to R. For every287

positive integer 𝑘, there exist 𝑓 : R −→ R such that the 𝑘th order derivative 𝑓 (𝑘) exists, but288

is not continuous, so in particular 𝑓 (𝑘+1) does not exist. ere are functions 𝑓 : R −→ R such289

that 𝑓 (𝑘) exists for every positive integer 𝑘 (such functions are called smooth functions) but 𝑓 is290

smooth but not real-analytic, i.e., 𝑓 does not have a power-series expansion on its domain.291

4.5. Proposition (Lang, Chapter II, §4, eorem 4.1). Let
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 be a convergent power series292

with radius of convergence𝑅. en it is analytic on𝐵0,𝑅.293

Proof. Write 𝑓 (𝑧) = ∑
𝑛∈N 𝑎𝑛𝑧

𝑛 on𝐵0,𝑅. Let𝑐 ∈ 𝐵0,𝑅. Wewant to show that 𝑓 can be represented
by a convergent power series centred at 𝑐 in a neighbourhood of 𝑐. To see this, choose 𝜖 > 0
such that 𝐵𝑐,𝜖 ⊆ 𝐵0,𝑅. On 𝐵𝑐,𝜖 , we can write

𝑓 (𝑧) =
∞∑︁
𝑛=0

𝑎𝑛 (𝑧 − 𝑐 + 𝑐)𝑛

=

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
𝑎𝑛𝑐

𝑛−𝑘 (𝑧 − 𝑐)𝑘 .

Claim:294

𝑔(𝑧) :=
∞∑︁
𝑘=0

( ∞∑︁
𝑛=𝑘

(
𝑛

𝑘

)
𝑎𝑛𝑐

𝑛−𝑘
)
(𝑧 − 𝑐)𝑘 .

converges and equals 𝑓 (𝑧) in 𝐵𝑐,𝜖 .295

To prove the claim, let 𝑧 ∈ 𝐵𝑐,𝜖 . Note that |𝑐 | + |𝑧 − 𝑐 | < 𝑅. Hence the series296 ∑︁
𝑛

|𝑎𝑛 | ( |𝑐 | + |𝑧 − 𝑐 |)𝑛 =

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
|𝑎𝑛 | |𝑐 |𝑛−𝑘 |𝑧 − 𝑐 |𝑘 .

converges. (Recall that inside the open disc of convergence, we have absolute convergence.)297

Hence we can change the order of summation:298

∞∑︁
𝑛=0

𝑛∑︁
𝑘=0

(
𝑛

𝑘

)
|𝑎𝑛 | |𝑐 |𝑛−𝑘 |𝑧 − 𝑐 |𝑘 =

∞∑︁
𝑘=0

∞∑︁
𝑛=𝑘

(
𝑛

𝑘

)
|𝑎𝑛 | |𝑐 |𝑛−𝑘 |𝑧 − 𝑐 |𝑘 .

erefore𝑔(𝑧) converges absolutely in𝐵𝑐,𝜖 . e same argument also shows that𝑔(𝑧) = 𝑓 (𝑧) on299

𝐵𝑐,𝜖 . �300

4.6. Proposition. Let𝑈 be a domain and 𝑓 an analytic function on𝑈 that is not identically zero. en301

the zeros of 𝑓 are isolated, i.e. for every 𝑐 ∈ 𝑈 with 𝑓 (𝑐) = 0, there exists 𝜖 > 0 such that 𝐵𝑐,𝜖 ⊆ 𝑈 and302

𝑓 (𝜁 ) ≠ 0 for every 𝜁 ∈ 𝐵𝑐,𝜖 r {𝑐}.303

Proof. Let 𝐴 = {𝑐 ∈ 𝑈 | 𝑓 (𝑐) ≠ 0}. Since 𝑓 is continuous and not identically zero,𝐴 is open304

and non-empty. We may assume that 𝐴 ≠ 𝑈 . Write 𝐴 for the closure of 𝐴 in𝑈 . We want to305

show that the points in𝑈 r𝐴 are isolated. We will show the following:306
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(1) For each 𝑐 ∈ 𝐴 r𝐴, there exists 𝜖 > 0 such that 𝐵𝑐,𝜖 r {𝑐} ⊆ 𝐴.307

(2) 𝐴 = 𝑈 .308

Let 𝑐 ∈ 𝐴 r 𝐴. Let
∑

𝑛∈N 𝑎𝑛𝑧
𝑛 be a convergent power series and 𝜖 > 0 such that 𝑓 (𝑧) =309 ∑

𝑛∈N 𝑎𝑛 (𝑧 − 𝑐)𝑛 on 𝐵𝑐,𝜖 ⊆ 𝑈 . Since 𝐵𝑐,𝜖 ∩𝐴 ≠ ∅, it follows that 𝑓 is not identically zero on 𝐵𝑐,𝜖 .310

erefore there exists𝑚 such that 𝑎𝑚 ≠ 0. By Proposition 3.8, we may assume that 𝑓 (𝜁 ) ≠ 0311

for every 𝜁 ∈ 𝐵𝑐,𝜖 r {𝑐}.312

We now show that𝐴 = 𝑈 . By way of contradiction, assume that𝐴 ≠ 𝑈 . We will show that313

𝑈 r𝐴 is closed. Let𝑐 ∈ 𝑈 be a limit point of𝑈 r𝐴. Now, if 𝑐 ∈ 𝐴r𝐴, then by above, there exists314

𝜖 > 0 such that 𝐵𝑐,𝜖 r {𝑐} ⊆ 𝐴. If 𝑐 ∈ 𝐴, then there exists 𝜖 > 0 such that 𝐵𝑐,𝜖 ⊆ 𝐴. In both315

cases, we cannot have a sequence in𝑈 r 𝐴 converging to 𝑐. Hence 𝑐 ∈ 𝑈 r 𝐴, so it is closed.316

is now leads to a contradiction, since𝑈 is connected and both𝐴 and𝑈 r 𝐴 are non-empty317

and closed. erefore𝐴 = 𝑈 . �318

Exercises.319

4.1 Let𝑈 be a domain, 𝑐0 ∈ C and 𝜏 : 𝑈 −→ C be themap 𝑐 ↦→ 𝑐 + 𝑐0. en 𝜏 is continuous320

and injective; the inverse of 𝜏 on Im(𝜏) (which exists since 𝜏 is injective) is continuous.321

Im(𝜏) is a domain. If 𝑓 is holomorphic (respectively, analytic) on𝑈 , then 𝑓 𝜏−1 is holo-322

morphic (respectively, analytic) on Im(𝜏). (Using this,we can ‘translate’many questions323

about the local behaviour of holomorphic or analytic functions at 𝑐 ∈ 𝑈 to that of holo-324

morphic or analytic functions at 0, in an appropriate neighbourhood of 0.)325

4.2 Prove analogous statements when 𝑓 is replaced by the composite 𝑓 ◦ [𝜁 ↦→ 𝑐𝜁 ] where 𝑐326

is a (fixed) non-zero complex number.327

4.3 Let 𝑓 : 𝑈 −→ C be analytic on a domain𝑈 . Show that if 𝑓 (𝑘) (𝑧) = 0 for every 𝑧 ∈ 𝑈 ,328

then 𝑓 is givenby apolynomial of degree atmost𝑘, hence, 𝑓 canbe extended to an entire329

function as follows:330

(1) ere is a nonempty open subset of𝑈 on which 𝑓 is given by a polynomial 𝑝 of de-331

gree at most 𝑘.332

(2) 𝑓 − 𝑝 is zero on a nonempty open subset of𝑈 , so it is zero on𝑈 .333

4.4 Let 𝑓 : 𝑈 −→ C be analytic on a domain 𝑈 , not identically zero. Let 𝐴 = {𝑐 ∈ 𝑈 |334

𝑓 (𝑛) (𝑐) = 0 for every 𝑛 ∈ N}. 𝐴 is closed, since {𝑐 ∈ 𝑈 | 𝑓 (𝑛) (𝑐) = 0} is closed, for335

every 𝑛 ∈ N. 𝐴 is open, since, for every 𝑐 ∈ 𝐴, there is a neighbourhood in𝑈 on which336

𝑓 is identically zero, and, hence, this neighbourhood is a subset of𝐴. us𝐴 = ∅. Now337

let 𝑐 ∈ 𝑈 and 𝑓 (𝑧) = ∑
𝑛∈N 𝑎𝑛 (𝑧 − 𝑐)𝑛 in a neighbourhood of 𝑐. en there exists 𝑘 such338

that 𝑎𝑘 ≠ 0. us there exists a neighbourhood𝑉 of 𝑐 in𝑈 such that 𝑓 (𝑧) ≠ 0 for every339

𝑧 ∈ 𝑉 r {𝑐}.340

4.5 Consider the function 𝑓 (𝑥) = 𝑒−𝑥
−2
in a neighbourhood of 0 in R. Show that 𝑓 (𝑘) exists341

in a neighbourhood of 0 and that 𝑓 (𝑘) (0) = 0 for every 𝑘 ≥ 0. Hence 𝑓 is not real-342

analytic in aneighbourhoodof0.is examplewasdiscoveredbyCauchyandHamilton.343

4.6 (Not relevant for this course.) Let𝑈 be a domain andA(𝑈 ) the set of analytic functions
on𝑈 . It is a commutative ring with

addition : (𝑓 + 𝑔) (𝑧) = 𝑓 (𝑧) + 𝑔(𝑧);
multiplication : (𝑓 𝑔) (𝑧) = 𝑓 (𝑧)𝑔(𝑧).

It contains C as the subring of the constant functions on 𝑈 . It is an integral domain.344

For 𝑐 ∈ 𝑈 , the set𝔪𝑐 := {𝑓 ∈ A(𝑈 ) | 𝑓 (𝑐) = 0} is a maximal ideal ofA(𝑈 ). ere is345

a ring homomorphismA(𝑈 ) −→ C{𝑧 − 𝑐} (the ring of convergent power series in the346

variable 𝑧 − 𝑐) which factors through the localisationA(𝑈 )𝔪𝑐
.347
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Lecture 5. Exponential and logarithmic functions348

By 𝑒𝑧 or exp(𝑧) wemean an analytic function 𝑓 (𝑧) that 𝑓 ′(𝑧) = 𝑓 (𝑧) and 𝑓 (0) = 1. Suppose349

that this has a solution.en in a neighbourhood of 0, it can be written as a convergent power350

series
∑

𝑛∈N 𝑎𝑛𝑧
𝑛. Since 𝑓 ′(𝑧) =

∑
𝑛∈N 𝑛𝑎𝑛𝑧

𝑛−1 and 𝑓 (0) = 𝑎0 = 1, we conclude by induction351

that 𝑎𝑛 = 1
𝑛! . Since352

lim
𝑛→∞

𝑎𝑛+1
𝑎𝑛

= 0

we see that the series
∑

𝑛∈N
𝑧𝑛

𝑛! converges everywhere onC.353

5.1. Proposition. (1) 𝑒𝑧𝑒−𝑧 = 1 for every 𝑧 ∈ C.354

(2) In particular, 𝑒𝑧 ≠ 0 for every 𝑧 ∈ C.355

(3) 𝑒 (𝑧+𝑐) = 𝑒𝑧𝑒𝑐 for every 𝑧, 𝑐 ∈ C.356

Proof. (1) NOTE: A priori 𝑒−𝑧 is not 1
𝑒𝑧
, but just the composite function [𝑧 ↦→ exp(𝑧)] ◦ [𝑧 ↦→357

−𝑧]. Hence 𝑒−𝑧 is analytic on C,4 and, hence, so is 𝑒𝑧𝑒−𝑧. Its derivative is 0, so it is a constant358

function.5 Now note that its value at 0 is 1.359

(2) Follows immediately from (1).360

(3) Fix 𝑐 and consider361

ℎ(𝑧) = 𝑒 (𝑧+𝑐)

𝑒𝑐

as a function of 𝑧. It is analytic onC 6 andℎ′(𝑧) = ℎ(𝑧) andℎ(0) = 1. Henceℎ(𝑧) = 𝑒𝑧. �362

From the exponential function, we can define sin(𝑧) and cos(𝑧):

cos 𝑧 =
𝑒𝚤𝑧 + 𝑒−𝚤𝑧

2

sin 𝑧 =
𝑒𝚤𝑧 − 𝑒−𝚤𝑧

2𝚤

5.2. Proposition. (1) cos 𝑧 = 1 − 𝑧2

2! +
𝑧4

4! − · · · .363

(2) sin 𝑧 = 𝑧 − 𝑧3

3! +
𝑧5

5! − · · · .364

(3) 𝑒𝚤𝑧 = cos 𝑧 + 𝚤 sin 𝑧.365

(4) cos2 𝑧 + sin2 𝑧 = 1.366

(5) cos(−𝑧) = cos 𝑧.367

(6) sin(−𝑧) = − sin 𝑧.368

(7) cos′(𝑧) = − sin 𝑧.369

(8) sin′(𝑧) = cos 𝑧.370

(9) If𝑥 is real, then the new definitions of 𝑒𝑥 , cos𝑥 , sin𝑥 agree with the definitions in the case of real371

numbers.372

(10) 𝑒𝑥+𝚤𝑦 = 𝑒𝑥 (cos𝑦 + 𝚤 sin𝑦). In particular, 𝑒𝚤𝜋 = 1.373

Proof of the above proposition is left as an exercise.374

5.3. Definition. Let 𝑧 ∈ C r {0}. By an argument arg 𝑧 of 𝑧, we mean an real number 𝜃 such375

that 𝑧 = |𝑧 |𝑒𝚤𝜃 . Define the principal argument Arg 𝑧 of 𝑧 to be the argument in (−𝜋, 𝜋].376

4Exercise 4.2
5Exercise 4.3
6Exercise 4.1
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5.4.Definition. For a fixed choice of arg 𝑧, we often write log 𝑧 for log |𝑧 | + 𝚤 arg 𝑧. Define377

Log 𝑧 = log |𝑧 | + 𝚤 Arg 𝑧
onC r (−∞, 0].378

5.5.Remark. Let 𝑧 ∈ C r {0}. If 𝜃1 and 𝜃2 are arguments of 𝑧, then 𝜃1 − 𝜃2 is a multiple of 2𝜋 .379

Note that 𝑒 log 𝑧 = 𝑧.380

5.6. Proposition. Log 𝑧 is holomorphic onC r (−∞, 0] with derivative 1/𝑧.381

Proof. On the given domain, the real and imaginary parts of Log 𝑧, viz., log |𝑧 | and Arg 𝑧 are382

differentiable functions of the reals coordinates 𝑥 and 𝑦. Hence it suffices to check that they383

satisfy theCauchy-Riemannequations. For this,use the version inpolar coordinates:𝑢 = log 𝑟 ,384

𝑣 = 𝜃 . Hence 𝑟𝑢𝑟 = 1 = 𝑣𝜃 and 𝑟𝑣𝑟 = 0 = −𝑢𝜃 .385

Since Log 𝑧 is holomorphic, we can use differentiate 𝑒Log 𝑧 = 𝑧 to get 𝑒Log 𝑧 (Log′ 𝑧) = 1, i.e.,386

(Log′ 𝑧) = 1/𝑧. �387

Let𝑈 be a domain and 𝑓 a continuous function on𝑈 . We say that 𝑓 is a branch of the logarithm388

on𝑈 if 𝑒 𝑓 (𝑧) = 𝑧 for every 𝑧 ∈ 𝑈 . A branch of the logarithm 𝑓 on𝑈 is principal if 𝑓 (𝑧) = Log(𝑧)389

for every 𝑧 ∈ 𝑈 ∩ C r (−∞, 0].390

5.7. Proposition. e power series391
∞∑︁
𝑛=1

(−1)𝑛−1 (𝑧 − 1)
𝑛

𝑛

is the principal branch of the logarithm in𝐵1,1.392

Proof. e given power series has radius of convergence 1, so it defines an analytic function393

𝑓 (𝑧) on 𝐵1,1. Note that 𝑓 ′(𝑧) =
∑

𝑛∈N(−1)𝑛 (𝑧 − 1)𝑛 = 1/𝑧. (Exercise: check last equality.) Let394

𝑔(𝑧) = 𝑒 𝑓 (𝑧). en 𝑔′(𝑧) = 𝑒 𝑓 (𝑧)/𝑧 and 𝑔′′(𝑧) = 0. Hence 𝑔′(𝑧) = 𝛼 a constant.7 Since 𝑔′(1) = 1,395

it follows that 𝑓 (𝑧) is a branch of the logarithm. Since Log 1 = 𝑓 (1), it follows that Log 𝑧 = 𝑓 (𝑧),396

because two branches differ by an integer multiple of 2𝜋𝚤. �397

Exercises.398

5.1 Verify the properties of sin 𝑧 and cos 𝑧 listed in class.399

5.2 Show that for 𝑥 > 0,𝑥 − 𝑥3

6 < sin𝑥 < 𝑥 and that 1− 𝑥2

2 < cos𝑥 < 1− 𝑥2

2 + 𝑥4

24 . (Hint: Use400

the fact that sin𝑥 < 1 and cos𝑥 < 1 and integrate sin and cos alternately.)401

5.3 Since cos 0 = 1 and cos(
√
3) < 0, there is a smallest real number 𝜃 such that cos𝜃 = 0.402

en sin𝜃 = ±1. One can then define 𝜋 := 2𝜃 .403

5.4 Expand 1
𝑧
as a power series around 𝑧 = 1. Find its radius of convergence.404

5.5 Show that Log(𝑧1𝑧2) = Log(𝑧1) + Log(𝑧2) + 𝛿 for an appropriate 𝛿.405

5.6 Let𝑈 be a domain not containing 0 and 𝑓 and 𝑔 branches of the logarithm on𝑈 . Show406

that the functionℎ(𝑧) := (𝑓 (𝑧) −𝑔(𝑧))/(2𝜋𝚤) on𝑈 takes only integer values, by showing407

that 𝑒2𝜋𝚤ℎ(𝑧) = 1. Hence there exists 𝑛 ∈ Z such that ℎ(𝑧) = 𝑛 for every 𝑧. Hence 𝑓 (𝑧) −408

𝑔(𝑧) = 2𝑛𝜋𝚤. Conversely, if 𝑓 (𝑧) − 𝑔(𝑧) = 2𝑛𝜋𝚤 for some 𝑛, and 𝑓 (𝑧) is a branch of the409

logarithm if and only if𝑔(𝑧) is.410

7We cannot prove this with the results we proved so far. It is true that 𝑔(𝑧) is analytic, being the composite of
the two analytic functions 𝑓 (𝑧) and 𝑒𝑧 ; we can then use Exercise 4.3 from the last section. However the proof that
the composite of two analytic functions is analytic is long, and we will not discuss it in class. Instead we use the
fact (easily provable, using the chain rule) that the composite of two holomorphic functions is holomorphic and
Proposition 7.5. e proof of Proposition 7.5 does not refer to anything in this section, so our argument is not
circular.
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5.7 Let𝑈 be a domain not containing 0 and 𝑓 a branch of the logarithm on𝑈 . Show that 𝑓411

is holomorphic on𝑈 as follows. If 𝑐 ∈ 𝑈 r (∞, 0], then there is a neighbourhood 𝐵𝑐,𝑅412

which does not intersect (∞, 0]; on that neighbourhood, 𝑓 (𝑧) differs from Log(𝑧) by a413

holomorphic function, so 𝑓 (𝑧) is holomorphic. If𝑐 ∈ 𝑈∩(∞, 0], then ‘rotate thedomain414

on which Log is holomorphic’ by an appropriate 𝜃 by using the function Log(𝑒𝚤𝜃𝑧) − 𝚤𝜃 .415

Conclude that 𝑓 ′(𝑧) = 1/𝑧.416

Lecture 6. Path integrals, I417

6.1. Definition. Let 𝑈 be a domain. A path (also called an arc) in 𝑈 is a continuous map 𝛾 :418

[𝑎, 𝑏] −→ 𝑈 . Let 𝛾 be a path. Say that 𝛾 is closed if 𝛾 (𝑏) = 𝛾 (𝑎). By −𝛾 , we mean the function419

[𝑎, 𝑏] −→ 𝑈 , 𝑡 ↦→ 𝛾 (𝑎 + 𝑏 − 𝑡), and call it the opposite path of 𝛾 . Say that 𝛾 is differentiable if the420

functions [𝑎, 𝑏] −→ R, 𝑡 ↦→ <(𝛾 (𝑡)) and 𝑡 ↦→ =(𝛾 (𝑡)) are in𝐶1( [𝑎, 𝑏]). For a differentiable421

path𝛾 , write𝛾 ′(𝑡) for (<(𝛾 (𝑡)))′+𝚤 (=(𝛾 (𝑡)))′. Say that𝛾 is piecewise differentiable if there exists422

a partition 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 such that 𝛾 | [𝑡𝑖 ,𝑡𝑖+1] is in𝐶1( [𝑡𝑖, 𝑡𝑖+1]) for every 0 ≤ 𝑖 < 𝑛;423

we also say that the partition 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 is good for𝛾 to denote this fact.424

6.2. Proposition. Between any pair of points in a domain, there exists a piecewise-differentiable path425

connecting them.426

Proof. Let𝑈 be a domain and 𝑐 ∈ 𝑈 . We show that the set427

𝐴 := {𝜁 ∈ 𝑈 | there exists a piecewise-differentiable path from 𝑐 to 𝜁 }
is both open and closed. Let 𝜁 ∈ 𝐴. en there exists 𝑅 > 0 such that 𝐵𝜁 ,𝑅 ⊆ 𝑈 . For every428

𝜁 ′ ∈ 𝐵𝜁 ,𝑅, the radial straight line joining 𝜁 and 𝜁 ′ extends a piecewise-differentiable path from429

𝑐 to 𝜁 ; hence 𝐵𝜁 ,𝑅 ⊆ 𝐴. Hence𝐴 is open. Now let 𝑝 ∈ 𝐴. Let 𝑟 > 0. Let 𝜁 ∈ 𝐵𝑝,𝑟 ∩ 𝐴. en the430

radial straight line joining 𝜁 and 𝑝 extends a piecewise-differentiable path from 𝑐 to 𝜁 ; hence431

𝑝 ∈ 𝐴, so𝐴 is closed.432

Note that 𝑐 ∈ 𝐴, so𝐴 ≠ ∅. Now, since𝑈 is connected, we see that𝐴 = 𝑈 . �433

6.3.Definition. Let 𝑎 < 𝑏 ∈ R and 𝑓 : [𝑎, 𝑏] −→ C a continuous function. Define434 ∫ 𝑏

𝑎

𝑓 (𝑡)d𝑡 =
∫ 𝑏

𝑎

<(𝑓 (𝑡))d𝑡 + 𝚤
∫ 𝑏

𝑎

=(𝑓 (𝑡))d𝑡 .

6.4. Lemma. Let 𝑎 = 𝑠0 < 𝑠1 < · · · < 𝑠𝑚 = 𝑏 and 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 be good435

partitions for a piecewise-differentiable path 𝛾 : [𝑎, 𝑏] −→ 𝑈 . Let 𝑢0, . . . , 𝑢𝑘 be distinct elements of436

{𝑠0, . . . , 𝑠𝑚, 𝑡1, . . . , 𝑡𝑛−1} arranged in the ascending order. en the partition 𝑎 = 𝑢0 < · · · < 𝑢𝑘 = 𝑏 is437

good for𝛾 .438

Proof. We need to show that 𝛾 | [𝑢𝑖 ,𝑢𝑖+1] is in 𝐶1( [𝑢𝑖, 𝑢𝑖+1]). Note that there exists 𝑗 such that439

[𝑢𝑖, 𝑢𝑖+1] ⊆ [𝑠 𝑗 , 𝑠 𝑗+1] or [𝑢𝑖, 𝑢𝑖+1] ⊆ [𝑡 𝑗 , 𝑡 𝑗+1]; this proves the assertion. �440

6.5. Definition. Let 𝑈 be a domain and 𝑓 : 𝑈 −→ C. Let 𝛾 : [𝑎, 𝑏] −→ 𝑈 be a piecewise441

differentiable path, with a good partition 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏. Define442 ∫
𝛾

𝑓 (𝑧)d𝑧 =

𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝛾 (𝑡))𝛾 ′(𝑡)d𝑡 .

is is independent of the choice of the good partition.443

Exercises.444

6.1 Show that the definition of
∫
𝛾
𝑓 (𝑧)d𝑧 (Definition 6.5) does not depend on the choice of445

the partition.446
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6.2 Let 𝛾1 : [𝑎1, 𝑏1] −→ C and 𝛾2 : [𝑎2, 𝑏2] −→ C be paths in C such that 𝛾1(𝑏1) = 𝛾2(𝑎2).447

Define a new path 𝛾2 : [𝑏1, 𝑏2 − 𝑎2 + 𝑏1] −→ C by setting 𝛾2(𝑡) = 𝛾2(𝑡 + 𝑎2 − 𝑏1). Note448

that the images of 𝛾2 and 𝛾2 are the same; this is an example of reparametrization of a449

path, discussed in the next lecture. Define the concatenation of 𝛾1 and 𝛾2 to be the path450

𝛾 : [𝑎1, 𝑏2 − 𝑎2 + 𝑏1] −→ C451

𝑡 ↦→
{
𝛾1(𝑡), 𝑡 ∈ [𝑎1, 𝑏1],
𝛾2(𝑡), 𝑡 ∈ [𝑏1, 𝑏2 − 𝑎2 + 𝑏1] .

Show that if𝛾1 and𝛾2 are piecewise-differentiable paths, then so is𝛾 . is is used in the452

proof of Proposition 6.2 to a piecewise-differentiable path from 𝑐 to 𝜁 ′ (while showing453

that𝐴 is open) and from 𝑐 to 𝑝 (while showing that𝐴 is closed).454

6.3 Let𝑈 be a domain. A piecewise-linear path in𝑈 is a continuous function𝛾 : [𝑎, 𝑏] −→ 𝑈455

such that there exists a partition 0 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏 such that 𝛾 | [𝑡𝑖 ,𝑡𝑖+1] : 𝑡 ↦→456

(𝑡−𝑡𝑖 )𝛾 (𝑡𝑖+1)+(𝑡𝑖+1−𝑡)𝛾 (𝑡𝑖 )
(𝑡𝑖+1−𝑡𝑖 ) . Show that for every pair points in 𝑈 , there is a piecewise-linear457

path joining them.458

Lecture 7. Path integrals, II459

7.1. Definition. Let 𝑈 be a domain and 𝛾 : [𝑎, 𝑏] −→ 𝑈 a path. A reparametrization of 𝛾 is a460

path of the form 𝛾 ◦ 𝜏 : [𝑎′, 𝑏′] −→ 𝑈 where 𝜏 : [𝑎′, 𝑏′] −→ [𝑎, 𝑏] is a continuous piecewise461

differentiable non-decreasing surjective function.462

Note that Im(𝛾) = Im(𝛾 ◦ 𝜏). e next example shows that this is not sufficient.463

7.2. Example. Let 𝛾 : [0, 1] −→ C, 𝑡 ↦→ 𝑒2𝜋𝚤𝑡 . en 𝛾1 : [0, 2] −→ C, 𝑡 ↦→ 𝑒𝜋𝚤𝑡 is a464

reparametrization of𝛾 . To see this, let 𝜏1 : [0, 2] −→ [0, 1] be the map 𝑡 ↦→ 𝑡
2 ; then𝛾1 = 𝛾 ◦ 𝜏1.465

On the other hand,𝛾2 : [0, 2] −→ C, 𝑡 ↦→ 𝑒2𝜋𝚤𝑡 , is not a reparametrization of 𝛾 . Intuitively,𝛾2466

involves going round the circle twice, while𝛾 involves going round only once.467

7.3.Discussion (invarianceunder reparametrization). Let𝑈 beadomainand𝛾 : [𝑎, 𝑏] −→ 𝑈 a
path and𝜏 : [𝑎′, 𝑏′] −→ [𝑎, 𝑏] a continuous piecewise differentiable non-decreasing surjective
function. Write 𝛾 = 𝛾 ◦ 𝜏. Let 𝑎′ = 𝑠0 < 𝑠1 < · · · < 𝑠𝑚 = 𝑏′ be a good partition for 𝜏 and
𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 be a good partition for 𝛾 . Let 𝑢0 < . . . < 𝑢𝑘 be the distinct
elements of {𝑠0, . . . , 𝑠𝑚} ∪ {𝜏−1(𝑡0), . . . , 𝜏−1(𝑡𝑛)}. en𝑎′ = 𝑢0 < · · · < 𝑢𝑘 = 𝑏′ is good for𝛾 . Let
𝑎 = 𝑣0 < · · · < 𝑣𝑙 = 𝑏 be the distinct elements of {𝜏 (𝑢0), . . . , 𝜏 (𝑢𝑘)}; this is good for𝛾 . us,∫

𝛾

𝑓 (𝑧)d𝑧 =

𝑘−1∑︁
𝑖=0

∫ 𝑢𝑖+1

𝑢𝑖

𝑓 (𝛾 (𝑠))𝛾 ′(𝑠)d𝑠

=

𝑘−1∑︁
𝑖=0

∫ 𝑢𝑖+1

𝑢𝑖

𝑓 (𝛾 (𝜏 (𝑠)))𝛾 ′(𝜏 (𝑠))𝜏′(𝑠)d𝑠

=

𝑙−1∑︁
𝑖=0

∫ 𝑣𝑖+1

𝑣𝑖

𝑓 (𝛾 (𝑡))𝛾 ′(𝑡)d𝑡

=

∫
𝛾

𝑓 (𝑧)d𝑧.

Question: where did we use the hypothesis that 𝜏 is a non-decreasing function? �468
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7.4.Discussion (integration along the opposite path). Let𝑈 be a domain and 𝛾 : [𝑎, 𝑏] −→ 𝑈469

a piecewise differentiable path, with a good partition 𝑎 = 𝑠0 < . . . < 𝑠𝑛 = 𝑏. For 0 ≤ 𝑖 ≤ 𝑛,470

write 𝑡𝑖 = (𝑎 + 𝑏) − 𝑠𝑛−𝑖 . en471

−𝛾 | [𝑡𝑖 ,𝑡𝑖+1] = 𝛾 | [𝑠𝑛−𝑖−1,𝑠𝑛−𝑖 ] ◦ (𝑡 ↦→ (𝑎 + 𝑏) − 𝑡) .
erefore 𝑎 = 𝑡0 < . . . < 𝑡𝑛 = 𝑏 is a good partition for −𝛾 .∫

−𝛾
𝑓 (𝑧)d𝑧 =

𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 ((−𝛾) (𝑡)) (−𝛾)′(𝑡)d𝑡

=

𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝛾 (𝑎 + 𝑏 − 𝑡)) (𝛾 ′(𝑎 + 𝑏 − 𝑡)) (−1)d𝑡

=

𝑛−1∑︁
𝑖=0

∫ 𝑠𝑛−𝑖−1

𝑠𝑛−𝑖

𝑓 (𝛾 (𝑠))𝛾 ′(𝑠)d𝑠

= −
∫
𝛾

𝑓 (𝑧)d𝑧. �

7.5. Proposition. Let𝑈 be a domain and 𝑓 holomorphic on𝑈 . If 𝑓 ′ is identically zero on𝑈 , then 𝑓 is a472

constant function.473

Proof. Let 𝑐1, 𝑐2 ∈ 𝑈 . We want to show that 𝑓 (𝑐1) = 𝑓 (𝑐2). Let 𝛾 : [𝑎, 𝑏] −→ 𝑈 a piecewise-474

differentiable path with 𝛾 (𝑎) = 𝑐1 and 𝛾 (𝑏) = 𝑐2. Let 𝑎 = 𝑡0 < . . . < 𝑡𝑛 = 𝑏 be a good partition475

for 𝛾 . It suffices to show that 𝑓 (𝛾 (𝑡𝑖)) = 𝑓 (𝛾 (𝑡𝑖+1)). Replacing 𝑎 by 𝑡𝑖 and 𝑏 by 𝑡𝑖+1, we may476

assume that𝛾 is differentiable on [𝑎, 𝑏].477

e function478

𝑔 : [𝑎, 𝑏] −→ C, 𝑡 ↦→ 𝑓 (𝛾 (𝑡))
is differentiable, with derivative 𝑔′(𝑡) = 𝑓 ′(𝛾 (𝑡))𝛾 ′(𝑡) = 0. Hence 𝑓 (𝑐2) = 𝑔(𝑏) = 𝑔(𝑎) =479

𝑓 (𝑐1). �480

Exercises.481

(1) Check that in Example 7.2,𝛾2 is not a reparametrization of𝛾 .482

(2) Read Discussion 7.3 about reparametrization and understand where we used the hy-483

pothesis that 𝜏 is a non-decreasing function.484

Lecture 8. Absolute value of a path integral485

8.1. Lemma. Let 𝑓 : [𝑎, 𝑏] −→ C be a continuous function and 𝑐 ∈ C. en486 ∫ 𝑏

𝑎

𝑐 𝑓 (𝑡)d𝑡 = 𝑐

∫ 𝑏

𝑎

𝑓 (𝑡)d𝑡 .

Proof. Write 𝑓 (𝑡) = 𝑢 (𝑡) + 𝚤𝑣 (𝑡) and 𝑐 = 𝛼 + 𝚤𝛽. en both sides of the asserted equality are487

equal to488 ∫ 𝑏

𝑎

(𝛼𝑢 (𝑡) − 𝛽𝑣 (𝑡)) d𝑡 + 𝚤
∫ 𝑏

𝑎

(𝛼𝑣 (𝑡) + 𝛽𝑢 (𝑡)) d𝑡 . �

8.2.Corollary. Let 𝑓 : [𝑎, 𝑏] −→ C be a continuous function. en489 �����∫ 𝑏

𝑎

𝑓 (𝑡)d𝑡
����� ≤ ∫ 𝑏

𝑎

|𝑓 (𝑡) | d𝑡 .
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Proof. Without loss of generality, we may assume that
∫ 𝑏

𝑎
𝑓 (𝑡)d𝑡 ≠ 0. Let 𝜃 be an argument of490 ∫ 𝑏

𝑎
𝑓 (𝑡)d𝑡 . en491 �����∫ 𝑏

𝑎

𝑓 (𝑡)d𝑡
����� = <

(
𝑒−𝚤𝜃

∫ 𝑏

𝑎

𝑓 (𝑡)d𝑡
)

=

∫ 𝑏

𝑎

<
(
𝑒−𝚤𝜃 𝑓 (𝑡)

)
d𝑡 (by Lemma 8.1)

≤
∫ 𝑏

𝑎

|𝑓 (𝑡) | d𝑡 . �

8.3.Definition. Let𝛾 : [𝑎, 𝑏] −→ C be a piecewise-differentiable path and 𝑓 aC-valued func-492

tion defined and continuous on Im(𝛾). e integral of 𝑓 with respect to arc length denoted 8 by493 ∫
𝛾
𝑓 |d𝑧 | is494 ∫ 𝑏

𝑎

𝑓 (𝛾 (𝑡)) |𝛾 ′(𝑡) |d𝑡 .

8.4. Proposition. Let 𝛾 : [𝑎, 𝑏] −→ C be a piecewise-differentiable path and 𝑓 a C-valued function495

defined and continuous on Im(𝛾). en496 ∫
−𝛾

𝑓 |d𝑧 | =
∫
𝛾

𝑓 |d𝑧 |.

Proof. We repeat the argument fromDiscussion 7.4, with suitable changes.497 ∫
−𝛾

𝑓 (𝑧) |d𝑧 | =
𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 ((−𝛾) (𝑡)) | (−𝛾)′(𝑡) |d𝑡

=

𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝛾 (𝑎 + 𝑏 − 𝑡)) |𝛾 ′(𝑎 + 𝑏 − 𝑡) |d𝑡

=

𝑛−1∑︁
𝑖=0

−
∫ 𝑠𝑛−𝑖−1

𝑠𝑛−𝑖

𝑓 (𝛾 (𝑠))𝛾 ′(𝑠)d𝑠

=

∫
𝛾

𝑓 (𝑧) |d𝑧 |. �

8.5. Proposition. Let 𝛾 : [𝑎, 𝑏] −→ C be a piecewise-differentiable path and 𝑓 a C-valued function498

defined and continuous on Im(𝛾). en499 ����∫
𝛾

𝑓 d𝑧
���� ≤ ∫

𝛾

|𝑓 | |d𝑧 |.

Proof. Use Corollary 8.2 to see that500 ����∫
𝛾

𝑓 d𝑧
���� = �����∫ 𝑏

𝑎

𝑓 (𝛾 (𝑡))𝛾 ′(𝑡)d𝑡
����� ≤ ∫ 𝑏

𝑎

|𝑓 (𝛾 (𝑡)) | |𝛾 ′(𝑡) |d𝑡 =
∫
𝛾

|𝑓 | |d𝑧 |. �

8.6.Definition. Let𝛾 be a piecewise-differentiable path. e arc length of𝛾 is
∫
𝛾
|d𝑧 |.501

8Many textbooks, including Ahlfors, also use
∫
𝛾
𝑓 d𝑠 denote this, but we will avoid this usage, since sometimes

we use 𝑠 to denote a real or complex variable.
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8.7.Corollary. Let𝛾 : [𝑎, 𝑏] −→ Cbeapiecewise-differentiablepathand 𝑓 aC-valued functiondefined502

and continuous on Im(𝛾). Let𝐶 ≥ max{|𝑓 (𝑧) | : 𝑧 ∈ Im(𝛾)}. Write𝐿 for the arc length of𝛾 . en503 ����∫
𝛾

𝑓 d𝑧
���� ≤ 𝐶𝐿

Proof. Observe that if𝑔 is a real-valued continuous function on Im(𝛾) taking non-negative real504

values, then
∫
𝛾
𝑔 |d𝑧 | is a non-negative real number. Nowapply this observationwith𝑔 = 𝐶−|𝑓 |505

to see that506 ����∫
𝛾

𝑓 d𝑧
���� ≤ ∫

𝛾

|𝑓 | |d𝑧 | ≤ 𝐶𝐿. �

Exercises.507

(1) Show that the arc length of a piecewise-linear path is the sum of the lengths of the line508

segments in it. (See Exercise 6.3 in Lecture 6.)509

(2) Let 𝛾 : [𝑎, 𝑏] −→ C be a piecewise-differentiable path. en the arc length of 𝛾 is the510

supremum of the set511 {
𝑛−1∑︁
𝑖=0

|𝛾 (𝑡𝑖+1) − 𝛾 (𝑡𝑖) | : 𝑛 ≥ 1, 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏

}
.

(3) Let 𝛾 be a piecewise-differentiable path in C and 𝛾 a reparametrization. Show that the512

arc lengths of𝛾 and𝛾 equal each other.513

Lecture 9. Primitives514

9.1.Definition. Let𝑈 be a domain and 𝑓 : 𝑈 −→ C. A primitive 𝐹 of 𝑓 on𝑈 is a (holomorphic)515

function 𝐹 : 𝑈 −→ C such that 𝐹 ′ = 𝑓 on𝑈 .516

Note that 𝑓 need not have a primitive on𝑈 ; see Proposition 9.4.517

9.2. Proposition. If 𝐹1 and 𝐹2 are primitives of a function 𝑓 on a domain𝑈 , then 𝐹1 − 𝐹2 is a constant518

function.519

Proof. Note that (𝐹1 − 𝐹2)′ = 𝐹 ′1 − 𝐹 ′2 = 0; now apply Proposition 7.5 to 𝐹1 − 𝐹2. �520

9.3.Example. Let𝑚 ∈ Z and 𝑓 (𝑧) = 𝑧𝑚 (wherever it canbedefined). If𝑚 ≥ 0, then𝑧𝑚+1/(𝑚+1)521

is a primitive of 𝑧𝑚 on C. If𝑚 < −1, then 𝑧𝑚+1/(𝑚 + 1) is a primitive of 𝑧𝑚 on C r {0}. Now522

suppose𝑚 = −1. If there is a branch of the logarithm on 𝑈 , then it is a primitive of 𝑓 (𝑧).523

(Branchesof the logarithmareholomorphic,withderivative 1
𝑧
; see exercise inSection 5.) Hence524

1
𝑧
has a primitive on C r (−∞, 0], while, using the next proposition, one of the exercises will525

show that it does not have a primitive onC r {0}. �526

9.4.Proposition. Let𝑈 be a domain and 𝑓 : 𝑈 −→ C be a continuous function. en the following are527

equivalent:528

(1) 𝑓 has a primitive on𝑈 .529

(2) ere existsa function𝐹 : 𝑈 −→ C such that for everypiecewise-differentiablepath𝛾 : [𝑎, 𝑏] −→530

𝑈 ,
∫
𝛾
𝑓 (𝑧)d𝑧 = 𝐹 (𝛾 (𝑏)) − 𝐹 (𝛾 (𝑎)).531

(3) For every piecewise-differentiable closed path𝛾 in𝑈 ,
∫
𝛾
𝑓 (𝑧)d𝑧 = 0.532
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Proof. (1) =⇒ (2): Let 𝐹 be a primitive of 𝑓 on𝑈 . en
∫
𝛾
𝑓 (𝑧)d𝑧 =

∫
𝛾
𝐹 ′(𝑧)d𝑧; we want to show533

that its value is 𝐹 (𝛾 (𝑏)) − 𝐹 (𝛾 (𝑎)). Let 𝑎 = 𝑡0 < 𝑡1 < · · · < 𝑡𝑛 = 𝑏 be a good partition for 𝛾 . It534

suffices to show that for every 𝑖535 ∫ 𝑡𝑖+1

𝑡𝑖

𝐹 ′(𝛾 (𝑡))𝛾 ′(𝑡)d𝑡 = 𝐹 (𝛾 (𝑡𝑖+1)) − 𝐹 (𝛾 (𝑡𝑖)) .

Without loss of generality,wemay assume that𝛾 is a differentiable path. Write𝐺 = 𝐹 ◦𝛾 . en536

𝐺′(𝑡) = 𝐹 ′(𝛾 (𝑡))𝛾 ′(𝑡) = 𝑓 (𝛾 (𝑡))𝛾 ′(𝑡) is a continuous function, so we see that537 ∫ 𝑏

𝑎

𝐺′(𝑡)d𝑡 = 𝐺 (𝑏) −𝐺 (𝑎)

by evaluating its real and imaginary parts (which are continuous, and, hence the fundamental538

theorem of calculus applies).539

(2) =⇒ (1): We prove that 𝐹 is a primitive of 𝑓 on𝑈 . Let 𝑐 ∈ 𝑈 . Let 𝜖 > 0. We want to show540

that there exists 𝛿 > 0 such that for allℎ ∈ Cwith |ℎ | < 𝛿,541

(9.5)
����𝐹 (𝑐 + ℎ) − 𝐹 (𝑐)

ℎ
− 𝑓 (𝑐)

���� < 𝜖

First, choose 𝛿 such that 𝐵𝑐,𝛿 ⊆ 𝑈 . en, for every ℎ with 𝑐 + ℎ ∈ 𝐵𝑐,𝛿 , we can evaluate 𝐹 (𝑐 +542

ℎ) − 𝐹 (𝑐) as
∫
𝜏
𝑓 (𝑧)d𝑧, where 𝜏 is the function543

[0, 1] −→ C, 𝑡 ↦→ 𝑡 (𝑐 + ℎ) + (1 − 𝑡)𝑐.
(at is, we are going from 𝑐 to 𝑐 + ℎ along the line segment joining 𝑐 to 𝑐 + ℎ at a constant
speed.) Write 𝑓 (𝑧) = 𝑓 (𝑐) +𝜙 (𝑧) on 𝐵𝑐,𝛿 . Using one of the exercises (or equation (3) of Ahlfors,
Chapter 4, Section 1.1 (‘Line integrals’)) we see that����∫

𝜏

𝜙 (𝑧)d𝑧
���� = ����∫ 1

0
𝜙 (𝜏 (𝑡))𝜏′(𝑡)d𝑡

����
= |ℎ |

∫ 1

0
|𝜙 (𝑡 (𝑐 + ℎ) + (1 − 𝑡)𝑐) |d𝑡

Since 𝑓 is continuous, we may assume, possibly replacing 𝛿 by a smaller real number, that544

|𝜙 (𝑧) | < 𝜖 for every 𝑧 ∈ 𝐵𝑐,𝛿 . Now545 ����𝐹 (𝑐 + ℎ) − 𝐹 (𝑐)
ℎ

− 𝑓 (𝑐)
���� = �����

∫
𝜏
𝑓 (𝑧)d𝑧
ℎ

− 𝑓 (𝑐)
����� =

����� 𝑓 (𝑐) · ℎ +
∫
𝜏
𝜙 (𝑧)d𝑧

ℎ
− 𝑓 (𝑐)

����� < 𝜖,

thus proving (9.5).546

★ mk: [Rewriting the above argument using integration w.r.t. arc length:] Since 𝑓 is547

continuous, wemay assume, possibly replacing 𝛿 by a smaller real number, that |𝜙 (𝑧) | < 𝜖 for548

every 𝑧 ∈ 𝐵𝑐,𝛿 . By Corollary 8.7549 ����∫
𝜏

𝜙 (𝑧)d𝑧
���� < 𝜖 |ℎ |.

Now550 ����𝐹 (𝑐 + ℎ) − 𝐹 (𝑐)
ℎ

− 𝑓 (𝑐)
���� = �����

∫
𝜏
𝑓 (𝑧)d𝑧
ℎ

− 𝑓 (𝑐)
����� =

����� 𝑓 (𝑐) · ℎ +
∫
𝜏
𝜙 (𝑧)d𝑧

ℎ
− 𝑓 (𝑐)

����� < 𝜖,

thus proving (9.5).551

(2) ⇐⇒ (3): Exercise. �552
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Exercises.553

(1) Let 𝑓 : [𝑎, 𝑏] −→ C be a function. Show that554 �����∫ 𝑏

𝑎

𝑓 d𝑡

����� ≤ ∫ 𝑏

𝑎

|𝑓 |d𝑡

(is is proved in equation (3) of Ahlfors, Chapter 4, Section 1.1 (‘Line integrals’).)555

(2) Prove the assertion (2) ⇐⇒ (3) in Proposition 9.4.556

(3) Let 𝑟 be a positive real number. Let 𝛾 : [0, 2𝜋] −→ C, 𝑡 ↦→ 𝑟𝑒𝚤𝑡 . Show that
∫
𝛾
(1/𝑧)d𝑧 =557

2𝜋 . On the other hand, if 𝛾 is a piecewise-differentiable closed path that avoids some558

ray inC (i.e., {𝑟𝑒𝚤𝛼 | 𝑟 ∈ R, 𝑟 ≥ 0} for some fixed 𝛼 ) then
∫
𝛾
(1/𝑧)d𝑧 = 0.559

Lecture 10. Cauchy integral theorem, I560

10.1.eorem (Cauchy integral theorem for a rectangle). (Ahlfors, Chapter 4, Section 1.4,eorem561

2, p. 109) Let𝑈 be a domain and 𝑓 a holomorphic function on𝑈 . Let𝑅 ⊆ 𝑈 be a rectangle. en562 ∫
𝜕𝑅

𝑓 (𝑧)d𝑧 = 0.

Note that 𝜕𝑅 is the union of four line segments, parallel to the real and imaginary axes. It563

is thought of as a closed curve in𝑈 , starting from one corner, and going once along the line564

segments.565

Proof. Proof given in Ahlfors (due to Goursat). �566

e following lemma should help clarify the estimation of |𝜂 (𝑅𝑛) | in equation (16) and the567

following paragraph on page. 111 of Ahlfors’ book. In the proof of (9.5), we estimated568 ����∫
𝜏

𝜙 (𝑧)d𝑧
����

where 𝜏 is a linear path, i.e., a line segment parametrized by a linear function. We want to do569

a similar for 𝜕𝑅𝑛, which is a piecewise-linear path.570

10.2.Lemma. Let𝑈 be a domain,𝑔 : 𝑈 −→ Ca continuous function and𝛾 : [𝑎, 𝑏] −→ 𝑈 apiecewise-571

linear path, i.e., a continuous function such that there exists a partition𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏 such572

that𝛾 | [𝑡𝑖 ,𝑡𝑖+1] : 𝑡 ↦→
(𝑡−𝑡𝑖 )𝛾 (𝑡𝑖+1)+(𝑡𝑖+1−𝑡)𝛾 (𝑡𝑖 )

(𝑡𝑖+1−𝑡𝑖 ) . en573 ����∫
𝛾

𝑔(𝑧)d𝑧
���� ≤ 𝑛−1∑︁

𝑖=0

|𝛾 (𝑡𝑖+1) − 𝛾 (𝑡𝑖) |
𝑡𝑖+1 − 𝑡𝑖

∫ 𝑡𝑖+1

𝑡𝑖

|𝑔(𝛾 (𝑡)) |d𝑡 .

In particular, if𝐶 ≥ |𝑔(𝑧) | for every 𝑧 ∈ Im(𝛾), then574 ����∫
𝛾

𝑔(𝑧)d𝑧
���� ≤ 𝐶

𝑛−1∑︁
𝑖=0

|𝛾 (𝑡𝑖+1) − 𝛾 (𝑡𝑖) |.

Proof. Since575 ∫
𝛾

𝑔(𝑧)d𝑧 =

𝑛−1∑︁
𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

𝑔(𝛾 (𝑡))𝛾 ′(𝑡)d𝑡 .

it follows that576 ����∫
𝛾

𝑔(𝑧)d𝑧
���� ≤ 𝑛−1∑︁

𝑖=0

∫ 𝑡𝑖+1

𝑡𝑖

|𝑔(𝛾 (𝑡)) | |𝛾 ′(𝑡) |d𝑡 .
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Now note that577

𝛾 ′(𝑡) = 𝛾 (𝑡𝑖+1) − 𝛾 (𝑡)
𝑡𝑖+1 − 𝑡𝑖

on [𝑡𝑖, 𝑡𝑖+1], proving the first assertion. e second assertion follows immediately from the578

first. �579

10.3.Corollary. With notation as in Ahlfors’ book, |𝜂 (𝑅𝑛) | ≤ 𝜖𝐿𝑛𝑑𝑛.580

Proof. Note that∫
𝜕𝑅𝑛

[𝑓 (𝑧) − 𝑓 (𝑧∗) − (𝑧 − 𝑧∗) 𝑓 ′(𝑧∗)] d𝑧 =

∫
𝜕𝑅𝑛

𝑓 (𝑧)d𝑧 − 𝑓 (𝑧∗)
∫
𝜕𝑅𝑛

d𝑧 − 𝑓 ′(𝑧∗)
∫
𝜕𝑅𝑛

(𝑧 − 𝑧∗)d𝑧.

= 𝜂 (𝑅𝑛)
since 1 and (𝑧 − 𝑧∗) have primitives onC. Hence we want to estimate581

|𝜂 (𝑅𝑛) | =
����∫

𝜕𝑅𝑛

[𝑓 (𝑧) − 𝑓 (𝑧∗) − (𝑧 − 𝑧∗) 𝑓 ′(𝑧∗)] d𝑧
���� .

Note that 𝑛 is large enough so that582

|𝑓 (𝑧) − 𝑓 (𝑧∗) − (𝑧 − 𝑧∗) 𝑓 ′(𝑧∗) | < 𝜖 |𝑧 − 𝑧∗ | < 𝜖𝑑𝑛 .

for all 𝑧 ∈ 𝜕𝑅𝑛. Now apply Lemma 10.2. ★ mk: [Or, directly ] 𝜕𝑅𝑛 is a piecewise-linear path,583

and its arc length is the length 𝐿𝑛 of the perimeter of 𝑅𝑛 (Exercise 1 of Lecture 8). Now apply584

Corollary 8.7. �585

Exercises.586

(1) Show that in the proof of the theorem (with notation as in Ahlfors’ book),587 �����⋂
𝑛

𝑅𝑛

����� = 1.
Lecture 11. Cauchy integral theorem, II588

11.1.eorem (Cauchy integral theorem for a disc). (Ahlfors, Chapter 4, Section 1.5, eorem 4,589

p.113) Let𝑈 be an open disc, 𝑓 a holomorphic function on𝑈 . en 𝑓 has a primitive on𝑈 . In particu-590

lar,591 ∫
𝛾

𝑓 (𝑧)d𝑧 = 0,

for every piecewise-differentiable closed path𝛾 in𝑈 .592

Proof. e second assertion follows from the first and Proposition 9.4; therefore we will prove593

the first. Without loss of generality, we may assume that𝑈 is centred at 0 (Exercise). Define594

𝐹 : 𝑈 −→ C by 𝜁 ↦→
∫
𝜎
𝑓 (𝑧)d𝑧, where 𝜎 is the piecewise-differentiable path from 0 to 𝜁 that595

goes from0 to (<(𝜁 ), 0) (the line segment parallel to the real axis) and from there to 𝜁 (the line596

segment parallel to the imaginary axis).597

Wewill show that 𝐹 is holomorphic on𝑈 with 𝐹 ′ = 𝑓 . Let 𝑐 ∈ 𝑈 . Let 𝜖 > 0. Wewant to show598

that there exists 𝛿 > 0 such that for allℎ ∈ Cwith |ℎ | < 𝛿,599

(11.2)
����𝐹 (𝑐 + ℎ) − 𝐹 (𝑐)

ℎ
− 𝑓 (𝑐)

���� < 𝜖.

ere exists 𝛿 > 0 such that 𝐵𝑐,𝛿 ⊆ 𝑈 , that |𝑓 (𝑧) − 𝑓 (𝑐) | < 𝜖
2 for every 𝑧 ∈ 𝐵𝑐,𝛿 , since 𝑓 is

continuous. Letℎ ∈ 𝐵0,𝛿 . Let 𝜎 (respectively,𝜎1) be the piecewise-differentiable path from 0 to
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𝑐 (respectively,𝑐+ℎ) that goes from0 to (<(𝑐), 0) (respectively, to (<(𝑐+ℎ), 0)) and from there
to𝑐 (respectively𝑐+ℎ). Let𝜏 be the piecewise-differentiable path from𝑐 to (<(𝑐+ℎ),=(𝑐)) and
fromthere to𝑐+ℎ. Applyingeorem10.1 to the rectanglewith vertices (<(𝑐), 0), (<(𝑐+ℎ), 0),
(<(𝑐 + ℎ),=(𝑐)) and 𝑐 we see that

𝐹 (𝑐 + ℎ) =
∫
𝜎1

𝑓 (𝑧)d𝑧 =

∫
𝜎

𝑓 (𝑧)d𝑧 +
∫
𝜏

𝑓 (𝑧)d𝑧

= 𝐹 (𝑐) +
∫
𝜏

𝑓 (𝑧)d𝑧.

Write 𝜙 (𝑧) = 𝑓 (𝑧) − 𝑓 (𝑐) on 𝐵𝑐,𝛿 . Now,∫
𝜏

𝑓 (𝑧)d𝑧 =

∫
𝜏

𝑓 (𝑐)d𝑧 +
∫
𝜏

𝜙 (𝑧)d𝑧

= 𝑓 (𝑐) [(𝑐 + ℎ) − 𝑐] +
∫
𝜏

𝜙 (𝑧)d𝑧

= ℎ𝑓 (𝑐) +
∫
𝜏

𝜙 (𝑧)d𝑧.

(We have used the fact constant functions have primitives on C.) Hence we can rewrite (11.2)600

as601

(11.3)

�����
∫
𝜏
𝜙 (𝑧)d𝑧
ℎ

����� < 𝜖.

Let 𝜏1 (respectively 𝜏2) be the piecewise-differentiable path from 𝑐 to (<(𝑐 + ℎ),=(𝑐)) (re-602

spectively, from (<(𝑐 + ℎ),=(𝑐)) to 𝑐 + ℎ). en 𝜏 as the concatenation of 𝜏1 and 𝜏2. erefore603

the arc length of 𝜏 is at most |<(ℎ) | + |=(ℎ) | < 2|ℎ |. Now apply Corollary 8.7 after noting that604

|𝜙 (𝑧) | < 𝜖/2 on Im(𝛾) to obtain (11.3). �605

Exercises.606

(1) Show that in theproof ofeorem11.1,we canassume that the centre of𝑈 is 0 as follows:607

Let 𝑐 be the centre of𝑈 . Let 𝜏 : 𝑈 −→ C be the function 𝑧 ↦→ 𝑧 − 𝑐. Let𝑈1 = Im(𝜏).608

en 𝜏 maps𝑈 homeomorphically to𝑈1. Let 𝑓1 = 𝑓 ◦𝜏−1 and𝛾1 = 𝜏 ◦𝛾 . en
∫
𝛾
𝑓 (𝑧)d𝑧 =609 ∫

𝛾1
𝑓1(𝑧)d𝑧.610

(2) Depending on the generality of Green’s theorem that you are familiar with, one can es-611

tablish a version of Cauchy integral theorem, as follows. Let 𝛾 be a Jordan curve in C612

(i.e., a closed piece-wise differentiable path that is injective, except at the end-points).613

Let 𝑈 be a domain that contains 𝛾 and the open subset of C bounded by 𝛾 . Let 𝑓 be a614

holomorphic function on𝑈 . Write 𝑧 = 𝑥 + 𝚤𝑦, 𝑓 = 𝑢 (𝑥,𝑦) + 𝚤𝑣 (𝑥,𝑦). We showed that if615

𝑓 is holomorphic, then𝑢 and 𝑣 are differentiable on𝑈 .616

(a) 𝑓 d𝑧 = 𝑢d𝑥 − 𝑣d𝑦 + 𝚤 (𝑣d𝑥 + 𝑢d𝑦).617

(b) Suppose that 𝑓 ′ is continuous. en
∫
𝛾
𝑓 d𝑧 = 0.618

(3) Let𝑈 be a domain containing 𝐵0,1 and𝛾 : [0, 1] −→ C, 𝑡 ↦→ 𝑒2𝜋𝚤𝑡 . Compute619 ∫
𝛾

1
𝑧 − 1

2
d𝑧

as follows. (Note that neither is the integrand holomorphic on𝑈 nor is 𝛾 centred at 12 ,620

so earlier arguments do not apply immediately.)621
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(a) Let 0 < 𝑟 � 1 and 𝜎 : [0, 1] −→ C, 𝑡 ↦→ 1
2 + 𝑟𝑒

2𝜋𝚤𝑡 . Compute622 ∫
𝜎

1
𝑧 − 1

2
d𝑧

(b) For 0 < 𝜖 � 1, define the following four points and paths in 𝑈 : 𝑝 ∈ Im𝛾 with623

<(𝑝) > 0 and =(𝑝) = 𝜖 ; 𝑞 ∈ Im𝛾 with<(𝑞) > 0 and =(𝑞) = −𝜖 ; 𝑎 ∈ Im𝜎 with624

<(𝑝) > 1
2 and =(𝑝) = 𝜖 ; 𝑏 ∈ Im𝜎 with<(𝑞) > 1

2 and =(𝑞) = −𝜖 ; 𝛾1 from 𝑝 to 𝑞625

counter-clockwise, following the same path as 𝛾 ; 𝛾1 from 𝑎 to 𝑏 counter-clockwise,626

following the same path as 𝜎 ; 𝜏1 from 𝑎 to 𝑝, parallel to the real axis; 𝜏2 from 𝑏 to627

𝑞, parallel to the real axis. Let Γ be the closed piecewise differentiable path at 𝑝628

obtained by concatenating𝛾1,−𝜏2,−𝜎1 and 𝜏1. Show that629 ∫
Γ

1
𝑧 − 1

2
d𝑧 = 0.

(Hint: Γ ⊆ 𝑈 r { 12 + 𝑟 | 𝑟 ∈ R, 𝑟 ≥ 0}, on which 1
𝑧− 1

2
has a primitive.)630

(c) Show that

lim
𝜖→0

∫
𝛾1

1
𝑧 − 1

2
d𝑧 =

∫
𝛾

1
𝑧 − 1

2
d𝑧.

lim
𝜖→0

∫
𝜎1

1
𝑧 − 1

2
d𝑧 =

∫
𝜎

1
𝑧 − 1

2
d𝑧.

lim
𝜖→0

∫
𝜏1

1
𝑧 − 1

2
d𝑧 = lim

𝜖→0

∫
𝜏2

1
𝑧 − 1

2
d𝑧

(d) Conclude that631 ∫
𝛾

1
𝑧 − 1

2
d𝑧 =

∫
𝜎

1
𝑧 − 1

2
d𝑧.

(e) Generalize the result, after replacing 1
2 by an arbitrary 𝑐 ∈ 𝐵0,1.632

Lecture 12. Cauchy integral theorem, III633

General background: We need to show that if 𝑔(𝑧) is holomorphic on 𝐵𝑐,𝑅 (𝑅 > 0) and 𝛾 is634

the closed path [0, 1] −→ C, 𝑡 ↦→ 𝑐 + 𝑟𝑒2𝜋𝚤𝑡 (with 0 < 𝑟 < 𝑅) then635

1
2𝜋𝚤

∫
𝛾

𝑔(𝑧)
𝑧 − 𝜁

d𝑧 = 𝑔(𝜁 ).

for every 𝜁 ∈ 𝐵𝑐,𝑟 . One way to evaluate the integral (a la Lang or Rodŕıguez-Kra-Gilman) is to636

observe that𝛾 can be ‘continuously deformed’ to a closed path𝛾1 : [0, 1] −→ C, 𝑡 ↦→ 𝜁 + 𝜌𝑒2𝜋𝚤𝑡637

with a small 𝜌 (so that𝛾1 is inside 𝐵𝑐,𝑟 ), and therefore wemay try to evaluate the integral on𝛾1.638

Another option (a la Ahlfors) is to look at the function639

𝑓 (𝑧) = 𝑔(𝑧) − 𝑔(𝜁 )
𝑧 − 𝜁

and observe that it is holomorphic on𝐵𝑐,𝑅 except at 𝜁 ,where it has the property that lim𝑧→𝜁 (𝑧−640

𝜁 ) 𝑓 (𝑧) = 0. We now strengthen CIT 11.1 to include such functions with this property. In fact,641

we will see later that we can extend 𝑓 to a holomorphic function which is defined also at 𝜁 .642
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12.1.eorem. Ahlfors, p. 113, eorem 5 (the version with ‘mild singularities’.) Let𝑈 be an open disc,643

𝑈 ′ an open subset of𝑈 obtained by omitting finitely many points of𝑈 , 𝑓 a holomorphic function on𝑈 ′
644

and𝛾 a closed path in𝑈 ′. Assume that lim𝑧→𝜁 (𝑧 − 𝜁 ) 𝑓 (𝑧) = 0 for every 𝜁 ∈ 𝑈 r𝑈 ′. en645 ∫
𝛾

𝑓 (𝑧)d𝑧 = 0.

Proof. Without loss of generality,𝑈 is centred at 0. Define 𝐹 : 𝑈 ′ −→ C, 𝜁 ↦→
∫
𝜎
𝑓 (𝑧)d𝑧, where646

𝜎 be an rectilinear path in𝑈 ′ (a path consisting of finitely many segments, parallel to the real647

and the imaginary axes) from 0 to 𝜁 . (is path needs to avoid the points in𝑈 r𝑈 ′.) We need648

to show that649

(1) the value of 𝐹 (𝜁 ) does not depend on the choice of 𝜎, for every 𝜁 ∈ 𝑈 ′
650

(2) 𝐹 is holomorphic with 𝐹 ′ = 𝑓 .651

To prove the first assertion,wewill prove an analogous version ofeorem 10.1, inwhich some652

points in the interior of the rectangle are omitted; seeeorem 12.2 below.eholomorphicity653

of 𝐹 can be proved exactly as in the proof of eorem 11.1, since for every 𝜁 ∈ 𝑈 ′, there exists654

𝛿 > 0 such that 𝐵𝜁 ,𝛿 ⊂ 𝑈 ′. �655

12.2.eorem (Cauchy integral theorem for a rectangle, with ‘mild singularities’). (Ahlfors,656

Chapter 4, Section 1.4, eorem 3, p. 111) Let𝑈 be a domain,𝑈 ′ an open subset of𝑈 obtained by omit-657

ting finitelymany points of𝑈 . Let 𝑓 a holomorphic function on𝑈 ′ such that lim𝑧→𝜁 (𝑧 − 𝜁 ) 𝑓 (𝑧) = 0 for658

every 𝜁 ∈ 𝑈 r𝑈 ′. Let𝑅 ⊆ 𝑈 be a rectangle, such that 𝜕𝑅 ⊆ 𝑈 ′. en659 ∫
𝜕𝑅

𝑓 (𝑧)d𝑧 = 0.

Proof. Proof given inAhlfors,p. 112. After subdividing𝑅,wemayassume that𝑅 contains exactly660

one element of𝑈 r𝑈 ′; call this element 𝜁 . Let𝑅0 ⊆ 𝑅 be a square of size 2𝑎 (with sides parallel661

to the axes) with centre 𝜁 . en662 ∫
𝜕𝑅

𝑓 (𝑧)d𝑧 =

∫
𝜕𝑅0

𝑓 (𝑧)d𝑧.

Let 𝜖 > 0. Wemay choose 𝑎 such that663

| (𝑧 − 𝜁 ) 𝑓 (𝑧) | < 𝜖

for every 𝑧 ∈ 𝑅0. erefore for each 𝑧 ∈ 𝜕𝑅0, |𝑧 − 𝜁 | > 𝑎 and so664

|𝑓 (𝑧) | < 𝜖

𝑎
.

e length of the perimeter of 𝑅0 is 8𝑎. Hence by Corollary 8.7665 ����∫
𝜕𝑅0

𝑓 (𝑧)d𝑧
���� < 𝜖

𝑎
· 8𝑎 = 8𝜖.

erefore666 ∫
𝜕𝑅

𝑓 (𝑧)d𝑧 = 0. �

12.3.Remark. Wewill later see that in this situation, lim𝑧→𝜁 𝑓 (𝑧) exists for every𝜁 ∈ 𝑈 ′. Hence667

we can extend the function to a holomorphic function on𝑈 , by setting 𝑓 (𝜁 ) = lim𝑧→𝜁 𝑓 (𝑧) for668

every 𝜁 ∈ 𝑈 ′. e proof of this result will require some knowledge about the local behaviour669

of holomorphic functions, for which we need to know this result. Otherwise, the argument670

would be circular.671
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Lecture 13. Index of a point672

e following proposition generalizes Exercise 3 of Lecture 11.673

13.1. Proposition. Let𝛾 : [𝑎, 𝑏] −→ C a closed piecewise differentiable path. Let 𝜁 ∈ C r Im𝛾 . en674

there exists𝑛(𝜁 ,𝛾) ∈ Z such that675 ∫
𝛾

d𝑧
𝑧 − 𝜁

= 𝑛(𝜁 ,𝛾) · 2𝜋𝚤.

Proof. For 𝑠 ∈ [𝑎, 𝑏], write676

ℎ(𝑠) =
∫ 𝑠

𝑎

𝛾 ′(𝑡)d𝑡
𝛾 (𝑡) − 𝜁

.

is is a continuous function on [𝑎, 𝑏]. Since 𝛾 ′(𝑡) is continuous except on a finite subset of677

[𝑎, 𝑏],678

ℎ′(𝑠) = 𝛾 ′(𝑠)
𝛾 (𝑠) − 𝜁

on the complement of that finite set. erefore679

ℎ1(𝑡) :=
𝛾 (𝑡) − 𝜁

𝑒ℎ(𝑡)

is differentiable except on a finite subset of [𝑎, 𝑏]. Note that680

ℎ′1(𝑡) :=
𝛾 ′(𝑡)
𝑒ℎ(𝑡)

− (𝛾 (𝑡) − 𝜁 )ℎ′(𝑡)
𝑒ℎ(𝑡)

= 0.

Sinceℎ1(𝑠) is continuous, it is constant, so681

𝑒ℎ(𝑡) =
𝛾 (𝑡) − 𝜁

𝛾 (𝑎) − 𝜁

for every 𝑡 ∈ [𝑎, 𝑏]. Since𝛾 (𝑎) = 𝛾 (𝑏), we conclude that 𝑒ℎ(𝑎) = 𝑒ℎ(𝑏) = 1. erefore there exists682

𝑛(𝜁 ,𝛾) ∈ Z such that683 ∫
𝛾

d𝑧
𝑧 − 𝜁

= ℎ(𝑏) = 𝑛(𝜁 ,𝛾) · 2𝜋𝚤. �

13.2. Lemma. Let 𝛾 : [𝑎, 𝑏] −→ C be a closed piecewise differentiable path. en the function C r684

Im𝛾 −→ Z, 𝜁 ↦→ 𝑛(𝜁 ,𝛾) is locally constant.685

Proof. Let 𝜁 ∈ C r Im𝛾 . We want to show that there exists 𝛿 > 0 such that for every 𝜁 ′ ∈ 𝐵𝜁 ,𝛿 ,686

(13.3)
∫
𝛾

d𝑧
𝑧 − 𝜁

=

∫
𝛾

d𝑧
𝑧 − 𝜁 ′

.

Let 𝛿 > 0 be such that 𝐵𝜁 ,𝛿 ∩ Im𝛾 = ∅. Let 𝜁 ′ ∈ 𝐵𝜁 ,𝛿 . Let 𝑓 (𝑧) : C r {𝜁 ′} −→ C be the function687

𝑓 (𝑧) = 𝑧 − 𝜁

𝑧 − 𝜁 ′
.

Let 𝐿 be the line segment joining 𝜁 and 𝜁 ′ and𝑈 = C r 𝐿. en 𝑓 (𝑈 ) ∩ (−∞, 0] = ∅, i.e., for688

every 𝑧 ∈ 𝑈 ,=(𝑓 (𝑧)) ≠ 0 or<(𝑓 (𝑧)) > 0 (Exercise). Hence we can define689

𝑔 : C r 𝐿 −→ C, 𝑧 ↦→ Log(𝑓 (𝑧)) .
Note that𝑔 is holomorphic on𝑈 and that690

𝑔′(𝑧) = 𝑓 ′(𝑧)
𝑓 (𝑧) =

1
𝑧 − 𝜁

− 1
𝑧 − 𝜁 ′

.
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Since𝑈 is a domain and𝛾 is a closed path in𝑈 , it follows that691 ∫
𝛾

[
1

𝑧 − 𝜁
− 1
𝑧 − 𝜁 ′

]
d𝑧 = 0,

establishing (13.3). �692

e following corollary recovers Exercise 3 of Lecture 11.693

13.4.Corollary. Let𝑐 ∈ C, 𝑟 > 0 and𝛾 : [0, 1] −→ C the path 𝑡 ↦→ 𝑐 +𝑟𝑒2𝜋𝚤𝑡 . en for every𝜁 ∈ 𝐵𝑐,𝑟 ,694

𝑛(𝜁 ,𝛾) = 1.695

Proof. Note that 𝑛(𝑐,𝛾) = 1. Let𝑈 = {𝜁 ∈ 𝐵𝑐,𝑟 | 𝑛(𝜁 ,𝛾) = 1}. By the lemma,𝑈 and 𝐵𝑐,𝑟 r𝑈 are696

open. Since 𝐵𝑐,𝑟 is connected and𝑈 non-empty, 𝐵𝑐,𝑟 = 𝑈 . �697

Exercises.698

(1) Show that 𝑓 (𝑈 ) ∩ (−∞, 0] = ∅ in the proof of Lemma 13.2.699

(2) Let 𝛾 : [𝑎, 𝑏] −→ C be a piecewise-differentiable path. Show that 𝑛(𝜁 ,𝛾) = 0 for all700

𝜁 ∈ Cwith |𝜁 | � 0.701

(3) Ahlfors, Chapter 4, Section 2.1 (‘Index of a point ...’), Exercise 3 (p. 118). (proof of the702

Jordan curve theorem).703

(4) Here is another proof of Lemma 13.2. Let 𝜁 , 𝜖 be such that 𝐵𝜁 ,𝜖 ⊆ C r Im(𝛾). Let 0 <704

𝛿 � 𝜖 and 𝜁 ′ ∈ 𝐵𝜁 ,𝛿 . For every 𝑧 ∈ Im(𝛾),705 ���� 1
𝑧 − 𝜁

− 1
𝑧 − 𝜁 ′

���� = ���� 𝜁 − 𝜁 ′

(𝑧 − 𝜁 ) (𝑧 − 𝜁 ′)

���� < 𝛿

𝜖 (𝜖 − 𝛿) .

Let 𝐿 be the arc length of𝛾 . en706 ����∫
𝛾

[
1

𝑧 − 𝜁
− 1
𝑧 − 𝜁 ′

]
d𝑧

���� < 𝛿𝐿

𝜖 (𝜖 − 𝛿) < 2𝜋.

Lecture 14. Cauchy integral formula707

14.1.eorem (Cauchy integral formula for a circular path). (Ahlfors, Chapter 4, (22), p.119, for708

circles.) Let𝑈 be a domain, 𝑐 ∈ 𝑈 , 𝑟 > 0 such that 𝐵𝑐,𝑟 ⊆ 𝑈 . Let 𝜁1, . . . , 𝜁𝑚 ∈ 𝑈 and𝑈 ′ = 𝑈 r709

{𝜁1, . . . 𝑧𝑚}. Let 𝑓 be a holomorphic function on𝑈 ′ such that lim𝑧→𝜁𝑖 (𝑧 − 𝜁𝑖) 𝑓 (𝑧) = 0 for every 1 ≤ 𝑖 ≤710

𝑚. Let𝛾 be the circular path on the boundary of𝐵𝑐,𝑟 . en for all 𝜁 ∈ 𝐵𝑐,𝑟 ∩𝑈 ′,711

𝑓 (𝜁 ) = 1
2𝜋𝚤

∫
𝛾

𝑓 (𝑧)d𝑧
𝑧 − 𝜁

.

Proof. Let712

𝑔(𝑧) = 𝑓 (𝑧) − 𝑓 (𝜁 )
𝑧 − 𝜁

.

en𝑔 is holomorphicon𝑈r{𝜁 , 𝜁1, . . . , 𝜁𝑚}, and lim𝑧→𝑎 (𝑧−𝑎)𝑔(𝑧) = 0 for every𝑎 ∈ {𝜁 , 𝜁1, . . . , 𝜁𝑚}.713

erefore714 ∫
𝛾

𝑓 (𝑧)d𝑧
𝑧 − 𝜁

=

∫
𝛾

𝑓 (𝜁 )d𝑧
𝑧 − 𝜁

.

Now apply Corollary 13.4. �715
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14.2.Lemma. Let𝛾 be a piecewise-differentiable closed path inC. Let𝑔 : Im(𝛾) −→ C be a continuous716

function. For positive integers𝑛, define 𝐹𝑛 : C r Im(𝛾) −→ C by717

𝑧 ↦→
∫
𝛾

𝑔(𝜁 )
(𝜁 − 𝑧)𝑛 d𝜁 .

en for each𝑛 ≥ 1, 𝐹𝑛 is holomorphic onC r Im(𝛾) with 𝐹 ′𝑛 = 𝑛𝐹𝑛+1.718

Proof. Wewill prove that 𝐹1 is holomorphic with 𝐹 ′1 = 𝐹2. For the rest, read the proof of Ahlfors,719

Chapter 4, Section 2.3 (‘Higher derivatives’), Lemma 3.720

Let 𝑧0, 𝜖 be such that 𝐵𝑧0,𝜖 ⊆ C r Im(𝛾). Let 0 < 𝛿 � 𝜖 and 𝑧 ∈ 𝐵𝑧0,𝛿 .721

Step 1: lim𝑧→𝑧0 𝐹1(𝑧) = 𝐹1(𝑧0). Proof: Note that722

(14.3) 𝐹1(𝑧) − 𝐹1(𝑧0) = (𝑧 − 𝑧0)
∫
𝛾

𝑔(𝜁 )
(𝜁 − 𝑧) (𝜁 − 𝑧0)

d𝜁 .

For every 𝜁 ∈ Im(𝛾), | (𝜁 − 𝑧0) | > 𝜖 and | (𝜁 − 𝑧) | > 𝜖 − 𝛿. By Proposition 8.5723

|𝐹1(𝑧) − 𝐹1(𝑧0) | <
𝛿

𝜖 (𝜖 − 𝛿)

∫
𝛾

|𝑔(𝜁 ) | |d𝜁 |.

erefore lim𝑧→𝑧0 |𝐹1(𝑧) − 𝐹1(𝑧0) | = 0.724

Step 2: 𝐹 ′1 (𝑧0) = 𝐹2(𝑧0). Proof: Consider the function725

𝐺 (𝑧) =
∫
𝛾

𝑔(𝜁 )
(𝜁 − 𝑧) (𝜁 − 𝑧0)

d𝜁

on C r Im(𝛾). Applying the previous step with 𝑔(𝜁 )/(𝜁 − 𝑧0) replacing 𝑔(𝑧), we see that726

lim𝑧→𝑧0 𝐺 (𝑧) = 𝐺 (𝑧0) = 𝐹2(𝑧0). Now by (14.3)727

lim
𝑧→𝑧0

𝐹1(𝑧) − 𝐹1(𝑧0)
𝑧 − 𝑧0

= lim
𝑧→𝑧0

𝐺 (𝑧) = 𝐹2(𝑧0). �

14.4.Corollary. With notation as ineorem 14.1,728

𝑓 (𝑛) (𝜁 ) = 𝑛!
2𝜋𝚤

∫
𝛾

𝑓 (𝑧)d𝑧
(𝑧 − 𝜁 )𝑛+1 .

In particular, 𝑓 is infinitely complex-differentiable on𝑈 ′.729

Proof. Write730

𝐹𝑛+1 =

∫
𝛾

𝑓 (𝑧)d𝑧
(𝑧 − 𝜁 )𝑛+1 .

Byeorem 14.1, 𝐹1 = 𝑓 . By Lemma 14.2, 𝐹𝑛+1 = 1
𝑛! 𝑓

(𝑛). �731

Exercises.732

(1) Complete the proof of Lemma 14.2. (Ahlfors, Chapter 4, Section 2.3 (‘Higher deriva-733

tives’), Lemma 3 (p. 121))734

(2) Let 𝑈 be a domain and 𝛾 a piecewise-differentiable path in 𝑈 . If 𝑓𝑛 is a sequence of735

continuous functions on𝑈 converging uniformly to 𝑓 , then736

lim
𝑛

∫
𝛾

𝑓𝑛 (𝑧)d𝑧 =

∫
𝛾

𝑓 (𝑧)d𝑧.
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If
∑

𝑛 𝑓𝑛 converges uniformly to 𝑓 , then737 ∑︁
𝑛

∫
𝛾

𝑓𝑛 (𝑧)d𝑧 =

∫
𝛾

𝑓 (𝑧)d𝑧.

(3) Let 𝑟 ∈ R and 𝑓𝑟 : R2 −→ R, (𝑥,𝑦) ↦→ (𝑥2 + 𝑦2 − 1)𝑟 . Show that for each 𝑟 , 𝑓𝑟 is a real-738

analytic function. 𝑓𝑟 (𝑝) does not depend on 𝑟 if 𝑝 ∈ 𝜕𝐵0,1, but depends on 𝑟 if 𝑝 ∈ 𝐵0,1.739

is is in contrastwith thebehaviour of holomorphic functions (onadomain containing740

𝐵0,1).741

Lecture 15. Holomorphic functions are analytic.742

In this lecture, we will prove that holomorphic functions are analytic.743

15.1. Lemma. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 holomorphic on𝑈 ′ := 𝑈 r {𝑐}. en the following are744

equivalent:745

(1) lim
𝑧→𝑐

𝑓 (𝑧) exists (inC).746

(2) lim
𝑧→𝑐

(𝑧 − 𝑐) 𝑓 (𝑧) = 0.747

(3) there exists a holomorphic function 𝑓 on𝑈 such that 𝑓 |𝑈 ′ = 𝑓 ;748

Morever, in this situation, 𝑓 is uniquely determined by 𝑓 .749

Proof. (1) =⇒ (2): lim
𝑧→𝑐

(𝑧 − 𝑐) 𝑓 (𝑧) = lim
𝑧→𝑐

(𝑧 − 𝑐) lim
𝑧→𝑐

𝑓 (𝑧) = 0.750

(2) =⇒ (3): Let 𝑟 > 0 be such that 𝐵𝑐,𝑟 ⊆ 𝑈 . Let 𝛾 : [0, 1] −→ 𝑈 be the path 𝑡 ↦→ 𝑐 + 𝑒2𝜋𝚤𝑡 .751

Define 𝑓 : 𝑈 −→ C by752

𝑓 (𝜁 ) =
{
𝑓 (𝜁 ), if 𝜁 ∈ 𝑈 ′,∫
𝛾

𝑓 (𝑧)d𝑧
𝑧−𝑐 , if 𝜁 = 𝑐.

We need to show that 𝑓 is holomorphic on 𝑈 ; for which it suffices to check that it is differ-753

entiable at 𝑐. We may therefore restrict our attention to 𝐵𝑐,𝑟 . Using Cauchy integral formula754

(eorem 14.1) for𝑈 ′ ∩ 𝐵𝑐,𝑟 , we can rewrite 𝑓 on 𝐵𝑐,𝑟 as755

𝑓 (𝜁 ) =
∫
𝛾

𝑓 (𝑧)d𝑧
𝑧 − 𝜁

Now apply Lemma 14.2, 𝑓 is holomorphic on 𝐵𝑐,𝑟 .756

(3) =⇒ (1): lim
𝑧→𝑐

= 𝑓 (𝑐).757

Proving uniqueness is left as an exercise. �758

15.2.Definition. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 holomorphic on𝑈 ′ := 𝑈 r {𝑐}. We say that 𝑐759

is a removable singularity of 𝑓 if the equivalent conditions of the previous lemma are satisfied.760

15.3.eorem. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 a holomorphic on𝑈 . Let 𝑛 ∈ N. en there exists a761

holomorphic function 𝑓𝑛 (𝑧) on𝑈 such that762

𝑓 (𝜁 ) =
𝑛−1∑︁
𝑘=0

𝑓 (𝑘) (𝑐)
𝑘!

(𝜁 − 𝑐)𝑘 + (𝜁 − 𝑐)𝑛 𝑓𝑛 (𝜁 )

on𝑈 . Let𝛾 be the circular path around the boundary of𝐵𝑐,𝑅 where𝑅 > 0 is such that𝐵𝑐,𝑅 ⊆ 𝑈 . en763

𝑓𝑛 (𝜁 ) =
1
2𝜋𝚤

∫
𝛾

𝑓 (𝑧)d𝑧
(𝑧 − 𝑐)𝑛 (𝑧 − 𝜁 )
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on𝐵𝑐,𝑅.764

Proof. (Ahlfors, Chapter 4, Section 3.1, pp. 124ff.) e function 𝑓 (𝑧)−𝑓 (𝑐)
𝑧−𝑐 (on 𝑈 r {𝑐}) has a765

removable singularity at 𝑧 = 𝑐, so there exists a holomorphic function 𝑓1(𝑧) on 𝑈 such that766

𝑓1(𝑧) =
𝑓 (𝑧)−𝑓 (𝑐)

𝑧−𝑐 on 𝑈 r {𝑐}. Repeating this argument for 𝑓1, and by induction, we see that767

for each positive integer 𝑘, there exists a holomorphic function 𝑓𝑘+1 on𝑈 such that 𝑓𝑘+1(𝑧) =768

𝑓𝑘 (𝑧)−𝑓𝑘 (𝑐)
𝑧−𝑐 on𝑈 r {𝑐}. Putting this together, we get the following:769

𝑓 (𝑧) = 𝑓 (𝑐) + (𝑧 − 𝑐) 𝑓1(𝑧)
= 𝑓 (𝑐) + (𝑧 − 𝑐) 𝑓1(𝑐) + (𝑧 − 𝑐)2𝑓2(𝑧)
= 𝑓 (𝑐) + (𝑧 − 𝑐) 𝑓1(𝑐) + (𝑧 − 𝑐)2𝑓2(𝑐) + · · · + (𝑧 − 𝑐)𝑛−1𝑓𝑛−1(𝑐) + (𝑧 − 𝑐)𝑛 𝑓𝑛 (𝑧)

Note that 𝑓 (𝑘) (𝑧) is the 𝑘-th order derivative of (𝑧 − 𝑐)𝑘 𝑓𝑘 (𝑧), so 𝑓 (𝑘) (𝑐) = 𝑘!𝑓𝑘 (𝑐). is proves770

the first assertion.771

Now note that on 𝐵𝑐,𝑅772

𝑓𝑛 (𝜁 ) =
1
2𝜋𝚤

∫
𝛾

𝑓𝑛 (𝑧)
𝑧 − 𝜁

d𝑧

=
1
2𝜋𝚤

∫
𝛾

𝑓 (𝑧)
(𝑧 − 𝑐)𝑛 (𝑧 − 𝜁 )d𝑧 −

𝑛−1∑︁
𝑘=0

𝑓 (𝑘) (𝑐)
2𝜋𝚤𝑘!

∫
𝛾

1
(𝑧 − 𝑐)𝑛−𝑘 (𝑧 − 𝜁 )

d𝑧.
(15.4)

Let 𝜁1, 𝜁2 ∈ 𝐵𝑐,𝑅 and773

𝐺𝑚 (𝜁1, 𝜁2) :=
∫
𝛾

1
(𝑧 − 𝜁1)𝑚 (𝑧 − 𝜁2)

d𝑧.

as a function of 𝜁1, with 𝜁2 fixed. We first show that𝐺1(𝜁1, 𝜁2) = 0. First assume that 𝜁1 ≠ 𝜁2.774

en775 ∫
𝛾

1
(𝑧 − 𝜁1) (𝑧 − 𝜁2)

d𝑧 =
1

𝜁1 − 𝜁2
(𝑛(𝜁1, 𝛾) − 𝑛(𝜁2, 𝛾)) = 0.

Now assume that 𝜁1 = 𝜁2. Since 1
(𝑧−𝜁1)2 has a primitive onC r {0}, we see that776 ∫

𝛾

1
(𝑧 − 𝜁1)2

d𝑧 = 0.

By Lemma 14.2 applied to the function 1
(𝑧−𝜁2) , we see that𝐺𝑚 for𝑚 ≥ 2 are successive deriva-777

tives of𝐺1 (thought of as a function of 𝜁1), so𝐺𝑚 = 0 for each𝑚 ≥ 1. erefore in (15.4), we778

obtain779 ∫
𝛾

1
(𝑧 − 𝑐)𝑛−𝑘 (𝑧 − 𝜁 )

d𝑧 = 0

for each 𝑘 = 0, . . . , 𝑛 − 1, thus completing the proof of the theorem. �780

15.5.Corollary. Let𝑈 be a domain and 𝑓 holomorphic on𝑈 . Let 𝑐, 𝑅 be such that𝐵𝑐,𝑅 ⊆ 𝑈 . en781

𝑓 (𝜁 ) =
∑︁
𝑘∈N

𝑓 (𝑘) (𝑐)
𝑘!

(𝜁 − 𝑐)𝑘

on𝐵𝑐,𝑅. In particular, every holomorphic function on𝑈 is analytic on𝑈 .782
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Proof. Let 𝛾 be the circular path on the boundary of 𝐵𝑐,𝑅. To prove the assertion, it suffices to783

show that for every 𝜖 > 0, there exists 𝑁 such that for every 𝑛 > 𝑁 ,784 ����(𝜁 − 𝑐)𝑛 1
2𝜋𝚤

∫
𝛾

𝑓 (𝑧)d𝑧
(𝑧 − 𝑐)𝑛 (𝑧 − 𝜁 )

���� < 𝜖.

Let𝑀 = sup{𝑓 (𝑧) | 𝑧 ∈ Im(𝛾)}. en785 ����(𝜁 − 𝑐)𝑛 1
2𝜋𝚤

∫
𝛾

≤ 𝑓 (𝑧)d𝑧
(𝑧 − 𝑐)𝑛 (𝑧 − 𝜁 )

���� ≤ 𝑀 |𝜁 − 𝑐 |𝑛
𝑅𝑛−1(𝑅 − |𝜁 − 𝑐 |) .

e assertion now follows, since |𝜁 − 𝑐 | < 𝑅. �786

Exercises.787

(1) Prove the uniqueness of 𝑓 in Lemma 15.1.788

(2) Show that 𝑘th order derivative of (𝑧 − 𝑐)𝑘𝑔(𝑧) at 𝑧 = 𝑐 is 𝑘!𝑔(𝑐).789

(3) With fixed 𝜁2 ∈ 𝐵𝑐,𝑅, use an appropriate result to conclude that𝐺1(𝜁1, 𝜁2) is a holomor-790

phic function of 𝜁1 ∈ 𝐵𝑐,𝑅, the proof of eorem 15.3. en show that𝐺1(𝜁2, 𝜁0) = 0 by791

taking a limit.792

(4) Let 𝑐 be a removable singularity of 𝑓 (which is defined on𝑈 r {𝑐} for some open neigh-793

bourhood 𝑈 of 𝑐). Show that there exists𝑚 ∈ N and a holomorphic function 𝑓1 on 𝑈794

such that 𝑓 (𝑧) = (𝑧 − 𝑐)𝑚 𝑓1(𝑧) such that 𝑓1(𝑐) ≠ 0.795

(5) Let𝑈 be a domain and 𝑓 a holomorphic function on𝑈 . en the zeros of 𝑓 are isolated.796

Show that 𝑓 has only finitelymany zeroes in any compact subset of𝑈 . If 𝑐 ∈ 𝑈 is a zero,797

then there exists a unique positive integer𝑚 such that 𝑓 (𝑧) = (𝑧−𝑐)𝑚 𝑓1(𝑧) on𝑈 , where798

𝑓1 is holomorphic on𝑈 and 𝑓1(𝑐) ≠ 0. It is called the order (ormultiplicity) of the zero at799

𝑐.800

Lecture 16. Morera’s theorem, Liouville’s theorem801

16.1. Corollary (Morera’s theorem). Let𝑈 be a domain and 𝑓 : 𝑈 −→ C a continuous function. If802 ∫
𝛾
𝑓 (𝑧)d𝑧 = 0 for every closed piecewise-differentiable path𝛾 in𝑈 , then 𝑓 is analytic.803

Proof. By Corollary 15.5, it suffices to show that 𝑓 is holomorphic. By Proposition 9.4, 𝑓 has804

a primitive 𝐹 on 𝑈 . Since 𝐹 is holomorphic, it is infinitely complex-differentiable by Corol-805

lary 14.4; in particular, 𝑓 = 𝐹 ′ is holomorphic. �806

16.2. Proposition (Liouville’s theorem). Every bounded entire function is constant.807

Proof. Let 𝑓 : C −→ C be a bounded holomorphic function. Let𝑀 ∈ R be such that |𝑓 (𝑧) | < 𝑀808

for every 𝑧 ∈ C. Let 𝜁 ∈ C and 𝑟 > 0. By Corollary 14.4,809

𝑓 ′(𝜁 ) = 1
2𝜋𝚤

∫
𝜕𝐵𝜁 ,𝑟

𝑓 (𝑧)
(𝑧 − 𝜁 )2d𝑧

Hence |𝑓 ′(𝜁 ) | ≤ 𝑀𝑟−1, so 𝑓 ′ = 0 onC. Now apply 7.5. �810

16.3.eorem (Fundamental theorem of algebra). C is an algebraically closed field.811

We need to show that complex polynomials of positive degree have a zero. First we prove a812

lemma about such polynomials.813

16.4. Lemma. Let 𝑓 ∈ C[𝑋 ] be a polynomial of positive degree. en for every positive real number𝑀 ,814

there exists𝑅 > 0 such that |𝑓 (𝑧) | > 𝑀 for every 𝑧 with |𝑧 | > 𝑅.815
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Proof. Write 𝑓 (𝑋 ) =
∑𝑑

𝑖=0 𝑎𝑖𝑋
𝑖 , with 𝑑 > 0 and 𝑎𝑑 ≠ 0. For every 𝑧 ∈ C, |𝑓 (𝑧) | ≥ |𝑎𝑑 | |𝑧 |𝑑 −816 ∑𝑑−1

𝑖=0 |𝑎𝑖 | |𝑧 |𝑖 . (Use𝑎𝑑𝑧𝑑 = 𝑓 (𝑧)−∑𝑑−1
𝑖=0 𝑎𝑖𝑧

𝑖 .) eassertionnowfollows fromExercise 1 below. �817

Proof ofeorem 16.3. Let 𝑓 ∈ C[𝑋 ] be a polynomial of positive degree. We want to show that818

there exists 𝑐 ∈ C such that 𝑓 (𝑐) = 0. By way of contradiction, assume that this is false. Hence819

𝑔(𝑧) = 1
𝑓 (𝑧) is an entire function. We now claim that 𝑔 is bounded. Assume the claim. en 𝑔820

and, therefore, 𝑓 are constant functions by Proposition 16.2, contradicting the hypothesis that821

𝑓 has positive degree.822

To prove the claim, assume, on the contrary, that for each positive integer 𝑛, there exists823

𝑐𝑛 ∈ C such that |𝑔(𝑐𝑛) | > 𝑛. en |𝑓 (𝑐𝑛) | < 1
𝑐𝑛
. If the sequence 𝑐𝑛 is bounded (i.e., con-824

tained in a compact subset ofC), then it would have a convergent subsequence 𝑐𝑛𝑚 ,𝑚 ≥ 1. (We825

implicitly assume that the function𝑚 ↦→ 𝑛𝑚 is an increasing function.) en 𝑓 (lim𝑚 𝑐𝑛𝑚 ) =826

lim𝑚 𝑓 (𝑐𝑛𝑚 ) = 0, a contradiction. Hence for every positive real number 𝑅, there exists 𝑛 such827

that |𝑐𝑛 | > 𝑅. Now use Lemma 16.4 to obtain a contradiction. �828

Exercises.829

(1) Let
∑𝑑

𝑖=0 𝑏𝑖𝑋
𝑖 ∈ R[𝑋 ] with 𝑏𝑑 > 0. en for every positive real number𝑀, there exists830

𝑅 > 0 such that𝑔(𝑥) > 𝑀 for every 𝑥 ∈ Rwith 𝑥 > 𝑅.831

(2) Show that Lemma 16.4 does not hold for entire functions in general, by looking at the832

exponential function.833

Lecture 17. Isolated singularities834

Let 𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 a holomorphic function on 𝑈 r {𝑐}. We say that 𝑐 is an835

isolated singularity of 𝑓 . Recall that an isolated singularity 𝑐 is said to be a removable singularity836

if lim
𝑧→𝑐

(𝑧 − 𝑐) 𝑓 (𝑧) = 0 (Definition 15.2).837

(We do not rule out the situation that 𝑓 is defined or is differentiable at 𝑐.)838

17.1.Definition. An isolated singularity 𝑐 is said to be a pole of 𝑓 if it is not a removable singu-839

larity of 𝑓 and it is a removable singularity of 1/𝑓 .840

17.2.Example. 𝑧𝑚 with𝑚 < 0 has a pole at 0.841

17.3.Remark. With notation as above, let𝑈 be a neighbourhood of 𝑐 such that 𝑓 is defined and842

holomorphic on 𝑈 r {𝑐}. Since the zeros of a holomorphic function are isolated (use Corol-843

lary 15.5 and Proposition 4.6), we may assume, by replacing𝑈 by a smaller neighbourhood if844

necessary, that 𝑓 (𝜁 ) ≠ 0 for each 𝜁 ∈ 𝑈 , 𝜁 ≠ 𝑐. Hence we can talk of 1
𝑓
in𝑈 r {𝑐} and consider845

whether 𝑐 is a removable singularity or not.846

17.4. Proposition. Let 𝑐 be a pole of 𝑓 . en847

(1) lim
𝑧→𝑐

1
𝑓 (𝑧) = 0.848

(2) ere exists a positive integer𝑁 and a neighbourhood𝑉 of 𝑐 in𝑈 such that849

𝑓 (𝑧) =
∞∑︁

𝑘=−𝑁
𝑎𝑘 (𝑧 − 𝑐)𝑘

on𝑉 r {𝑐}.850

(3) For every positive real number𝑀 , there exists𝛿 > 0 such that |𝑓 (𝑧) | > 𝑀 for every 𝜁 ∈ 𝐵𝑐,𝛿 .851
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Proof. (1): By Lemma 15.1, there exists a neighbourhood𝑉 of 𝑐 and a holomorphic function𝑔 on852

𝑉 such that𝑔(𝑧) = 1
𝑓 (𝑧) on𝑉 r {𝑐}. If𝑔(𝑐) ≠ 0, then lim𝑧→𝑐

𝑓 (𝑧) = 1
𝑔(𝑐) , which would imply that 𝑓853

has a removable singularity at 𝑐. Hence lim
𝑧→𝑐

𝑔(𝑧) = 𝑔(𝑐) = 0.854

(2): Since 𝑐 is a removable singularity of 1
𝑓
, we canwrite 1

𝑓 (𝑧) = (𝑧 −𝑐)𝑁 𝑓1(𝑧) for some𝑁 ∈ N855

and a holomorphic function 𝑓1(𝑧) in a neighbourhood of 𝑐 with 𝑓1(𝑐) ≠ 0. (See Exercise 4 in856

Lecture 15.) Since lim
𝑧→𝑐

1
𝑓 (𝑧) = 0,𝑁 > 0. Note that 1

𝑓1 (𝑧) is holomorphic in a neighbourhood of 𝑐,857

so it admits a convergent power series expansion around 𝑐.858

(3): Exercise. �859

enext two propositions characterise zeros and poles of holomorphic functions by looking860

at the limit of |𝑧 − 𝑐 |𝑛 |𝑓 (𝑧) | for various 𝑛. eir proofs are left as exercises.861

17.5.Proposition. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 a non-zero holomorphic function on𝑈 r {𝑐}. en862

the following are equivalent:863

(1) 𝑓 can be extended to a holomorphic function 𝑓 on𝑈 with 𝑓 (𝑐) = 0;864

(2) lim
𝑧→𝑐

𝑓 (𝑧) = 0;865

(3) there exist𝑚,𝑛 ∈ Z with𝑚 < 0 and 𝑛 < 0 such that lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) | = 0 and lim
𝑧→𝑐

|𝑧 −866

𝑐 |𝑛 |𝑓 (𝑧) | = ∞867

(4) there exists𝑁 ∈ Zwith𝑁 < 0 such that lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) | = 0 for every𝑚 > 𝑁 and lim
𝑧→𝑐

|𝑧 −868

𝑐 |𝑛 |𝑓 (𝑧) | = ∞ for every𝑛 < 𝑁 .869

17.6. Proposition. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 a holomorphic function on𝑈 r {𝑐}. en the870

following are equivalent:871

(1) 𝑐 is pole of 𝑓 ;872

(2) there exist𝑚,𝑛 ∈ N such that lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) | = 0 and lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑛 |𝑓 (𝑧) | = ∞873

(3) there exists𝑁 ∈ Zwith𝑁 > 0 such that lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) | = 0 for every𝑚 > 𝑁 and lim
𝑧→𝑐

|𝑧 −874

𝑐 |𝑛 |𝑓 (𝑧) | = ∞ for every𝑛 < 𝑁 .875

17.7.Definition. Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 a holomorphic function on𝑈 r {𝑐}. Say that876

𝑐 is an essential singularity of 𝑓 if it is not a removable singularity or a pole of 𝑓 .877

17.8. Proposition. 𝑐 is an essential singularity of 𝑓 if and only if lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑛 |𝑓 (𝑧) | does not exist for878

any𝑛 ∈ Z.879

Proof. ‘If ’: by definition. ‘Only if ’: Bywayof contradiction, assume that lim
𝑧→𝑐

|𝑧−𝑐 |𝑁 |𝑓 (𝑧) | exists.880

en 𝑐 is a removable singularity of (𝑧 − 𝑐)𝑁 𝑓 (𝑧). If 𝑁 ≤ 0, then 𝑐 is a removable singularity881

of 𝑓 . If 𝑁 > 0, then 𝑐 is a pole of 𝑓 . �882

17.9.Proposition. Let𝑈 be a domain,𝑐 ∈ 𝑈 and 𝑓 a holomorphic function on𝑈 r {𝑐}. Suppose that𝑐883

is an essential singularity of 𝑓 . en for every𝐴 ∈ C, every 𝜖 > 0 and every 𝛿 > 0, there exists 𝜁 ∈ 𝐵𝑐,𝜖884

such that |𝑓 (𝜁 ) −𝐴| < 𝛿.885

Proof. By way of contradiction, let𝐴 ∈ C, 𝜖 > 0, 𝛿 > 0 be such that for every 𝜁 ∈ 𝐵𝑐,𝜖 r {𝜁 },886

|𝑓 (𝜁 ) − 𝐴| ≥ 𝛿. en for every 𝑛 < 0, lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑛 |𝑓 (𝑧) − 𝐴| = ∞, so 𝑐 is not an essential887

singularity of 𝑓 (𝑧) −𝐴. en there exists𝑚 > 0 such that lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) −𝐴| = 0. Note that888

lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) | ≤ lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝑓 (𝑧) −𝐴| + lim
𝑧→𝑐

|𝑧 − 𝑐 |𝑚 |𝐴| = 0

so 𝑐 is not an essential singularity of 𝑓 . �889
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17.10.Definition. Let𝑈 be a domain. By ameromorphic function on𝑈 ,wemean a a holomorphic890

function 𝑓 : 𝑈 ′ −→ Cwhere𝑈 ′ ⊆ 𝑈 , and points in𝑈 r𝑈 ′ are isolated in𝑈 and are poles of 𝑓 .891

17.11.Example. If 𝑓 is aholomorphic functiononadomain𝑈 then its zerosare isolated,byCorol-892

lary 15.5 and Proposition 4.6; hence 1
𝑓
ismeromorphic on𝑈 . E.g., 1

𝑧
is ameromorphic function893

onC. Every rational function is meromorphic on every domain inC.894

Exercises.895

(1) Let 𝑐 be a pole of 𝑓 . For every positive real number 𝑀, there exists 𝛿 > 0 such that896

|𝑓 (𝑧) | > 𝑀 for every 𝜁 ∈ 𝐵𝑐,𝛿 .897

(2) Prove Proposition 17.5.898

(3) Prove Proposition 17.6.899

(4) Let𝑈 be a domain, 𝑐 ∈ 𝑈 and 𝑓 holomorphic on𝑈 r {𝑐}. Suppose that 𝑐 is a pole of 𝑓 .900

Write901

𝑓 (𝑧) =
∞∑︁

𝑘=−𝑁
𝑎𝑘 (𝑧 − 𝑐)𝑘

in a punctured neighbourhood𝑉 r {𝑐} of 𝑐, with𝑁 > 0 and 𝑎−𝑁 ≠ 0. Let 𝑟 > 0 be such902

that 𝐵𝑐,𝑟 ⊆ 𝑉 . Let𝛾 : [0, 1] −→ 𝑉 be the path 𝑡 ↦→ 𝑐 + 𝑟𝑒2𝜋𝚤𝑡 . en903 ∫
𝛾

𝑓 d𝑧 = 2𝜋𝚤𝑎−1.

We say that 𝑎−1 is the residue of 𝑓 at 𝑐, and denote it by Res𝑓 (𝑐).904

(5) Let𝑈 be a disc, 𝑓 ameromorphic function on𝑈 and𝛾 a piecewise-differentiable closed905

path in𝑈 . Let {𝜁 𝑗 } be the poles of 𝑓 . Assume that 𝛾 does not pass through 𝜁 𝑗 for any 𝑗 .906

Show that 𝑛(𝜁 𝑗 , 𝛾) = 0 except for finitely many 𝑗 and that907

1
2𝜋𝚤

∫
𝛾

𝑓 d𝑧 =
∑︁
𝑗

𝑛(𝜁 𝑗 , 𝛾) Res𝑓 (𝜁 𝑗 ).

(6) Let 𝑈 be a domain andM(𝑈 ) be the set of meromorphic functions on 𝑈 . For 𝑓 , 𝑔 ∈
M(𝑈 ) and 𝑐 ∈ 𝑈 , let

(𝑓 + 𝑔) (𝑐) = lim
𝑧→𝑐

(𝑓 (𝑧) + 𝑔(𝑧))

(𝑓 𝑔) (𝑐) = lim
𝑧→𝑐

(𝑓 (𝑧)𝑔(𝑧))

Show that 𝑐 is a pole of 𝑓 +𝑔 if and only if 𝑐 is a pole of 𝑓 or of𝑔. State and prove a similar908

characterization of poles of 𝑓 𝑔.909

(7) (Not relevant for this course.) Let𝑈 be a domain. enM(𝑈 ) is the field of fractions of910

A(𝑈 ).911

(8) Let 𝑁 be an integer and suppose that 𝑐 is a removable singularity of (𝑧 − 𝑐)𝑁 𝑓 (𝑧). If912

𝑁 ≤ 0, then 𝑐 is a removable singularity of 𝑓 (𝑧). If 𝑁 > 0, then 𝑐 is a pole of 𝑓 (𝑧) of913

order ≤ 𝑁 .914

(9) 𝑒
1
𝑧 has an essential singularity at 0.915

(10) Let 𝑓 (𝑧), 𝑔(𝑧) be a holomorphic functions defined in a neighbourhood of 𝑐 ∈ C. Sup-916

pose that 𝑓 (𝑧) has an essential singularity at 𝑐. Show that 𝑓 (𝑧)𝑔(𝑧) has an essential917

singularity at 𝑐.918
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Lecture 18. Local mapping919

18.1. Example. Consider the holomorphic function 𝑓 (𝑧) = 𝑧𝑚,𝑚 > 0, on C. It has a zero at920

𝑧 = 0, of order𝑚. Note that for every𝑏 ∈ C, there exist𝑚 solutions (countedwithmultiplicity)921

for the equation 𝑓 (𝑧) = 𝑏. �922

We now show that every holomorphic function exhibits the same behaviour locally. Here is923

the result:924

18.2. Proposition. Let𝑈 be a domain and 𝑓 a non-constant holomorphic function on𝑈 . Let 𝜁 ∈ 𝑈 .925

Write𝑎 = 𝑓 (𝜁 ). Let𝑚 be the order of the zero of 𝑓 (𝑧) −𝑎 at𝑧 = 𝜁 . en for every0 < 𝜖 � 1, there exists926

𝛿 > 0 such that for every𝑏 ∈ 𝐵𝑎,𝛿 , there exists𝑚 solutions in𝐵𝜁 ,𝜖 to the equation 𝑓 (𝑧) = 𝑏.927

As an immediate corollary, we get the following:928

18.3. Corollary. Let𝑈 be a domain and 𝑓 a non-constant holomorphic function on𝑈 . en 𝑓 (𝑈 ) is an929

open subset ofC. In other words, every non-constant holomorphic function is an openmap.930

Proof. With notation as in Proposition 18.2, 𝐵 𝑓 (𝜁 ),𝛿 ⊆ 𝑓 (𝐵𝜁 ,𝜖) for every 𝜁 ∈ 𝑈 and every 0 <931

𝜖 � 1. Since the open discs 𝐵𝜁 ,𝜖 form a basis for the topology of𝑈 , 𝑓 is open. �932

Before proving Proposition 18.2, we need to develop a method to count zeros. In the above933

example with 𝑓 = 𝑧𝑚, we note that if𝛾 is a closed piecewise-differentiable curve inC not pass-934

ing through 0, then935 ∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) d𝑧 =𝑚

∫
𝛾

d𝑧
𝑧

= 2𝜋𝚤 · 𝑛(0, 𝛾) ·𝑚.

In particular, if𝛾 is a circular path such that 0 is in the bounded region, then𝑚 = 1
2𝜋𝚤

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) d𝑧.936

18.4. Proposition. Let𝑈 be a disc and 𝑓 holomorphic on𝑈 . Let {𝜁 𝑗 } be the distinct zeros of 𝑓 ; denote937

the order of 𝜁 𝑗 by𝑚 𝑗 . Let𝛾 be a closed piecewise differentiable path in𝑈 , not passing through any of the938

𝜁 𝑗 . en939

(1) 𝑛(𝜁 𝑗 , 𝛾) = 0 for all but finitely many 𝑗 .940

(2)
1
2𝜋𝚤

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) d𝑧 =

∑︁
𝑗

𝑛(𝜁 𝑗 , 𝛾) ·𝑚 𝑗 .

Proof. We will use Exercise 5 from Lecture 15 in this proof. (1): Since Im𝛾 is compact, there941

exists an open subset 𝑉 of 𝑈 such that its closure 𝑉 in C contains Im𝛾 and is a subset of 𝑈 .942

Note that 𝑓 has only finitelymany zeros in𝑉 . For any 𝜁 ∈ Cr𝑉 ,𝑛(𝜁 ,𝛾) = 0, since the function943
1

𝑧−𝜁 is holomorphic on𝑉 .944

(2): By (1), we may assume that the (distinct) zeros of 𝑓 are 𝜁1, . . . , 𝜁𝑟 , with orders𝑚1, . . .𝑚𝑟 .945

Write 𝑓 (𝑧) = ∏𝑟
𝑗=1(𝑧−𝜁 𝑗 )𝑚 𝑗𝑔(𝑧) where𝑔 is holomorphic on an open set𝑉 containing Im𝛾 and946

does not have any zeros. en947

𝑓 ′(𝑧)
𝑓 (𝑧) =

𝑟∑︁
𝑗=1

𝑚 𝑗

𝑧 − 𝜁 𝑗
+ 𝑔′(𝑧)
𝑔(𝑧) .

e assertion now follows from noting that 𝑔
′(𝑧)
𝑔(𝑧) is holomorphic on𝑉 . �948

Proof of Proposition 18.2. Let 0 < 𝜖 � 1. en 𝐵𝜁 ,𝜖 ⊆ 𝑈 . Let 𝛾 : [0, 1] −→ 𝑈 , 𝑡 ↦→ 𝜁 + 𝜖𝑒2𝜋𝚤𝑡 . Let949

Γ = 𝑓 ◦𝛾 . Moreover, since 𝜖 � 1, wemay assume that 𝜁 is the only solution to 𝑓 (𝑧) = 𝑎 in 𝐵𝜁 ,𝜖 ;950

in particular,𝑎 ∉ Im Γ. Let 𝛿 > 0 be such that 𝐵𝑎,𝛿 ∩ Im Γ = ∅.951
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Let 𝑏 ∈ 𝐵𝑎,𝛿 . Let {𝜁 𝑗 } be the distinct zeros of 𝑓 (𝑧) − 𝑏 in 𝐵𝜁 ,𝜖 , with𝑚 𝑗 the order of 𝜁 𝑗 . en∑︁
𝑗

𝑛(𝜁 𝑗 , 𝛾) ·𝑚 𝑗 =
1
2𝜋𝚤

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) − 𝑏

d𝑧 =
1
2𝜋𝚤

∫
Γ

d𝑤
𝑤 − 𝑏

= 𝑛(𝑏, Γ);

𝑚 =
1
2𝜋𝚤

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) − 𝑎

d𝑧 =
1
2𝜋𝚤

∫
Γ

d𝑤
𝑤 − 𝑎

= 𝑛(𝑎, Γ).

In both rows, the first equality is by Proposition 18.4 and the second by the substitution𝑤 =952

𝑓 (𝑧). Observe that𝑛(𝑎, Γ) = 𝑛(𝑏, Γ) since 𝑎 and𝑏 belong to the same connected component of953

C r Im(Γ). Now note that 𝑛(𝜁 𝑗 , 𝛾) = 1 for each 𝜁 𝑗 . Hence
∑

𝑗𝑚 𝑗 =𝑚. �954

Exercises.955

(1)956

Lecture 19. Maximum principle, definite integrals etc.957

In this short lecture, we tie various loose ends.958

19.1. Proposition. Let𝑈 be a domain and 𝑓 a non-constant holomorphic function on𝑈 .959

(1) ere does not exist 𝜁 ∈ 𝑈 such that |𝑓 (𝜁 ) | = sup{|𝑓 (𝑧) | : 𝑧 ∈ 𝑈 }960

(2) Assume that𝑈 is bounded and that 𝑓 can be extended to a continuous function 𝑓 on𝑈 . ere exists961

𝜁 ∈ 𝜕𝑈 such that |𝑓 (𝜁 ) | = sup{|𝑓 (𝑧) | : 𝑧 ∈ 𝑈 }.962

Proof. (1): Let 𝜁 ∈ 𝑈 . For every 0 < 𝜖 � 1, there exists 𝛿 such that 𝐵 𝑓 (𝜁 ),𝛿 ⊆ 𝑓 (𝐵𝜁 ,𝜖), by963

Proposition 18.2. Now note that there exists 𝑏 ∈ 𝐵 𝑓 (𝜁 ),𝛿 such that |𝑏 | > |𝑓 (𝜁 ) |.964

(2): Since 𝑈 is compact, there exists 𝜁 ∈ 𝑈 such that |𝑓 (𝜁 ) | = sup{|𝑓 (𝑧) | : 𝑧 ∈ 𝑈 } =965

sup{|𝑓 (𝑧) | : 𝑧 ∈ 𝑈 }. �966

Here is a generalization of Proposition 18.4 to meromorphic functions.967

19.2.Proposition. Let𝑈 be a disc and 𝑓 meromorphic on𝑈 . Let𝑎𝑖 be the distinct zeros of 𝑓 , with orders968

𝑙𝑖 , respectively; let 𝑏 𝑗 be the distinct poles of 𝑓 , with orders𝑚 𝑗 , respectively. Let 𝛾 be a closed piecewise969

differentiable path in𝑈 , not passing through any of the𝑎𝑖 and any of the𝑏 𝑗 . en970

1
2𝜋𝚤

∫
𝛾

𝑓 ′(𝑧)
𝑓 (𝑧) d𝑧 =

∑︁
𝑖

𝑙𝑖 · 𝑛(𝑎𝑖, 𝛾) −
∑︁
𝑗

𝑚 𝑗 · 𝑛(𝑏 𝑗 , 𝛾)

Proof. As in the proof of Proposition 18.4, we may assume that the number of zeroes and the971

number of poles are finite. Hence wemay write972

𝑓 (𝑧) =
∏
𝑖

finite

(𝑧 − 𝑎𝑖)𝑙𝑖
∏
𝑗

finite

(𝑧 − 𝑏𝑏)−𝑚 𝑗𝑔(𝑧)

in some open subset𝑉 containing Im𝛾 , where𝑔(𝑧) is holomorphic on𝑉 and does not have any973

zeros. Hence974

𝑓 ′(𝑧)
𝑓 (𝑧) =

∑︁
𝑖

finite

𝑙𝑖

𝑧 − 𝑎𝑖
−

∑︁
𝑗

finite

𝑚𝑖

𝑧 − 𝑏 𝑗
+ 𝑔′(𝑧)
𝑔(𝑧) ,

fromwhich the assertion follows. �975

We now look at an example of evaluating definite real integrals using complex integration.976
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19.3.Example. Integrate977 ∫ 𝜋

0

d𝜃
𝑎 + cos𝜃

where 𝑎 > 1 is a real number. Write 𝑏 for its value. Note that978

2𝑏 =

∫ 2𝜋

0

d𝜃
𝑎 + cos𝜃

Write 𝑧 = 𝑒𝚤𝜃 . en d𝜃 = −𝚤 d𝑧
𝑧
and cos𝜃 = 1

2
(
𝑧 + 1

𝑧

)
. Let𝛾 : [0, 2𝜋] −→ C, 𝜃 ↦→ 𝑒2𝜋𝚤𝜃 . en979

2𝑏 = −𝚤
∫
𝛾

d𝑧
𝑧2 + 2𝑎𝑧 + 1

emeromorphic function 1
𝑧2+2𝑎𝑧+1 has two poles𝛼 = −𝑎+

√
𝑎2 − 1 and 𝛽 = −𝑎−

√
𝑎2 − 1. Since980

|𝛼 | < 1,𝑛(𝛼,𝛾) = 1; Since |𝛽 | > 1,𝑛(𝛼,𝛾) = 0; Note that981

1
𝑧2 + 2𝑎𝑧 + 1 =

1
𝛼 − 𝛽

(
1

𝑧 − 𝛼
− 1
𝑧 − 𝛽

)
.

Hence982

2𝑏 =
(−𝚤) (2𝜋𝚤)
𝛼 − 𝛽

, i.e., 𝑏 =
𝜋

√
𝑎2 − 1

. �

Exercises.983

(1)984

Lecture 20. Conformality985

20.1. Definition. Let 𝑛 ≥ 2 be an integer, 𝑈 ⊆ R𝑛 an open subset and 𝑝 ∈ 𝑈 . A function986

𝑓 : 𝑈 −→ R𝑛 is said to be conformal at 𝑝 if it is differentiable at 𝑝 and it preserves angles and987

orientation at 𝑝. We say that 𝑓 is conformal on𝑈 if it is conformal at 𝑝 for every 𝑝 ∈ 𝑈 .988

What does thismean? Let 𝑒1, . . . , 𝑒𝑛 denote the standard basis forR𝑛, and let𝑥1, . . . , 𝑥𝑛 be the989

coordinates of R𝑛 with respect to this basis. Write 𝑓 = (𝑓1, . . . , 𝑓𝑛), with respect to this basis.990

Let 1 ≤ 𝑖 ≤ 𝑛. Consider the curve 𝛾 : (−𝜖, 𝜖) −→ 𝑈 , 𝑡 ↦→ 𝑝 + 𝑡𝑒𝑖 . Since 𝑓 is differentiable at 𝑝,991

the composite curve 𝑓 𝛾 is differentiable at 0, with derivative992 

𝜕𝑓1
𝜕𝑥𝑖

(𝑝)
𝜕𝑓2
𝜕𝑥𝑖

(𝑝)
...

𝜕𝑓𝑛
𝜕𝑥𝑖

(𝑝)


is is the 𝑖th column of the jacobian matrix 𝐽 of 𝑓 at 𝑝.993

e jacobian of 𝑓 at 𝑝 gives the map d𝑓 : Ω(𝑈 )𝑝 −→ Ω(R𝑛)𝑓 (𝑝), when these are identified994

withR𝑛. Here,Ω(−) is the cotangent bundle, and Ω(−)𝑞 the cotangent space at 𝑞.995

Saying that 𝑓 preserves angles at 𝑝 is same as saying that 𝐽 preserves angles, i.e.,996

𝑣 ·𝑤
|𝑣 | |𝑤 | =

𝐽𝑣 · 𝐽𝑤
|𝐽𝑣 | |𝐽𝑤 |

for every non-zero 𝑣,𝑤 ∈ R𝑛. We now have the following:997

20.2.Proposition. Let 𝐽 be an𝑛×𝑛 realmatrix. en 𝐽 preserves angles if and only if there exist𝜆 > 0998

and an orthogonal matrix𝐴 such that 𝐽 = 𝜆𝐴.999
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Proof. ‘Only if ’: Note that 𝐽𝑒𝑖 and 𝐽𝑒 𝑗 are orthogonal to each other if 𝑖 ≠ 𝑗 , so 𝐽𝑒𝑖 · 𝐽𝑒 𝑗 = 0 for1000

𝑖 ≠ 𝑗 . Write 𝜆𝑖 = |𝐽𝑒𝑖 |, 1 ≤ 𝑖 ≤ 𝑛. Note that 𝜆𝑖 > 0 for each 𝑖. Let 𝐴 be the matrix whose1001

𝑖th column is 𝐽𝑒𝑖
𝜆𝑖
. Since the columns of 𝐽 are orthogonal to each other, it follows that 𝐴 is an1002

orthogonal matrix. erefore |𝐴𝑣 | = |𝐴𝑡𝑣 | = |𝑣 | for every 𝑣 ∈ R𝑛.1003

Now consider the linear transformation𝐴𝑡 𝐽 . For every 𝑣,𝑤 ∈ R𝑛,1004

𝐴𝑡 𝐽𝑣 · 𝐴𝑡 𝐽𝑤

|𝐴𝑡 𝐽𝑣 | |𝐴𝑡 𝐽𝑤 | =
𝐽𝑣 · 𝐴𝐴𝑡 𝐽𝑤

|𝐽𝑣 | |𝐽𝑤 | =
𝐽𝑣 · 𝐽𝑤
|𝐽𝑣 | |𝐽𝑤 | =

𝑣 ·𝑤
|𝑣 | |𝑤 | ,

i.e., 𝐴𝑡 𝐽 preserves angles. Note that 𝐴𝑡 𝐽𝑒𝑖 = 𝜆𝑖𝐴
𝑡𝐴𝑒𝑖 = 𝜆𝑖𝑒𝑖 for each 𝑖, i.e., 𝐴𝑡 𝐽 is a diagonal1005

matrix (with respect to the basis 𝑒𝑖 ). Hence it must be amultiple of 𝐼𝑛 (Exercise), i.e, 𝜆𝑖 = 𝜆 𝑗 for1006

all 𝑖, 𝑗 . Set 𝜆 = 𝜆𝑖 .1007

‘If ’:1008

𝐽𝑣 · 𝐽𝑤
|𝐽𝑣 | |𝐽𝑤 | =

𝜆𝐴𝑣 · 𝜆𝐴𝑤
|𝜆𝐴𝑣 | |𝜆𝐴𝑤 | =

𝐴𝑣 · 𝐴𝑤
|𝐴𝑣 | |𝐴𝑤 | =

𝑣 · 𝐴𝑡𝐴𝑤

|𝑣 | |𝑤 | =
𝑣 ·𝑤
|𝑣 | |𝑤 | . �

An orientation on𝑈 is a choice of a basis (i.e. a non-zero vector) in ∧𝑛Ω(𝑈 ). Since we have1009

already looked at the jacobianmatrix with respect to𝑥1, . . . , 𝑥𝑛, let us take d𝑥1∧ · · ·∧d𝑥𝑛. en1010

the inducedmap∧𝑛Ω(𝑈 )𝑝 −→ ∧𝑛Ω(R𝑛)𝑓 (𝑝) ismultiplicationbydet 𝐽 . Topreserve orientation1011

is to say that det 𝐽 > 0.1012

We summarise this discussion as follows.1013

20.3. Proposition. Let𝑛 ≥ 2 be an integer,𝑈 ⊆ R𝑛 an open subset and 𝑓 : 𝑈 −→ R𝑛 a differentiable1014

function.en 𝑓 is conformal on𝑈 if and only if the jacobianmatrix of 𝑓 at𝑝 is amultiple of an orthogonal1015

matrix and its determinant is positive, for every 𝑝 ∈ 𝑈 .1016

Wenow restrict out attention to dimension 2. Let𝑥,𝑦 be coordinates ofR2. Write 𝑓 = (𝑢, 𝑣).1017

en1018

𝐽 =

[
𝑢𝑥 (𝑝) 𝑢𝑦 (𝑝)
𝑣𝑥 (𝑝) 𝑣𝑦 (𝑝)

]
Since the columns are orthogonal to each other, there exists 𝜆 ≠ 0 such that𝑢𝑦 (𝑝) = −𝜆𝑣𝑥 (𝑝)1019

and 𝑣𝑦 (𝑝) = 𝜆𝑢𝑥 (𝑝). en det 𝐽 = 𝜆(𝑢𝑥 (𝑝)2 + 𝑣𝑥 (𝑝)2), so 𝜆 > 0.us1020

𝐽 =

[
𝑢𝑥 (𝑝) −𝜆𝑣𝑥 (𝑝)
𝑣𝑥 (𝑝) 𝜆𝑢𝑥 (𝑝)

]
For the rows of 𝐽 to be orthogonal, 𝜆2 = 1, so 𝜆 = 1. Hence1021

𝐽 =

[
𝑢𝑥 (𝑝) −𝑣𝑥 (𝑝)
𝑣𝑥 (𝑝) 𝑢𝑥 (𝑝)

]
Summarising this, we get the following relation between conformality and holomorphicity.1022

20.4. Proposition. Let𝑈 ⊆ C be open and 𝑓 : 𝑈 −→ C. en the following are equivalent:1023

(1) 𝑓 is holomorphic and 𝑓 ′(𝑧) has no zeroes on𝑈 ;1024

(2) 𝑓 is conformal on𝑈 .1025

20.5.Remark. Some books might require conformal maps to be injective, by definition.1026

20.6.Remark. A conformal map preserves angles and orientation only, but not length. To see1027

this, let𝑈 ⊆ C be a domain and 𝑓 holomorphic on𝑈 . Suppose that 𝑓 ′(𝑝) ≠ 0. Let𝛾 : (−𝜖, 𝜖) :1028

𝑈 be a𝐶1-path with𝛾 (0) = 𝑝. Write Γ = 𝑓 𝛾 . en |Γ′(0) | = |𝑓 ′(𝑝) | |𝛾 ′(0) |. Hence the length of1029

an infinitesimal arc through 𝑝 gets multiplied by |𝑓 ′(𝑝) |.1030
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Exercises.1031

(1) Show that the map 𝑧 ↦→ 𝑧 preserves angles, but not orientation.1032

(2) Orientation in the case ofR2. Let 𝑣1, 𝑣2 be a basis ofR2. Plot them as vectors based at 0.1033

We can think of orientation as the direction (clockwise, or counter-clockwise) in which1034

we have to go from 𝑣1 to 𝑣2 traversing the smaller of the angles between them. (One of1035

these angles must be in (0, 𝜋); this is the smaller angle.) Let 𝑓 : R2 −→ R2 be a linear1036

transformation. Show that 𝑓 preserves orientation if and only if the direction in which1037

onehas to traverse smaller angle from 𝑓 (𝑣1) to 𝑓 (𝑣2) is the sameas thedirection inwhich1038

one has to traverse the smaller angle from 𝑣1 to 𝑣2.1039

(3) Show that if 𝑓 : 𝑈 −→ C is conformal, then for every 𝑝 ∈ 𝑈 , it maps a neighbourhood1040

of 𝑝 homeomorphically onto its image.1041

(4) Show that if𝑈 ⊆ C is a domain and 𝑓 is an injective holomorphic function on𝑈 , then1042

𝑓 is conformal.1043

Lecture 21. Riemann sphere1044

Wewant to discuss Moebius transformations next.1045

Consider the unit sphere 𝑆2 inR3, with the map1046

𝜎 : 𝑆2 r {(0, 0, 1)} −→ C, (𝑥1, 𝑥2, 𝑥3) ↦→
𝑥1 + 𝚤𝑥2
1 − 𝑥3

.

What is this map? Identify the hyperplane 𝑥3 = 0 with C, with 𝑥1 as the real part and 𝑥2 the1047

imaginary part. en 𝜎 ((𝑥1, 𝑥2, 𝑥3)) is the point where the line through (0, 0, 1) and (𝑥1, 𝑥2, 𝑥3)1048

meetsC. I.e., we need to solve for 𝜆 in1049

(1 − 𝜆) (0, 0, 1) + 𝜆(𝑥1, 𝑥2, 𝑥3) = (𝑦1, 𝑦2, 0).

Hence 𝜆 = 1
1−𝑥3 . is gives the above description of 𝜎. 𝜎 is a homeomorphism, with 𝑆2 given1050

the subspace topology of R3. Points of 𝑆2 r (0, 0, 1) with 𝑥3 > 0 are mapped to C r 𝐵0,1, the1051

points with 𝑥3 < 0 are mapped to 𝐵0,1. With this, 𝑆2 is a one-point compactification ofR2 = C1052

(Exercise). emap 𝜎 is called stereographic projection.1053

By the Riemann sphere, we mean 𝑆2, with a complex manifold structure given on it. Cover 𝑆21054

with two open subsets,𝑈 := 𝑆2 r {(0, 0, 1)} and𝑉 := 𝑆2 r {(0, 0,−1)}. We identify𝑈 with C,1055

using 𝜎. Note that 𝜎 ((0, 0,−1)) = 0. We can now define 𝜏 : 𝑉 −→ C by1056

𝜏 (𝑝) =
{
0, if 𝑝 = (0, 0, 1)
1

𝜎 (𝑝) , otherwise.

is identifies 𝑉 with C, and on C r {0}, the map 𝜏𝜎−1 is 𝑧 ↦→ 1
𝑧
, which is a biholomorphic1057

map, i.e., a bijective holomorphic map whose inverse is holomorphic. We will write Ĉ for the1058

Riemann sphere.1059

Using the Riemann sphere, we can reinterpret the notion of poles. Identify C with𝑈 using1060

𝜎, and write ∞ for the point (0, 0, 1). is is sometimes called the point at infinity (w.r.t this1061

identification). Let 𝑝 ∈ C and 𝑓 a holomorphic function defined in a neighbourhood𝑊 of 𝑝,1062

with a pole at 𝑝. e function 𝑓 :𝑊 r {𝑝} −→ C = 𝑈 extends to a function 𝑓 :𝑊 −→ 𝑆2, with1063

𝑓 (𝑝) = ∞. Shrink𝑊 so that 𝑓 does not have a zero in𝑊 . Hence Im 𝑓 ⊆ 𝑉 . e composite 𝜏 𝑓1064

is the holomorphic map 𝑧 ↦→ 1
𝑓 (𝑧) on𝑊 .1065
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Exercises.1066

(1) Show that themap 𝜎 in the definition of the Riemann sphere is a homeomorphism and1067

that the Riemann sphere is a one-point compactification ofR2 = C.1068

(2) Let 𝑐 ∈ (−1, 1). Show that 𝜎 maps 𝑆2 ∩ {𝑥3 = 𝑐} to a circle in C and 𝑆2 ∩ {𝑥3 < 𝑐} to the1069

open set bounded by the circle.1070

Lecture 22. Moebius transformations1071

References for this lecture are Ahlfors Chapter 2, Section 1.4, and Chapter 3, Section 3. See1072

also Rodŕıguez, Kra and Gilman, Chapter 8, especially the early parts.1073

NOTE:We identifyCwith Ĉ r {∞} through the stereographic projection 𝜎. When you read1074

this lecture and the next, you should keep this in mind. Sometimes, we will switch between C1075

and its image under 𝜎 without explicitly mentioning it.1076

By aMoebius transformation, wemean ameromorphic function onC given by a rational func-1077

tion of the form1078

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

where 𝑎, 𝑏, 𝑐, 𝑑 are complex numbers with 𝑎𝑑 ≠ 𝑏𝑐.1079

22.1.Remark. Wemake the following observations (notation as above):1080

(1) 𝑓 (𝑧) is holomorphic onC if and only if 𝑐 = 0; otherwise 𝑓 has exactly one pole, at −𝑑
𝑐
.1081

(2) 𝑓 (𝑧) is injective on the complement of the pole. (Exercise)1082

(3) We can think of 𝑓 as being given by1083 [
𝑎 𝑏

𝑐 𝑑

] [
𝑧

1

]
We can extend 𝑓 to bijective function from Ĉ to Ĉ, still denoted by 𝑓 , by setting1084 {

𝑓 (∞) = ∞, if 𝑐 = 0;
𝑓 (−𝑑

𝑐
) = ∞ and 𝑓 (∞) = 𝑎

𝑐
, otherwise.

22.2. Proposition. e extended function 𝑓 : Ĉ −→ Ĉ is a homeomorphism.1085

Proof. e extended function is bijective (check). I will show that it is continuous and open,1086

treating the two cases 𝑐 = 0 and 𝑐 ≠ 0 separately for your convenience.1087

𝑐 = 0: en 𝑑 ≠ 0. Replacing 𝑎 by 𝑎
𝑑
and 𝑏 by 𝑏

𝑑
, we may assume that 𝑓 is given by the

polynomial 𝑎𝑧 + 𝑏. e inverse function is 𝑧 ↦→ 𝑧−𝑏
𝑎
. It is continuous and open. Hence 𝑓 is a

homeomorphism ofC to itself. Now consider the extension of 𝑓 to Ĉ. Let𝑈 be an open subset
of Ĉ. We want to show that 𝑓 (𝑈 ) and 𝑓 −1(𝑈 ) are open. If𝑈 ⊂ C, then 𝑓 (𝑈 ) and 𝑓 −1(𝑈 ) are
open. Otherwise, i.e. if∞ ∈ 𝑈 , then Ĉ r𝑈 is compact and, hence, closed, so

𝑓 (𝑈 ) = Ĉ r 𝑓

(
Ĉ r𝑈

)
𝑓 −1(𝑈 ) = Ĉ r 𝑓 −1

(
Ĉ r𝑈

)
are open. (Note: 𝑓 is bijective.)1088

𝑐 ≠ 0: Let us compute 𝑓 −1: Write 𝑤 = 𝑎𝑧+𝑏
𝑐𝑧+𝑑 . Rewrite as (𝑐𝑧 + 𝑑)𝑤 = (𝑎𝑧 + 𝑏), so we get1089

(𝑐𝑤 − 𝑎)𝑧 = −𝑑𝑤 + 𝑏. Define a meromorphic function𝑔 : C −→ C by1090

𝑔(𝑧) = −𝑑𝑧 + 𝑏
𝑐𝑧 − 𝑎

.
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Note that1091 [
−𝑑 𝑏

𝑐 −𝑎

] [
𝑎 𝑏

𝑐 𝑑

]
= −(𝑎𝑑 − 𝑏𝑐)𝐼2 =

[
𝑎 𝑏

𝑐 𝑑

] [
−𝑑 𝑏

𝑐 −𝑎

]
Hence on C r {−𝑑

𝑐
, 𝑎
𝑐
}, (𝑓 𝑔) (𝑧) = (𝑔𝑓 ) (𝑧), i.e, 𝑔 is the inverse of 𝑓 . It is easy to check that1092

its extension to Ĉ is the inverse of 𝑓 (on Ĉ). Since Ĉ is a metric space, we can check that 𝑓 is1093

continuous by taking limits. Let 𝜁 ∈ Ĉ. Let 𝜁𝑖 be a sequence converging to 𝜁 . If 𝜁 = ∞, then1094

|𝜎 (𝜁𝑖) | → ∞ (see the description of 𝜎 in the previous lecture). Hence 𝑓 (𝜁𝑖) → 𝑎
𝑐
. Similarly, if1095

𝜁 = −𝑑
𝑐
, then |𝑓 (𝜁𝑖) | → ∞. Hence 𝑓 is continuous. is applies to every Moebius transforma-1096

tion, including to𝑔 = 𝑓 −1. Hence 𝑓 is a homeomorphism. �1097

We will come back to Moebius transformations in the next lecture. For now, we look at ra-1098

tional functions, in general.1099

Let𝑝, 𝑞 ∈ C[𝑧] be relatively primenon-zero polynomials. Let𝑚 = deg𝑝 and𝑛 = deg𝑞. en1100

we get a meromorphic function1101

𝑓 (𝑧) = 𝑝 (𝑧)
𝑞(𝑧)

on C. We can extend 𝑓 to Ĉ as follows. Let 𝜁 ∈ Ĉ. If 𝜁 ∈ C and 𝑞(𝜁 ) ≠ 0, 𝑓 (𝜁 ) = 𝑝 (𝜁 )
𝑞(𝜁 ) (nothing1102

new here). For 𝜁 ∈ C is a zero of 𝑞, then for every sequence 𝜁𝑖 −→ 𝜁 , | 𝑝 (𝜁𝑖 )
𝑞(𝜁𝑖 ) | −→ ∞, so we can1103

define 𝑓 (𝜁 ) = ∞.1104

Now assume 𝜁 = ∞. Write 𝑝 (𝑧) = 𝑎𝑚𝑧
𝑚 + · · · + 𝑎0 and 𝑞(𝑧) = 𝑏𝑛𝑧

𝑛 + · · · + 𝑏0. If𝑚 > 𝑛,1105

then | 𝑝 (𝜁𝑖 )
𝑞(𝜁𝑖 ) | −→ ∞, so we can define 𝑓 (∞) = ∞. If𝑚 = 𝑛, then we can define 𝑓 (∞) = 𝑎𝑚

𝑏𝑚
, since1106

𝑝 (𝜁𝑖 )
𝑞(𝜁𝑖 ) −→ 𝑎𝑚

𝑏𝑚
. If𝑚 < 𝑛, then 𝑝 (𝜁𝑖 )

𝑞(𝜁𝑖 ) −→ 0, so define 𝑓 (∞) = 0. Consider the neighbourhood1107

𝑉 ⊆ Ĉ of∞, from the last lecture. We identify𝑉 with C using 𝜏. Since 𝜁𝑖 → ∞, 𝜏 (𝜁𝑖) −→ 0.1108

On a neighbourhood𝑊 ⊆ 𝑉 of∞, 𝑓 is holomorphic, and has the form1109

𝑎𝑚 ( 1𝑧 )
𝑚 + 𝑎𝑚−1( 1𝑧 )

𝑚−1 + · · · + 𝑎0

𝑏𝑛 ( 1𝑧 )𝑛 + 𝑏𝑛−1(
1
𝑧
)𝑛−1 + · · · + 𝑏0

= 𝑧𝑛−𝑚
𝑎𝑚 + 𝑎𝑚−1𝑧1 + · · · + 𝑎0𝑧

𝑚

𝑏𝑛 + 𝑏𝑛−1𝑧1 + · · · + 𝑏0𝑧𝑛
.

Hence the order of the zero of 𝑓 at∞ is 𝑛 −𝑚.1110

Exercises.1111

(1) Let 𝑎, 𝑏, 𝑐, 𝑑 be complex numbers such that 𝑎𝑑 − 𝑏𝑐 ≠ 0. Let 𝑈 = C if 𝑐 = 0; let 𝑈 =1112

C r {−𝑑
𝑐
}, otherwise. Show that the function1113

𝑓 : 𝑈 −→ C, 𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

is injective. Hint: Look at the linear mapC2 −→ C2 given by the matrix1114 [
𝑎 𝑏

𝑐 𝑑

]
.

(2) Complete the proof (by filling in the missing steps) of Proposition 22.2.1115

(3) Read Ahlfors, Chapter 2, Section 1.4 about partial fraction expansions. Do Exercise 1 of1116

that section.1117

(4) Let 𝑝, 𝑞 ∈ C[𝑧] be relatively prime non-zero polynomials. Assume without loss of gen-1118

erality that deg𝑞 > 0. Let 𝑓 be the meromorphic function1119

𝑝 (𝑧)
𝑞(𝑧)
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on C. Show that 𝑓 ′ is meromorphic and the poles of 𝑓 ′ are exactly the poles of 𝑓 . If 𝜁 is1120

a pole of 𝑓 of order𝑚, then the order of the pole of 𝑓 ′ at 𝜁 is𝑚 + 1.1121

Lecture 23. Moebius transformations, continued.1122

References for this lectureareAhlfors,Chapter 3,Section3.2andRodŕıguez,KraandGilman,1123

Section 8.1.1124

Let 𝑎, 𝑏, 𝑐, 𝑑 ∈ Cwith 𝑎𝑑 − 𝑏𝑐 ≠ 0. For every 𝜁 ∈ C, 𝜁 ≠ 0,1125

𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 =

𝜁𝑎𝑧 + 𝜁𝑏

𝜁𝑐𝑧 + 𝜁𝑑

asmeromorphic functions onC. Hencewemay assume that𝑎𝑑 −𝑏𝑐 = 1. In other words, every1126

Moebius transformation can be represented by an element of SL2(C). Hereafter, we will make1127

this assumption.1128

Recall that a Moebius transformation is typically only a meromorphic function on C, but a1129

well-defined function on Ĉ.1130

23.1. Lemma. Assume that theMoebius transformation1131

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 (with 𝑎𝑑 − 𝑏𝑐 = 1)

(considered as a function on Ĉ) fixes 0, 1 and∞, then it is the identity map: 𝑎 = 𝑑 = 1,𝑏 = 𝑐 = 0.1132

Proof. Since 𝑓 (∞) = ∞, and 𝑓 is bijective, 𝑓 is holomorphic on C, and the only zero of 𝑓 is 0.1133

Hence 𝑐 = 0. Without loss of generality, we may assume that 𝑑 = 1, i.e, 𝑓 is given by a linear1134

polynomial 𝑎𝑧 +𝑏. Since we have assumed that 𝑎𝑑 −𝑏𝑐 = 1,𝑎 = 1. Since 0 is the only zero of 𝑓 ,1135

𝑓 is the identity map. �1136

23.2.Proposition. Let 𝜁0, 𝜁1, 𝜁∞ be distinct points on Ĉ. en there is a uniqueMoebius transformation1137

𝑧 ↦→ 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑

such that 𝜁0 ↦→ 0, 𝜁1 ↦→ 1 and 𝜁∞ ↦→ ∞.1138

Proof. Let1139

𝑓 (𝑧) = 𝑧 − 𝜁0

𝑧 − 𝜁∞

𝜁1 − 𝜁∞
𝜁1 − 𝜁0

.

It is a Moebius transformation, with 𝑓 (𝜁0) = 0, 𝑓 (𝜁1) = 1 and 𝑓 (𝜁∞) = ∞. Let 𝑔(𝑧) be any1140

Moebius transformation such that𝑔(𝜁0) = 0,𝑔(𝜁1) = 1 and𝑔(𝜁∞) = ∞. en𝑔𝑓 −1 and 𝑓 𝑔−1 are1141

Moebius transformations, fixing 0, 1 and∞. Hence 𝑔𝑓 −1 = 𝑓 𝑔−1 = id. erefore 𝑔 = (𝑓 −1)−1 =1142

𝑓 . �1143

23.3.Definition. Let 𝜁 , 𝜁0, 𝜁1, 𝜁∞ be distinct points on Ĉ. eir cross-ratio is the image of 𝜁 under1144

the unique Moebius transformation that sends 𝜁0 to 0, 𝜁1 to 1 and 𝜁∞ to∞. We will denote the1145

cross-ratio by (𝜁 , 𝜁0, 𝜁1, 𝜁∞).1146

In other words1147

(𝜁 , 𝜁0, 𝜁1, 𝜁∞) =
𝜁 − 𝜁0

𝜁 − 𝜁∞

𝜁1 − 𝜁∞
𝜁1 − 𝜁0

.

23.4. Proposition. Let 𝜁 , 𝜁0, 𝜁1, 𝜁∞ be distinct points on Ĉ and 𝑓 aMoebius transformation. en1148

(𝑓 (𝜁 ), 𝑓 (𝜁0), 𝑓 (𝜁1), 𝑓 (𝜁∞)) = (𝜁 , 𝜁0, 𝜁1, 𝜁∞).
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Proof. Let𝑔 be the uniqueMoebius transformation that sends 𝜁0 to 0, 𝜁1 to 1 and 𝜁∞ to∞. en1149

(𝜁 , 𝜁0, 𝜁1, 𝜁∞) = 𝑔(𝜁 ).
en theMoebius transformation𝑔𝑓 −1 sends 𝑓 (𝜁0) to 0, 𝑓 (𝜁1) to 1 and 𝑓 (𝜁∞) to∞.1150

(𝑓 (𝜁 ), 𝑓 (𝜁0), 𝑓 (𝜁1), 𝑓 (𝜁∞)) = 𝑔𝑓 −1(𝑓 (𝜁 )) = 𝑔(𝜁 ) = (𝜁 , 𝜁0, 𝜁1, 𝜁∞). �

23.5. Proposition. Let 𝜁 , 𝜁0, 𝜁1, 𝜁∞ be distinct points on C. en the cross ratio (𝜁 , 𝜁0, 𝜁1, 𝜁∞) is real if1151

and only if the points lie on a circle or a straight line.1152

Proof. Westartwith the followingobservation. Let𝑎, 𝑏, 𝑐 ∈ Cbedistinct.entheyare collinear1153

if and only if the (non-zero) elements 𝑎 −𝑏, 𝑎 − 𝑐 ∈ C are linearly dependent overR if and only1154

if 𝑎−𝑏
𝑎−𝑐 is real.1155

We now prove the proposition. ‘If ’: Suppose that 𝜁 , 𝜁0, 𝜁1, 𝜁∞ lie on a straight line. en1156

𝜁 − 𝜁0

𝜁 − 𝜁∞
and

𝜁1 − 𝜁∞
𝜁1 − 𝜁0

are real numbers, so the cross ratio is a real number.1157

If the four points lie on a circle, the proof involves a calculation with the angle between the1158

line segments 𝑧 − 𝜁0 and 𝑧 − 𝜁∞, and similarly between 𝜁 − 𝜁0 and 𝜁 − 𝜁∞. Please see the file1159

rkg p204.pdf uploaded in moodle.1160

‘Only if ’: First assume that 𝜁0, 𝜁1, 𝜁∞ are collinear, then
𝜁1−𝜁∞
𝜁1−𝜁0 is a real number, and, if, further,1161

the cross-ratio is real, then 𝜁−𝜁0
𝜁−𝜁∞ is real, i.e., 𝜁 , 𝜁0, 𝜁∞ are collinear.1162

If 𝜁0, 𝜁1, 𝜁∞ are not collinear, then we need to consider the circle containing these points and1163

show, using the a calculation of angles, that 𝜁 also lies on the same circle. Please see the file1164

rkg p204.pdf uploaded in moodle. �1165

23.6.Corollary. AMoebius transformationmaps circles and straight lines to circles and straight lines.1166

Exercises.1167

(1) Show that the composite of twoMoebius transformations is aMoebius transformation.1168

Lecture 24. Singularity at infinity1169

In Lecture 22, we looked at extending rational functions to∞ and the resulting singularity1170

at∞.1171

24.1.Definition. Let 𝑓 be an entire function. We say that 𝑓 has a removable singularity (respec-1172

tively, a pole, an essential singularity) at∞ if the function 𝑓 ( 1
𝑧
) has a removable singularity (re-1173

spectively, a pole, an essential singularity) at 0.1174

Note that an entire function has a power series expansion that is convergent everywhere;1175

take 𝑐 = 0 and 𝑅 = ∞ in Corollary 15.5.1176

24.2. Proposition. An entire function has a removable singularity at∞ if and only if it is constant.1177

Proof. Let 𝑓 be an entire function. If it is constant, it has a removable singularity at∞. Con-1178

versely assumethat it hasa removable singularity at∞. Write 𝑓 (𝑧) = ∑
𝑛∈N 𝑎𝑛𝑧

𝑛.en
∑

𝑛∈N 𝑎𝑛𝑧
−𝑛

1179

has a removable singularity at 0. erefore1180

lim
𝑧→0

∑︁
𝑛∈N

𝑎𝑛𝑧
−𝑛+1 = 0.

Hence 𝑎𝑛 = 0 if−𝑛 + 1 < 0, i.e., 𝑓 (𝑧) = 𝑎0 + 𝑎1𝑧. en 𝑎1 = lim𝑧→0 𝑧𝑓 ( 1𝑧 ) = 0. Hence 𝑎𝑛 = 0 for1181

each 𝑛 > 0, i.e., 𝑓 is constant. �1182
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24.3. Proposition. Let 𝑓 be an entire function. en the following are equivalent:1183

(1) 𝑓 has a pole at∞;1184

(2) For every𝑀 > 0 there exists𝑅 > 0 such that |𝑓 (𝑧) | > 𝑀 for all |𝑧 | > 𝑅;1185

(3) 𝑓 is a non-constant polynomial.1186

Proof. (1) =⇒ (2): Apply Proposition 17.4 (3) to the function 𝑓 ( 1
𝑧
) at its pole 0, to see that for1187

every𝑀 > 0 there exists 𝑟 > 0 such that |𝑓 ( 1
𝑧
) | > 𝑀 for all |𝑧 | < 𝑟 . Take 𝑅 = 1

𝑟
.1188

(2) =⇒ (1): By Proposition 17.9, 𝑓 does not have an essential singularity at∞. By Proposi-1189

tion 24.2, 𝑓 does not have a removable singularity at∞.1190

(1) =⇒ (3): Note that 𝑓 is a non-constant function. We have already established that for1191

every𝑀 > 0 there exists 𝑅 > 0 such that |𝑓 (𝑧) | > 𝑀 for all |𝑧 | > 𝑅; hence the zeros of 𝑓 are1192

in a compact subset of C, so 𝑓 has only finitely many zeros, say, 𝑐1, . . . , 𝑐𝑛 of orders𝑚1, . . . ,𝑚𝑛1193

respectively. erefore we canwrite 𝑓 (𝑧) = ∏𝑛
𝑖=1(𝑧 −𝑐𝑖)𝑚𝑖𝑔(𝑧) where𝑔(𝑧) is an entire function1194

without any zeros.1195

It suffices to show that 𝑔 is constant. Assume the contrary. By hypothesis, 𝑓 does not have1196

an essential singularity at∞. erefore by Exercise 10 of Lecture 17 and Proposition 24.2, we1197

see that 𝑔 has a pole at∞. erefore for every𝑀 > 0 there exists 𝑅 > 0 such that |𝑔(𝑧) | > 𝑀1198

for all |𝑧 | > 𝑅. Hence 1
𝑔(𝑧) which is an entire function is bounded, so it is constant by Liouville’s1199

theorem (Proposition 16.2), contradicting the hypothesis that𝑔 is not constant.1200

(3) =⇒ (1): Write 𝑓 (𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑛𝑧
𝑛 with 𝑛 > 0 and 𝑎𝑛 ≠ 0. en 𝑓 ( 1

𝑧
) =1201

𝑎𝑛𝑧
−𝑛 + · · · + 𝑎0 has a pole of order 𝑛 at 0. �1202

24.4. Corollary. Let 𝑓 (𝑧) = ∑
𝑛∈N 𝑎𝑛𝑧

𝑛 be an entire function with 𝑎𝑛 ≠ 0 for infinitely many𝑛. en1203

for every𝐴 ∈ C, every𝑅 > 0, every𝛿 > 0, there exists 𝜁 ∉ 𝐵0,𝑅 such that |𝑓 (𝜁 ) −𝐴| < 𝛿.1204

Proof. Using the above propositions, we see that 𝑓 ( 1
𝑧
) has an essential singularity at 0. Now1205

apply Proposition 17.9 to 𝑓 ( 1
𝑧
) at 0. �1206

Lecture 25. Automorphisms of the complex plane1207

is lecture is based on Rodŕıguez, Kra and Gilman, Sections 8.1, 8.2.1208

25.1. Definition. Let𝑈 ⊆ C be a domain. By an automorphism of𝑈 , we mean a holomorphic1209

function 𝑓 : 𝑈 −→ 𝑈 such that there exists𝑔 : 𝑈 −→ 𝑈 such that 𝑓 𝑔 = 𝑔𝑓 = id𝑈 .1210

25.2.Proposition. Let𝑈 ⊆ C be a domain. Let 𝑓 : 𝑈 −→ 𝑈 be a bijective function.en the following1211

are equivalent:1212

(1) 𝑓 is holomorphic;1213

(2) 𝑓 is biholomorphic, i.e, 𝑓 and 𝑓 −1 are holomorphic;1214

(3) 𝑓 and 𝑓 −1 are conformal.1215

Proof. If 𝑓 and 𝑓 −1 are conformal, then they are holomorphic. Conversely, if 𝑓 is bijective and1216

holomorphic, then it is conformal, since if 𝑓 ′(𝑐) = 0 for some𝑐, then 𝑓 wouldnot be injective in1217

an neighbourhood of 𝑐. erefore it remains to show that if 𝑓 is holomorphic, then 𝑓 −1 is holo-1218

morphic. We will think of𝑈 as a subset of R2 and show that 𝑓 −1 is differentiable as a function1219

of two real variables and that the Cauchy-Riemann equations are satisfied (eorem 2.8)1220

We first show that 𝑓 −1 is differentiable as a function of two real variables. Let 𝑝 ∈ 𝑈 and1221

write 𝑞 = 𝑓 (𝑝). Note that 𝑓 ′(𝑝) ≠ 0, for, otherwise, 𝑓 would not be injective on 𝐵𝑝,𝛿 r {𝑝} for1222

some 0 < 𝛿 � 1. Write 𝑓 = 𝑢 + 𝚤𝑣. Hence the derivative of (𝑢, 𝑣) at 𝑝 is the jacobian matrix1223

𝐽 (𝑓 , 𝑝) :=
[
𝜕𝑢
𝜕𝑥
(𝑝) 𝜕𝑣

𝜕𝑥
(𝑝)

𝜕𝑢
𝜕𝑦
(𝑝) 𝜕𝑣

𝜕𝑦
(𝑝)

]
=

[
𝜕𝑢
𝜕𝑥
(𝑝) − 𝜕𝑢

𝜕𝑦
(𝑝)

𝜕𝑢
𝜕𝑦
(𝑝) 𝜕𝑢

𝜕𝑥
(𝑝)

]
.
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We have used the Cauchy-Riemann equations for 𝑓 . Fromeorem 2.8, we see that1224

|𝑓 ′(𝑝) |2 =
(
𝜕𝑢

𝜕𝑥
(𝑝)

)2
+

(
𝜕𝑣

𝜕𝑥
(𝑝)

)2
= det 𝐽 (𝑓 , 𝑝).

erefore 𝐽 (𝑓 , 𝑝) is invertible since 𝑓 ′(𝑝) ≠ 0. Note that (𝑢, 𝑣) is continuously differentiable,1225

since 𝑓 is complex-analytic. Now using the inverse function theorem (e.g., Rudin, Principles1226

of Mathematical Analysis, Chapter 9), we see that 𝑓 −1 is differentiable in a neighbourhood of1227

𝑞, as a function of two real variables.1228

Now to show that 𝑓 −1 satisfies the Cauchy-Riemann equations, observe that1229

𝐽 (𝑓 −1, 𝑞) 𝐽 (𝑓 , 𝑝) = 𝐼 i.e. 𝐽 (𝑓 −1, 𝑞) = (𝐽 (𝑓 , 𝑝))−1.
Since 𝐽 (𝑓 , 𝑝) is a non-zero real matrix of the form1230 [

𝑎 −𝑏
𝑏 𝑎

]
(suchmatrices are invertible) its inverse 𝐽 (𝑓 −1, 𝑞) too is of the same form (Exercise). Hence 𝑓 −11231

satisfies the Cauchy-Riemann equations. �1232

25.3. Proposition. emapC −→ C, 𝑧 ↦→ 𝑎𝑧 + 𝑏, where𝑎, 𝑏 ∈ C, 𝑎 ≠ 0 is an automorphism, with1233

inverse 𝑧 ↦→ 1
𝑎
(𝑧 − 𝑏). Conversely, if 𝑓 : C −→ C is an automorphism, then there exist𝑎, 𝑏 ∈ C,𝑎 ≠ 01234

such that 𝑓 (𝑧) = 𝑎𝑧 + 𝑏 for every 𝑧 ∈ C.1235

Proof. emap𝑧 ↦→ 𝑎𝑧+𝑏 (with𝑎 ≠ 0) is bijective andholomorphic, i.e., an automorphism. Its1236

inverse is the map 𝑧 ↦→ 1
𝑎
(𝑧 − 𝑏). Now assume that 𝑓 : C −→ C is an automorphism. Since 𝑓1237

is entire, it has a convergent power series expansion, valid everywhere onC. (In Corollary 15.5,1238

we can take 𝑐 = 0 and 𝑅 = ∞.) Write 𝑓 (𝑧) =
∑

𝑛∈N 𝑎𝑛𝑧
𝑛. Suppose that 𝑎𝑛 ≠ 0 for infinitely1239

many 𝑛. en by Corollary 24.4 we see that for each 𝑅 > 0, the set 𝑓 (C r 𝐵0,𝑅) is dense in C.1240

However, since 𝑓 is injective, 𝑓 (𝐵0,1) is non-empty but1241

𝑓 (C r 𝐵0,1) ∩ 𝑓 (𝐵0,1) = ∅.
Hence 𝑎𝑛 = 0 for all 𝑛 � 0. Write 𝑓 (𝑧) = 𝑎0 + 𝑎1𝑧 + · · · + 𝑎𝑚𝑧

𝑚 with𝑚 ≥ 0 and 𝑎𝑚 ≠ 0. Since1242

𝑓 is injective, it is not constant, so𝑚 ≥ 1.1243

We need to show that𝑚 = 1. By way of contradiction, assume that𝑚 > 1. en deg 𝑓 ′ > 0,1244

so there exists 𝜁 ∈ C such that 𝑓 ′(𝜁 ) ≠ 0. Hence there exists a neighbourhood of 𝜁 on which 𝑓1245

is not injective, a contradiction. �1246

25.4.Example. emap1247

𝑧 ↦→ 𝑧 − 𝚤

𝑧 + 𝚤
the upper half plane {𝑧 ∈ C | =(𝑧) > 0} to the open unit disc. If 𝑧 = 𝑥 + 𝑦𝚤, with𝑦 > 0, then1248 ����𝑥 + (𝑦 − 1)𝚤

𝑥 + (𝑦 + 1)𝚤

���� < 1

since |𝑦−1| < |𝑦+1|. It is aMoebius transformation, and holomorphic on the upper half plane,1249

so the map is conformal.1250

(e Riemannmapping theorem says that every simply connected domain𝑈 ( C is biholo-1251

morphic to the open unit disc. Above, we have given a specific map that works for the upper1252

half plane.) �1253

We now prove the Schwarz lemma, which describes maps from 𝐵0,1 to itself.1254
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25.5. Proposition. Let 𝑓 : 𝐵0,1 −→ 𝐵0,1 is holomorphic with 𝑓 (0) = 0, then |𝑓 (𝑧) | ≤ |𝑧 | for every1255

𝑧 ∈ 𝐵0,1 and |𝑓 ′(0) | ≤ 1. If |𝑓 (𝑧) | = |𝑧 | for some 𝑧 ∈ 𝐵0,1, 𝑧 ≠ 0 or if |𝑓 ′(0) | = 1, then 𝑓 (𝑧) = 𝑐𝑧 for1256

some constant 𝑐 with |𝑐 | = 1.1257

Proof. Write 𝑓 (𝑧) = ∑∞
𝑛=1 𝑎𝑛𝑧

𝑛. Let1258

𝑔(𝑧) =
{
𝑓 (𝑧)
𝑧
, if 𝑧 ≠ 0,

𝑎1, if 𝑧 = 0.

(Note that 𝑓 ′(0) = 𝑔(0).) en, for every 0 < 𝑟 < 1, and every 𝑧 with |𝑧 | = 𝑟 ,1259

|𝑔(𝑧) | =
���� 𝑓 (𝑧)𝑧

���� = |𝑓 (𝑧) |
|𝑧 | ≤ 1

𝑟
.

Hence by the maximum principle (Proposition 19.1) |𝑔(𝑧) | ≤ 1
𝑟
for every 𝑧 ∈ 𝐵0,𝑟 for every1260

0 < 𝑟 < 1. Hence |𝑔(𝑧) | ≤ 1 for every 𝑧 ∈ 𝐵0,1. Hence |𝑓 (𝑧) | ≤ |𝑧 | for each 𝑧 ∈ 𝐵0,1 and1261

𝑓 ′(0) = 𝑔(0) ≤ 1.1262

Now suppose that |𝑓 (𝑧) | = |𝑧 | for some 𝑧 ∈ 𝐵0,1, 𝑧 ≠ 0 or that |𝑓 ′(0) | = 1. Equivalently,1263

|𝑔(𝑧) | = 1 for some𝑧 ∈ 𝐵0,1, then𝑔 is a constant function, again by themaximumprinciple. �1264

As an immediate corollary, we get a property of holomorphic automorphisms of the unit1265

disc. ere is a more precise statement, characterising holomorphic automorphisms of the1266

unit disc. e proof of the general statement is not difficult, but we will skip it. If you are1267

interested, you can look at Rodŕıguez, Kra and Gilman, Section 8.2, eorem 8.18, or Lang,1268

Complex Analysis, Chapter VII, Section 2.1269

25.6.Corollary. Let 𝑓 : 𝐵0,1 −→ 𝐵0,1 be a bijective holomorphic map. en it is aMoebius transforma-1270

tion.1271

Proof. Let 𝑐 = 𝑓 (0). en check that the Moebius transformation1272

𝑔 : 𝑧 ↦→ 𝑧 − 𝑐

1 − 𝑐𝑧

is an holomorphic automorphism of𝐵0,1. Hence𝑔𝑓 a holomorphic automorphism of𝐵0,1, with1273

𝑔𝑓 (0) = 0. erefore it suffices to show that 𝑔𝑓 is a Moebius transformation. Replacing 𝑓 by1274

𝑔𝑓 , we may assume that 𝑓 (0) = 0. Write𝑤 = 𝑓 (𝑧). en1275

|𝑧 | = |𝑓 −1(𝑤) | ≤ |𝑤 | = |𝑓 (𝑧) | ≤ |𝑧 |
by the use of the the Schwarz Lemma (Proposition 25.5) once for 𝑓 −1 and then for 𝑓 . Hence1276

|𝑓 (𝑧) | = |𝑧 | for every 𝑧 ∈ 𝐵0,1. Again by Proposition 25.5, there exists 𝑎 with |𝑎 | = 1 such that1277

𝑓 (𝑧) = 𝑎𝑧. Hence 𝑓 is a Moebius transformation. �1278

Exercises.1279

(1) Show that the inverse of a non-zero real matrix of the form1280 [
𝑎 −𝑏
𝑏 𝑎

]
is a matrix of the above form. (Hint: after appropriate scaling, this matrix representa-1281

tion rotation inR2.)1282

(2) Determine the images of horizontal and vertical lines in the upper half plane under the1283

map in Example 25.4.1284

(3) Find the inverse of the map in Example 25.4.1285
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(4) Show that the map1286

𝑧 ↦→ −𝚤 𝑧 − 1
𝑧 + 1

conformally maps the upper half disc ({|𝑧 | < 1,=𝑧 > 0}) to the first quadrant.1287

(5) Find a conformal map from the upper half unit disc to the unit disc.1288

(6) Show thatC and 𝐵0,1 are not biholomorphic to each other.1289

Lecture 26. Automorphisms of the Riemann sphere1290

Wewant to understand holomorphic functions from Ĉ to itself. In Lecture 21, we described1291

the following open covering of Ĉ: (Here we change our notation a little bit.) 𝑈0 := Ĉ r {∞},1292

𝑈∞ := Ĉ r {0},𝜎 : 𝑈0 −→ C the stereographic projection map, and 𝜏 : 𝑈∞ −→ C.1293

26.1.Definition. Let 𝑓 : Ĉ −→ Ĉ and 𝑝 ∈ Ĉ and 𝑞 = 𝑓 (𝑝). Say that 𝑓 is differentiable at 𝑝 if 𝑓 is1294

differentiable at 𝜁 , where1295

(𝑓 , 𝜁 ) =


(𝜎 𝑓 𝜎−1, 𝜎 (𝑝)) if 𝑝 ∈ 𝑈0 and 𝑞 ∈ 𝑈0;
(𝜏 𝑓 𝜎−1, 𝜎 (𝑝)) if 𝑝 ∈ 𝑈0 and 𝑞 = ∞;
(𝜎 𝑓 𝜏−1, 𝜏 (𝑝)) if 𝑝 = ∞ and 𝑞 ∈ 𝑈0;
(𝜏 𝑓 𝜏−1, 𝜏 (𝑝)) if 𝑝 = ∞ = 𝑞.

Say that 𝑓 is holomorphic if it is differentiable at 𝑝 for each 𝑝 ∈ Ĉ.1296

It might appear that we have given preference to𝑈0 over𝑈∞ whilemaking the above defini-1297

tion. is is not the case. For example, suppose that {𝑝, 𝑞} ⊆ 𝑈0 ∩𝑈∞. en the following are1298

equivalent:1299

(1) 𝜎 𝑓 𝜎−1 is differentiable at 𝜎 (𝑝);1300

(2) 𝜎 𝑓 𝜏−1 is differentiable at 𝜏 (𝑝);1301

(3) 𝜏 𝑓 𝜎−1 is differentiable at 𝜎 (𝑝);1302

(4) 𝜏 𝑓 𝜏−1 is differentiable at 𝜏 (𝑝).1303

Assume that 𝜎 𝑓 𝜎−1 is differentiable at 𝜎 (𝑝); let us show that 𝜎 𝑓 𝜏−1 is differentiable at 𝜏 (𝑝).1304

Note that, in a neighbourhood of 𝜏 (𝑝),1305

𝜎 𝑓 𝜏−1 = (𝜎 𝑓 𝜎−1) ◦
(
𝑧 ↦→ 1

𝑧

)
so 𝜎 𝑓 𝜏−1 is differentiable at 𝜏 (𝑝).1306

26.2. Proposition. Let 𝑓 : Ĉ −→ Ĉ be a bijective holomorphic map. en 𝑓 −1 is holomorphic.1307

Proof. Let 𝑝 ∈ Ĉ and 𝑞 = 𝑓 (𝑝). We will assume that 𝑝 ∈ 𝑈0 and 𝑞 ∈ 𝑈0; the other cases can be1308

handled similarly. Hence we need to show that 𝜎 𝑓 −1𝜎−1 is differentiable at 𝜎 (𝑞). But note that1309

𝜎 𝑓 −1𝜎−1 is the inverse of the bijective holomorphic map 𝜎 𝑓 𝜎−1, so 𝜎 𝑓 −1𝜎−1 is differentiable at1310

𝜎 (𝑞). �1311

26.3.Definition. By an automorphism of Ĉ, we mean a bijective holomorphic map from Ĉ to1312

itself.1313

e special linear group SL2(C) is the group of 2 × 2 complex matrices with determinant 1. It1314

is a group, under usual matrix multiplication. Let 𝑓 and𝑔 beMoebius transformations:1315

𝑓 (𝑧) = 𝑎𝑧 + 𝑏
𝑐𝑧 + 𝑑 and 𝑔(𝑧) = 𝑎′𝑧 + 𝑏′

𝑐′𝑧 + 𝑑′ .
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en1316

𝑓 (𝑔(𝑧)) =
𝑎 𝑎′𝑧+𝑏 ′
𝑐 ′𝑧+𝑑 ′ + 𝑏

𝑐 𝑎
′𝑧+𝑏 ′

𝑐 ′𝑧+𝑑 ′ + 𝑑
=

(𝑎𝑎′ + 𝑏𝑐′)𝑧 + (𝑎𝑏′ + 𝑏𝑑′)
(𝑐𝑎′ + 𝑑𝑐′)𝑧 + (𝑐𝑏′ + 𝑑𝑑′) ,

which is a Moebius transformations. Hence the set of Moebius transformations form a group1317

M under composition.1318

Note that the group operation in SL2(C) is given by:1319 [
𝑎 𝑏

𝑐 𝑑

] [
𝑎′ 𝑏′

𝑐′ 𝑑′

]
=

[
𝑎𝑎′ + 𝑏𝑐′ 𝑎𝑏′ + 𝑏𝑑′
𝑐𝑎′ + 𝑑𝑐′ 𝑐𝑏′ + 𝑑𝑑′

]
Hence there is a group homomorphism1320

SL2(C) −→ M,
[
𝑎 𝑏

𝑐 𝑑

]
↦→ 𝑎𝑧 + 𝑏

𝑐𝑧 + 𝑑 .

We have seen in Lecture 23 that every Moebius transformation can be represented by an ele-1321

ment of SL2(C). Hence the above group homomorphism is surjective, with kernel {±𝐼 }. e1322

group1323

SL2(C)/{±𝐼 }
is usually written PSL2(C).1324

26.4. Proposition. Every element ofM = PSL2(C) is a meromorphic conformal automorphism of Ĉ.1325

Conversely, every ameromorphic conformal automorphism of Ĉ is given by an element ofM.1326

Proof. It is easy to check that elements ofM are automorphisms. Conversely, let 𝑓 be an auto-1327

morphism of Ĉ. If 𝑓 (∞) = ∞, then 𝑓 (𝑧) = 𝑎𝑧 + 𝑏 by Proposition 25.3. If 𝑓 (∞) = 𝑐 ≠ ∞, then1328

let𝑔(𝑧) = 1
𝑧−𝑐 . Now𝑔𝑓 is an automorphism, and fixes∞, so it is inM. Hence 𝑓 ∈ M. �1329

Exercises.1330

(1) Let 𝜁 , 𝜁0, 𝜁1, 𝜁∞ be distinct points of𝐶 and 𝜎 a permutation of four symbols. Determine1331

the relation between the cross ratio (𝜁 , 𝜁0, 𝜁1, 𝜁∞) and (𝜎 (𝜁 , 𝜁0, 𝜁1, 𝜁∞)).1332

Lecture 27. Review of path homotopy1333

Reference for this section is Munkres, Topology, the chapter on covering spaces and funda-1334

mental groups.1335

Let 𝑈 be an open subset of C. Let 𝛾, 𝜂 : [𝑎, 𝑏] −→ 𝑈 be two paths with 𝛾 (𝑎) = 𝜂 (𝑎) and
𝛾 (𝑏) = 𝜂 (𝑏). We say that 𝛾 and 𝜂 are path-homotopic to each other if there exists a continuous
map𝐻 : [0, 1] × [𝑎, 𝑏] −→ 𝑈 such that

𝐻 (0, 𝑡) = 𝛾 (𝑡) for all 𝑡 ∈ [𝑎, 𝑏];
𝐻 (1, 𝑡) = 𝜂 (𝑡) for all 𝑡 ∈ [𝑎, 𝑏];
𝐻 (𝑠, 0) = 𝛾 (0) = 𝜂 (0) for all 𝑠 ∈ [0, 1];
𝐻 (𝑠, 1) = 𝛾 (1) = 𝜂 (1) for all 𝑠 ∈ [0, 1] .

We can think of this as a continuously varying family of paths [𝑎, 𝑏] −→ 𝑈 parameterised1336

by [0, 1] such that for every member of the family is a path from 𝛾 (0) to 𝛾 (1). We say that 𝐻1337

is a path-homotopy between 𝛾 and 𝜂. We will say that a closed path 𝛾 is null-homotopic if 𝛾 and1338

the constant path 𝑒𝛾 (0) at 𝛾 (0) (i.e, the map [𝑎, 𝑏] −→ 𝑈 , 𝑡 ↦→ 𝛾 (0)) are path-homotopic to1339

each other. Note that being path-homotopic is an equivalence relation; we will refer to the1340

equivalence classes under this relation as path-homotopy classes.1341
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Wesay that𝑈 is simply-connected if for every closed path in𝑈 is null-homotopic. For example,1342

C is simply connected, butC r {0} is not.1343

e result we want to prove is that if 𝑓 is holomorphic on 𝑈 , then
∫
𝛾
𝑓 d𝑧 depends only on1344

the path-homotopy class of𝛾 . However, there is (at least) one issue that needs to be sorted out:1345

even if𝛾 and𝜂 are path-homotopic piecewise-differentiable paths,with path homotopy𝐻 , the1346

paths𝐻 (𝑠,−) need not be piecewise-differentiable for 𝑠 ∈ (0, 1). Hencewe need to understand1347

what
∫
𝜏
𝑓 d𝑧 is, when 𝜏 is merely a continuous path.1348

Reference for the remainder of this section is Lang, Complex Analysis, Chapter III, Section1349

4.1350

27.1. Lemma. Let𝑈 ⊆ C be an open set and𝛾 : [𝑎, 𝑏] −→ 𝑈 a continuous path in𝑈 . en there exists1351

𝑟 > 0 such that for every𝑥 ∈ Im(𝛾) and for every𝑦 ∈ C r𝑈 , |𝑥 − 𝑦 | > 𝑟 .1352

Proof. e function 𝛿 : 𝑈 −→ R, 𝑡 ↦→ inf {|𝛾 (𝑡) − 𝑦 | : 𝑦 ∈ C r 𝑈 is attained by some 𝑦 ∉ 𝑈 ,1353

since it suffices to consider 𝑦 lying inside a closed and bounded subset of C. It is continuous:1354

Let 𝑡𝑛 → 𝑡 . let 𝑦,𝑦𝑛 ∉ 𝑈 be such that 𝛿 (𝑡) = |𝛾 (𝑡) − 𝑦 | and 𝛿 (𝑡𝑛) = |𝛾 (𝑡𝑛) − 𝑦𝑛 |. Let 𝜖 > 0.1355

en there exists 𝑁 such that for every 𝑛 > 𝑁 , |𝛾 (𝑡𝑛) − 𝛾 (𝑡) | < 𝜖. Hence 𝛿 (𝑡) < 𝛿 (𝑡𝑛) + 𝜖 and1356

𝛿 (𝑡𝑛) < 𝛿 (𝑡) + 𝜖, for every 𝑛 > 𝑁 . Hence 𝛿 (𝑡𝑛) → 𝛿 (𝑡). erefore there exists 𝑡0 ∈ [𝑎, 𝑏] such1357

that 𝛿 (𝑡0) = inf {𝛿 (𝑡) | 𝑡 ∈ [𝑎, 𝑏]}. Since𝑈 is open, 𝛿 (𝑡0) > 0. �1358

27.2. Discussion. For now, assume that 𝛾 is piecewise-differentiable. Let 𝜖 > 0 be small1359

enough such that 𝐵𝛾 (𝑡),𝜖 ⊆ 𝑈 for every 𝑡 ∈ [𝑎, 𝑏]; such an 𝜖 exists by Lemma 27.1. Since 𝛾1360

is uniformly continuous, there exists 𝛿 > 0 such that𝛾 (𝐵𝑡,𝛿 ) ⊆ 𝐵𝛾 (𝑡),𝜖 . en there exist1361

(1) a partition 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏 such that1362

(a) 𝑡𝑖+1 − 𝑡𝑖 < 𝛿 ;1363

(b) 𝛾 is differentiable on (𝑡𝑖, 𝑡𝑖+1);1364

(2) a covering of Im(𝛾) by open discs 𝐵𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1 such that𝛾 ( [𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝐵𝑖 .1365

For 0 ≤ 𝑖 ≤ 𝑛 − 1, let𝑔𝑖 be a primitive of 𝑓 in 𝐵𝑖 . en∫ 𝑡𝑖+1

𝑡𝑖

𝑓 (𝛾 (𝑡))𝛾 ′(𝑡)d𝑡 = 𝑔𝑖 (𝛾 (𝑡𝑖+1)) − 𝑔𝑖 (𝑡𝑖), and hence,∫
𝛾

𝑓 d𝑧 =

𝑛−1∑︁
𝑖=0

𝑔𝑖 (𝑡𝑖+1) − 𝑔𝑖 (𝑡𝑖). �

In view of the discussion above, we can extend the definition of
∫
𝛾
𝑓 d𝑧 to continuous paths1366

𝛾 as follows. Note that we did not use all the information about the partition, in the above1367

discussion.1368

27.3.Definition. Let𝑈 be a domain and 𝛾 : [𝑎, 𝑏] −→ 𝑈 a continuous path. Let 𝑎 = 𝑡0 < 𝑡1 <1369

. . . < 𝑡𝑛 = 𝑏 be a partition and 𝐵0, . . . , 𝐵𝑛−1 be open discs in𝑈 such that 𝛾 ( [𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝐵𝑖 for1370

every 0 ≤ 𝑖 ≤ 𝑛 − 1. Let𝑔𝑖 be a primitive of 𝑓 on 𝐵𝑖 . Define1371 ∫
𝛾

𝑓 d𝑧 =

𝑛−1∑︁
𝑖=0

𝑔𝑖 (𝛾 (𝑡𝑖+1)) − 𝑔𝑖 (𝛾 (𝑡𝑖)) .

27.4. Proposition. e definition of
∫
𝛾
𝑓 d𝑧 is independent of the choice of the partition 𝑎 = 𝑡0 < 𝑡1 <1372

. . . < 𝑡𝑛 = 𝑏, the open discs𝐵𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1 and the primitives𝑔𝑖, 0 ≤ 𝑖 ≤ 𝑛 − 1 of 𝑓 .1373

Proof. For the sakeof clarity,wewillwrite 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}) todenote
∑𝑛−1

𝑖=0 𝑔𝑖 (𝛾 (𝑡𝑖+1))−𝑔𝑖 (𝛾 (𝑡𝑖))1374

in Definition 27.3. Let {𝑡𝑖}, {𝐵𝑖} and {𝑔𝑖} another set of choices.1375
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Step 1: Assume that {𝑡𝑖} = {𝑡𝑖}. en𝛾 ( [𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝐵𝑖 ∩ 𝐵𝑖 , on which𝑔𝑖 and𝑔𝑖 are primitives1376

of 𝑓 . en there exists 𝑐𝑖 ∈ C such that𝑔𝑖 (𝑧) − 𝑔𝑖 (𝑧) = 𝑐𝑖 for every 𝑧 ∈ 𝐵𝑖 ∩ 𝐵𝑖 . Hence1377

𝑔𝑖 (𝛾 (𝑡𝑖+1)) − 𝑔𝑖 (𝛾 (𝑡𝑖)) = 𝑔𝑖 (𝛾 (𝑡𝑖+1)) − 𝑔𝑖 (𝛾 (𝑡𝑖))

so 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}) = 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}).1378

Step 2: Assume that {𝑡𝑖} is a refinement of {𝑡𝑖}. en the covering {𝐵𝑖} and the primitives1379

{𝑔𝑖} (which were defined for {𝑡𝑖}) induced a covering and primitives with respect to {𝑡𝑖}. More1380

precisely, if 𝑡 𝑗𝑖 = 𝑡𝑖 and 𝑡 𝑗𝑖+1 = 𝑡𝑖+1, then use 𝐵𝑖 and𝑔𝑖 for the intervals [𝑡 𝑗 , 𝑡 𝑗+1], 𝑗𝑖 ≤ 𝑗 < 𝑡 𝑗𝑖+1. We1381

abuse notation and continue to use {𝐵𝑖} and {𝑔𝑖} for the induced covering and primitives. It is1382

easy to see that 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}) = 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}). By the earlier case, 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}) =1383

𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}).1384

Step 3: Consider the general case. Let {𝑡𝑖} be a common refinement of the {𝑡𝑖} and the {𝑡𝑖}.
As in Step 2, the covering {𝐵𝑖} and the primitives {𝑔𝑖} induce a covering and primitives on {𝑡𝑖},
which we abuse notation and denote by {𝐵𝑖} and {𝑔𝑖}. Similarly, we get {𝐵𝑖} and {𝑔𝑖} from the
partition {𝑡𝑖}. en

𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖}) = 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖})
= 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖})
= 𝐼 ({𝑡𝑖}, {𝐵𝑖}, {𝑔𝑖})

where the first and the third equalities follow from Step 2 and the second one from Step 1. �1385

We emphasise that order to make sense of Definition 27.3, we need to know that holomor-1386

phic functions on discs have primitives (eorem 11.1).1387

Exercises.1388

Lecture 28. General version of Cauchy integral theorem.1389

Let𝑈 be a domain.1390

e following lemma is Lang, Complex Analysis, Chapter III, Section 4, Lemma 4.3.1391

28.1. Lemma. Let 𝛾 and 𝜂 be two continuous paths [𝑎, 𝑏] −→ 𝑈 . Assume that there exist a partition1392

𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏 and open discs 𝐵0, . . . , 𝐵𝑛−1 in𝑈 such that 𝛾 ( [𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝐵𝑖 and1393

𝜂 ( [𝑡𝑖, 𝑡𝑖+1]) ⊆ 𝐵𝑖 for every 0 ≤ 𝑖 ≤ 𝑛 − 1. en1394 ∫
𝛾

𝑓 d𝑧 =

∫
𝜂

𝑓 d𝑧.

Proof. Write 𝑧𝑖 = 𝛾 (𝑡𝑖) and𝑤𝑖 = 𝜂 (𝑡𝑖). Let 𝑔𝑖 be a primitive of 𝑓 on 𝐵𝑖 , 0 ≤ 𝑖 ≤ 𝑛 − 1. Since 𝑔𝑖+11395

and𝑔𝑖 are primitives of 𝑓 on 𝐵𝑖+1 ∩ 𝐵𝑖 , the function𝑔𝑖+1 − 𝑔𝑖 is constant on 𝐵𝑖+1 ∩ 𝐵𝑖 . It follows1396

that1397

𝑔𝑖+1(𝑧𝑖+1) − 𝑔𝑖 (𝑧𝑖+1) = 𝑔𝑖+1(𝑤𝑖+1) − 𝑔𝑖 (𝑤𝑖+1)
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for all 0 ≤ 𝑖 ≤ 𝑛 − 1. Hence∫
𝛾

𝑓 d𝑧 −
∫
𝜂

𝑓 d𝑧 =

𝑛−1∑︁
𝑖=0

[𝑔𝑖 (𝑧𝑖+1) − 𝑔𝑖 (𝑧𝑖))] − [𝑔𝑖 (𝑤𝑖+1) − 𝑔𝑖 (𝑤𝑖))]

=

𝑛−1∑︁
𝑖=0

[𝑔𝑖+1(𝑧𝑖+1) − 𝑔𝑖 (𝑧𝑖))] − [𝑔𝑖+1(𝑤𝑖+1) − 𝑔𝑖 (𝑤𝑖))]

= [𝑔𝑛 (𝑧𝑛) − 𝑔0(𝑧0)] − [𝑔𝑛 (𝑤𝑛) − 𝑔0(𝑤0)]
= 0

since 𝑧0 = 𝑤0 and 𝑧𝑛 = 𝑤𝑛. �1398

28.2.eorem. Let𝛾 and 𝜂 be path-homotopic continuous paths [𝑎, 𝑏] −→ 𝑈 . Let 𝑓 be holomorphic1399

on𝑈 . en1400 ∫
𝛾

𝑓 d𝑧 =

∫
𝜂

𝑓 d𝑧.

Proof. Let𝐻 = [0, 1] × [𝑎, 𝑏] −→ 𝑈 be a path homotopy. Since Im(𝐻 ) is compact, there exists1401

𝑟 > 0 such that for every 𝑥 ∈ Im(𝐻 ) and for every 𝑦 ∈ C r𝑈 , |𝑥 − 𝑦 | > 𝑟 , as in Lemma 27.1.1402

Hence there exists 𝜖 such that 𝐵𝑥,𝜖 ⊆ 𝑈 for every 𝑥 ∈ Im(𝐻 ). Since𝐻 is uniformly continuous,1403

there exists 𝛿 > 0 such that for every 𝑝 ∈ [0, 1] × [𝑎, 𝑏],𝐻 (𝐵𝑝,𝛿 ) ⊆ 𝐵𝐻 (𝑝),𝜖 . Hence there exist1404

partitions 0 = 𝑠0 < 𝑠1 < . . . < 𝑠𝑚 = 1 and 𝑎 = 𝑡0 < 𝑡1 < . . . < 𝑡𝑛 = 𝑏 such that for each 𝑖, 𝑗 ,1405

there exists an open disk𝐵𝑖, 𝑗 such that𝐻 ( [𝑠𝑖, 𝑠𝑖+1] × [𝑡 𝑗 , 𝑡 𝑗+1]) ⊆ 𝐵𝑖, 𝑗 ⊆ 𝑈 . (For example, choose1406

the 𝑠𝑖 and the 𝑡 𝑗 such that the diagonal of the rectangle [𝑠𝑖, 𝑠𝑖+1] × [𝑡 𝑗 , 𝑡 𝑗+1] has length at most1407

2𝛿.) For 𝑖 = 0, . . . ,𝑚, define paths 𝛾𝑖 : [𝑎, 𝑏] −→ 𝑈 by 𝛾𝑖 (𝑡) = 𝐻 (𝑠𝑖, 𝑡). Note that 𝛾0 = 𝛾 and1408

𝛾𝑚 = 𝜂. We now induct on 𝑖 and apply the lemma to conclude that
∫
𝛾𝑖
𝑓 d𝑧 =

∫
𝛾
𝑓 d𝑧 for every1409

1 ≤ 𝑖 ≤ 𝑚. �1410

28.3.Corollary. If𝑈 is simply connected, then
∫
𝛾
𝑓 d𝑧 = 0 for everyholomorphic 𝑓 on𝑈 and every closed1411

path𝛾 .1412

Exercises.1413

(1) Let𝑈 ⊆ C be a bounded domain. Show that it is simply connected if and only if C r𝑈1414

is connected.1415

(2) Let 𝛾 be a closed path in C, not passing through 0. Assume further that there exists a1416

ray through the origin {𝑟𝜁 | 𝑟 ∈ R, 𝑟 > 0, 𝜁 ∈ C, 𝜁 ≠ 0} that does not intersect Im(𝛾).1417

Find a simply connected domain𝑈 containing𝛾 that admits a branch of the logarithm.1418

Conclude that
∫
𝛾

1
𝑧
d𝑧 = 0.1419

(3) Let𝑈 be a domain. Show that𝑈 is simply connected if and only if for every closed path1420

𝛾 in𝑈 and every 𝜁 ∉ 𝑈 ,𝑛(𝜁 ,𝛾) = 0.1421

Exercises1422
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