SERRE DUALITY

MANOJ KUMMINI

We give a proof of the Serre duality theorem using duality for finite morphisms [Har77, Chapter III, Exercise 6.10].

1. DUALITY FOR FINITE MORPHISMS

In this section, X and Y are noetherian schemes and $f : X \longrightarrow Y$ a finite morphism. (a) [Har77, Chapter II, Exercise 5.17(e)]. If \mathcal{M} is a quasi-coherent $f_* \mathcal{O}_X$ -module, then define \mathcal{M}^{\dagger} by

$$\mathcal{M}^{\dagger}(U) := \lim_{\substack{V \subseteq Y \text{ open} \\ U \subseteq f^{-1}(V)}} \mathcal{M}(V)$$

and an \mathscr{O}_X -module $\widetilde{\mathcal{M}}$ by

$$\widetilde{\mathcal{M}}(U) := \mathcal{M}^{\dagger}(U) \otimes_{(f_*\mathscr{O}_X)^{\dagger}(U)} \mathscr{O}_X(U)$$

(This is like defining $f^{-1}(-)$ and $f^*(-)$, which are from \mathscr{O}_Y -modules to \mathscr{O}_X -modules, but we want something from $f_*\mathscr{O}_X$ -modules to \mathscr{O}_X -modules. Note that there is a natural map from $(f_*\mathscr{O}_X)^{\dagger}(U) \longrightarrow \mathscr{O}_X(U)$.) $\widetilde{\mathcal{M}}(U)$ is indeed quasi-coherent: For any open $V \subseteq Y$, $\mathcal{M}^{\dagger}(f^{-1}(V)) =$ $\mathcal{M}(V)$, so $(f_*\mathscr{O}_X)^{\dagger}(f^{-1}(V)) = \mathscr{O}_X(f^{-1}(V))$ and, hence, $\widetilde{\mathcal{M}}(f^{-1}(V)) = \mathcal{M}(V)$. Moreover, if Vis additionally affine, and $\mathcal{M}|_V$ is given by an $(f_*\mathscr{O}_Y)|_V$ -module M, then $\widetilde{\mathcal{M}}|_{f^{-1}(V)}$ also is given by M, thought of as an $\mathscr{O}_X|_{f^{-1}(V)}$ -module. Now apply these considerations on any affine open cover (V_i) of Y and the affine open cover $(f^{-1}(V_i))$ of X. It is also immediate that $f_*\widetilde{\mathcal{M}} = \mathcal{M}$ and that $\widetilde{(-)}$ is an exact functor from $f_*\mathscr{O}_X$ -modules to \mathscr{O}_X -modules. (In the above argument, we have used only that f is affine.)

(b) [Har77, Chapter III, Exercise 6.10(a)]. Let \mathcal{G} be a quasi-coherent \mathcal{O}_Y -module. Then $\mathcal{H}om_Y(f_*\mathcal{O}_X,\mathcal{G})$ is a quasi-coherent $f_*\mathcal{O}_X$ -module. We denote the correponding \mathcal{O}_X -module, from (a) above, by $f^!\mathcal{G}$. Notice that $f^!$ is left-exact covariant functor from $f_*\mathcal{O}_X$ -modules to \mathcal{O}_X -modules. It would be exact if $\mathcal{H}om_Y(f_*\mathcal{O}_X, -)$ is exact, which is the case if $f_*\mathcal{O}_X$ is locally free \mathcal{O}_Y -module.

(c) The natural map

$$f_*f^!\mathcal{G} = \mathcal{H}om_Y(f_*\mathscr{O}_X,\mathcal{G}) \longrightarrow \mathcal{H}om_Y(\mathscr{O}_Y,\mathcal{G}) = \mathcal{G}$$

which is dual to the natural map $\mathscr{O}_Y \longrightarrow f_*\mathscr{O}_X$ will be denoted $\operatorname{Tr}_{f,\mathcal{G}}$, and will be called the *trace map of f on* \mathcal{G} .

(d) [Har77, Chapter III, Exercise 6.10(b)]. For every coherent \mathcal{F} on X and quasi-coherent \mathcal{G} on Y, there is an isomorphism

$$f_*\mathcal{H}om_X(\mathcal{F}, f^!\mathcal{G}) \xrightarrow{\simeq} \mathcal{H}om_Y(f_*\mathcal{F}, \mathcal{G}).$$

We see this as follows: For arbitrary sheaves \mathcal{F} and \mathcal{F}' on X, there is a morphism

$$f_*\mathcal{H}om_X(\mathcal{F},\mathcal{F}')\longrightarrow \mathcal{H}om_Y(f_*\mathcal{F},f_*\mathcal{F}').$$

Notes prepared for the workshop on Seshadri constants, February 2017 at CMI. Please send your comments by email.

Taking $\mathcal{F}' = f^{!}\mathcal{G}$ and using $\operatorname{Tr}_{f,\mathcal{G}}$ we get a mortpism

$$f_*\mathcal{H}om_X(\mathcal{F}, f^!\mathcal{G}) \xrightarrow{\simeq} \mathcal{H}om_Y(f_*\mathcal{F}, \mathcal{G}).$$

with \mathcal{G} quasi-coherent. To prove this is an isomorphism when \mathcal{F} is coherent, we may assume that Y and, hence, X are affine. When $\mathcal{F} = \mathcal{O}_X$, the asserted isomorphism follows from the definition of $f^!\mathcal{G}$. Therefore it is also true for the direct sum of finitely many copies of \mathcal{O}_X . For any coherent \mathcal{F} on X, there is an exact sequence $\mathcal{O}_X^{b_1} \longrightarrow \mathcal{O}_X^{b_0} \longrightarrow \mathcal{F} \longrightarrow 0$, which gives the following commutative diagram with exact rows

This gives the required isomorphism.

(e) [Har77, Chapter III, Exercise 6.10(c)]. This is similar to (d). If

 $0 \longrightarrow \mathcal{F}' \longrightarrow \mathcal{E}_1 \longrightarrow \cdots \longrightarrow \mathcal{E}_i \longrightarrow \mathcal{F} \longrightarrow 0$

is an exact sequence of quasi-coherent \mathcal{O}_X -modules representing an element in $\operatorname{Ext}^i_X(\mathcal{F}, \mathcal{F}')$ then its direct image is exact (since f is affine) and represents an element in $\operatorname{Ext}^i_Y(f_*\mathcal{F}, f_*\mathcal{F}')$. Now apply with $\mathcal{F}' = f^!\mathcal{G}$ and use $\operatorname{Tr}_{f,\mathcal{G}}$.

(f) It follows from (d) that $f^!\mathcal{I}$ is an injective \mathscr{O}_X -module for every quasi-coherent injective \mathscr{O}_Y -module \mathcal{I} . By applying $\Gamma(Y, -)$ to the isomorphism in (d), we get $\operatorname{Hom}_X(\mathcal{F}, f^!\mathcal{G}) \xrightarrow{\simeq} \operatorname{Hom}_Y(f_*\mathcal{F}, \mathcal{G})$. Therefore If $\mathcal{F}_1 \longrightarrow \mathcal{F}_2$ is an injective map of quasi-coherent \mathscr{O}_X -modules, then the map $\operatorname{Hom}_X(\mathcal{F}_2, f^!\mathcal{I}) \longrightarrow \operatorname{Hom}_X(\mathcal{F}_1, f^!\mathcal{I})$ is surjective when \mathcal{I} is an injective \mathscr{O}_Y -module.

(g) [Har77, Chapter III, Exercise 6.10(d)]. Let \mathcal{I}^{\bullet} be an injective resolution of \mathcal{G} by quasicoherent injectives. (Note: Noetherian schemes have enough quasi-coherent injectives.) Since $f_*\mathcal{O}_X$ is locally free, we see from (b) that $0 \longrightarrow f^!\mathcal{G} \longrightarrow f^!\mathcal{I}^{\bullet}$ is an exact sequence, and, hence from (f) that $f^!\mathcal{I}^{\bullet}$ is an injective resolution of $f^!\mathcal{G}$ as an \mathcal{O}_X -module. Now,

$$\begin{aligned} \operatorname{Ext}_{X}^{i}(\mathcal{F}, f^{!}G) &= \operatorname{H}^{i}(\operatorname{Hom}_{X}(\mathcal{F}, f^{!}\mathcal{I}^{\bullet})) \\ &= \operatorname{H}^{i}(\Gamma(X, \mathcal{H}om_{X}(\mathcal{F}, f^{!}\mathcal{I}^{\bullet}))) \\ &\simeq \operatorname{H}^{i}(\Gamma(Y, \mathcal{H}om_{Y}(f_{*}\mathcal{F}, \mathcal{I}^{\bullet}))) \\ &= \operatorname{H}^{i}(\operatorname{Hom}_{Y}(f_{*}\mathcal{F}, \mathcal{I}^{\bullet})) \\ &= \operatorname{Ext}_{Y}^{i}(f_{*}\mathcal{F}, G). \end{aligned}$$

(h) We now explain these statements in the case of affine schemes: Y = Spec R, X = Spec S, and f corresponds a ring map $\phi : R \longrightarrow S$. Let M be an S-module, thought of as an R-module through ϕ . From (a), we see that the corresponding sheaf on X = Spec S is given by M itself. Therefore, in (b), we see that for any R-module N, $f!N = \text{Hom}_R(S, N)$, considered as a natural S-module. The trace map is the composite of $\text{Hom}_R(S, N) \longrightarrow \text{Hom}_R(R, N) \longrightarrow N$, $\alpha \mapsto \alpha \circ \phi \mapsto (\alpha \circ \phi)(1_R) = \alpha(1_S)$, evaluation at 1. The duality of (d) is $\text{Hom}_S(M, \text{Hom}_R(S, N)) \simeq \text{Hom}_R(M, N)$. In (g), S is a projective (and finitely generated) R-module, M a finitely generated S-module and N an R-module. Let F_{\bullet} be a free resolution of M as an S-module. It is also a projective resolution of M as an R-module. Hence

$$\operatorname{Ext}_{S}^{i}(M, f^{!}N) = \operatorname{H}^{i}(\operatorname{Hom}_{S}(F_{\bullet}, \operatorname{Hom}_{R}(S, N)))$$
$$\simeq \operatorname{H}^{i}(\operatorname{Hom}_{R}(F_{\bullet}, N))$$
$$= \operatorname{Ext}_{R}^{i}(M, N).$$

SERRE DUALITY

2. FINITE MORPHISMS TO PROJECTIVE SPACES

(a) **Noether normalization**: Let \Bbbk denote a field and X an n-dimensional projective \Bbbk -scheme. Embed $X \subseteq \mathbb{P}_{\Bbbk}^{N}$. Let $S = \Bbbk[x_0, \ldots, x_N]$ be a homogeneous coordinate ring of \mathbb{P}_{\Bbbk}^{N} and I an S-ideal such that $X = \operatorname{Proj}(S/I)$. (For example, if \mathcal{I} is the ideal sheaf of X, then we can take $I = \bigoplus_{k \in \mathbb{Z}} \Gamma(X, \mathcal{I}(k))$.) Let $y_0, \ldots, y_n \in (S/I)_1$ be such that $\Bbbk[y_0, \ldots, y_n] \subseteq S/I$ is a *homogeneous* Noether normalization of S/I. In particular y_0, \ldots, y_n are algebraically independent over \Bbbk , S/I is finite over the subring, and the ideal $(y_0, \ldots, y_n)(S/I)$ is primary to irrelevant ideal $(x_0, \ldots, x_N)(S/I)$. Then we have a finite morphism $X \longrightarrow \mathbb{P}_{\Bbbk}^n = \operatorname{Proj} \Bbbk[y_0, \ldots, y_n]$. This is surjective, since dim X = n and \mathbb{P}_{\Bbbk}^n is irreducible.

(b) Let $f : X \longrightarrow Y$ be a finite surjective morphism of non-singular noetherian schemes. Then $f_* \mathcal{O}_X$ is a locally free \mathcal{O}_Y -module. Since the question is local on Y, we may assume that Y = Spec R for a regular local ring R and that X = Spec S for some regular ring S that is finite over R. We need to show that S is a free R-module, which is equivalent to S being a flat R-module, which is equivalent to the vanishing of $\text{Tor}_1^R(R/\mathfrak{m}, S)$, where \mathfrak{m} is the maximal ideal of R. Write $n = \dim R = \dim S$. Let r_1, \ldots, r_n be minimal generators for \mathfrak{m} . Then $\operatorname{ht}(r_1, \ldots, r_n)S = n$, since the map $R \longrightarrow S$ (and hence $R/\mathfrak{m} \longrightarrow S/\mathfrak{m}S$) is finite. Since S is a Cohen-Macaulay ring, (the images in S of) r_1, \ldots, r_n form a regular sequence, so $\operatorname{Tor}_1^R(R/\mathfrak{m}, S)$, which is equal to the first Koszul homology of the sequence r_1, \ldots, r_n in S, is zero.

(c) In (b), we have not used the hypothesis that X is non-singular very strongly; that X is Cohen-Macaulay (i.e., all the local rings $\mathcal{O}_{X,x}$ are Cohen-Macaulay) would do.

3. SERRE DUALITY

In this section *X* and *Y* denote *n*-dimensional projective varieties over a field \Bbbk and $P = \mathbb{P}_{\Bbbk}^{n}$. (a) Suppose that $f : X \longrightarrow Y$ is a finite surjective morphism. Suppose that (ω_Y, t_Y) is a dualizing sheaf for *Y*, i.e., ω_Y is a coherent sheaf on *Y*, $t_Y : H^n(Y, \omega_Y) \longrightarrow \Bbbk$ is \Bbbk -linear and the composite map

$$\operatorname{Hom}_{Y}(\mathcal{F},\omega_{Y})\times\operatorname{H}^{n}(Y,\mathcal{F})\longrightarrow\operatorname{H}^{n}(Y,\omega_{Y})\overset{\iota_{Y}}{\longrightarrow}\Bbbk,$$

where the first map is $(\phi, c) \mapsto H^n(\phi)(c)$, is a perfect pairing. Define $\omega_X = f! \omega_Y$ and t_X to be the composite of

$$\mathrm{H}^{n}(X,\omega_{X}) = \mathrm{H}^{n}(Y,f_{*}\omega_{X}) \stackrel{\mathrm{H}^{n}(\mathrm{Tr}_{f,\omega_{Y}})}{\longrightarrow} \mathrm{H}^{n}(Y,\omega_{Y}) \stackrel{t_{Y}}{\longrightarrow} \Bbbk$$

Then (ω_X, t_X) is a dualizing sheaf for *X*. (It is straightforward to check that the conditions in the definition given above are satisfied.)

(b) Let $f : X \longrightarrow P$ be a Noether normalization (§2,(a)). Let x_0, \ldots, x_n be homogeneous coordinates for *P*. Then $H^n(P, \mathcal{O}_P(-n-1))$ can identified with the a one-dimensional vector-space with basis $\frac{1}{x_0x_1...x_n}$. Let t_P be the basis dual to this. Then $(\mathcal{O}_P(-n-1), t_P)$ is a dualizing sheaf for *P*. Hence *X* has a dualizing sheaf (ω_X, t_X) .

(c) Additionally if X is non-singular (or, merely, Cohen-Macaulay), then we have isomorphisms

$$\operatorname{Ext}^i_X(\mathcal{F},\omega_X) \simeq \operatorname{Ext}^i_P(f_*\mathcal{F},\omega_Y) \ \simeq \operatorname{H}^{n-i}(P,f_*\mathcal{F})^{ee} \ \simeq \operatorname{H}^{n-i}(X,\mathcal{F})^{ee}$$

for coherent sheaves \mathcal{F} on X. (One must first check that the statement is true for P; see [Har77, Chapter III, Theorem 7.1]

ACKNOWLEDGMENTS

I happily thank Pramath Sastry whose comments clarified the exposition considerably.

MANOJ KUMMINI

References

[Har77] R. Hartshorne. *Algebraic geometry*. Springer-Verlag, New York, 1977. Graduate Texts in Mathematics, No. 52. 1, 2, 3

CHENNAI MATHEMATICAL INSTITUTE, SIRUSERI, TAMILNADU 603103. INDIA *E-mail address*: mkummini@cmi.ac.in