INTERSECTION THEORY AND AMPLITUDE ON
SURFACES

T.R. RAMADAS, CMI

These is the penultimate version of notes, prepared for the Seshadri Con-
stants Workshop. We closely follow Chapter V.1 of Hartshorne’s Algebraic
Geometry.

1. INTERSECTION NUMBER OF TWO LINE BUNDLES ON A SURFACE

By a surface, we will mean (unless otherwise stated) a nonsingular projective
surface over an algebraically closed field k. By a curve we mean a reduced,
irreducible curve. Given a surface X, we let Pic(X) denote the abelian
group of (isomorphism classes of) line bundles on X.

For the reader’s convenience, whenever possible I adopt the notations from
Hartshorne’s book.

Theorem 1.1. Let X be a surface.There is a unique symmetric bilinear
map Pic(X) x Pic(X) — Z:

(Ll, LQ) — Ll.LQ

such that if C1 and Co are curves intersecting transversally and L; = Ox (C;),
then
Li.Ly = #(C1 N Cy), the number of points of C1 N Co

Proof. Let VA(X) C Pic(X) be the semigroup of very ample line bundles. If
L; € VA(X), there exist, by Bertini, sections o; such that the corresponding
divisors C; are nonsingular curves intersecting transversally. Further

#(Ch1NCy) =deg Li|c, = deg La|c,

This shows that #(C; N Cy) is independent of the choice of the o; as long
as the C; intersect transversally. For L; € VA(X) define

Li.Ly = #(C1 N Cy)
with C; chosen as above. If L1, L} € VA(X), we have
(L1 ® L}).Ly = deg (L, ® L})|¢, = deg Li|c, + deg L)|c, = L1.Ly + L .Ly
This shows that (L, L2) +— L1.Lo is bi-additive on VA(X).
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Let M be an ample line bundle. Given any line bundle L, there exists
a power M™ such that both L ® M™ and M™ are very ample, so that
L=(LM™)®M~™is “a difference of two very ample line bundles”. The
theorem is now a consequence of the next lemma. O

Lemma 1.2. Let A be an abelian group, S C A a sub-semigroup, and
S xS — Z a symmetric bi-additive map, (l1,l2) — l1.ly. Suppose that the
map S x S — A, (a,b) — a — b is surjective. Then the map (I1,l2) — ;.12
extends uniquely to a symmetric bilinear map

AxA—7Z

Proof. If such an extension exists, given ¢; = a; —b;, i = 1,2, with a;,b; € 5,
we must have
c1.co = aq.as + b1.bo — aq.by — by.as
so the extension, if it exists, is unique. It now suffices to prove the claim: the
RHS depends only on the ¢;. Suppose then that ¢; = a} —b] with @/, 0] € S.
Then a} + by = a1 + b} = d (say), with d € S. Then
a'l.ag + bllbz — all.bg — bll.az =d.as — bi.as — ay1.bs + d.by
+ b1.bo — d.by + aj.as — d.as
= aj.as + b1.by — a1.by — by.a9

so the claim stands proved. O

Notation: Given divisors Dy, Do, we set
Dy.Dy = L1.Ls
where L; is the line bundle Ox (D;).

Adjunction. Let Qx denote cotangent bundle of X. The canonical bundle
Kx is the determinant bundle det Qx; if Kx = Ox(K) (i.e., K is the divisor
defined by a meromorphic 2-form on X), we call K “the” canonical divisor.
If C is a nonsingular curve in a surface X, we have an exact sequence of
bundles on C":
0=>Ns—=Qx = Ko —0
where the conormal bundle NV in turn is O(—C)|¢, the isomorphism being
given by
f=dfle
where f is a section of the ideal sheaf O(—C). From the above exact se-
quence, we get
Kxloc=Kc®O(-C)lc
which in turn yields
KC=-CC+deg Ko =—-C.C+290—2
Equivalently,
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2. RIEMANN-ROCH ON SURFACES

Given a coherent sheaf F on X, we set hi(X,F) = dim;H'(X,F). We
define the Euler characteristic to be

x(F) =h(X, F) - h*(X, F) + h*(X, F)

As before, we let K be the divisor defined by a meromorphic 2-form on X,
so that Ox (K) is the canonical bundle K.

Theorem 2.1. Let D be a divisor, and L = Ox (D). Then

X(L) = x(Ox) = 3 DD ~ K) = (LI~ LK)

Proof. Write D = C' — E, with C| E nonsingular curves of genera go and gg
respectively. We have exact sequences:

0— Ox(c — E) — Ox(C) — Ox(CﬂE —0
and
0— OX — Ox(C) — Ox(C)|C —0
which yields
x(L) = x(0x) = x(0Ox(C)lc) — x(Ox(O)|Eg)
=CC+1—g.—CE—-1+4+gg
=C*-C.E+gg—gc
= C? - C.E+ %{E.(E +K) - C.(C+ K)}
1

= 5{02 —2C.E+E*+EK—-C.K}

_ %{(0 ~E) - (C - B).K}

_ %D.(D _K)

where the equality a uses the Riemann-Roch for curves and the equality b
uses Adjunction. O

Lemma 2.2. Let H be an ample divisor, and D a divisor satisfying D.H > 0
and D? > 0. Then mD is linearly equivalent to an effective divisor for large
enough m.

Proof. Since D.H is strictly positive, (K —mD).H is negative for m large
enough so K — mD cannot be effective. So h?(Ox(mD)) = h°(Ox (K —
mD)) = 0 for m > mg. By Riemann-Roch applied to mD, we have for
m > mo:

B(Ox (mD)) = hL(Ox (mD)) + %mD(mD ~ K) + v(Ox)
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Since D? > 0, the m? term dominates for large m and the RHS is strictly
positive. This proves the Lemma. [l

The combination p, = p,(X) = x(Ox) — 1 is called the arithmetic genus of
X.

2.1. Cup product and Intersection form; the Hodge Index Theo-
rem. If & = C, the surface X is a compact oriented real 4-manifold, and
the cup product induces a symmetric bilinear form on H?(X,Z):

H*(X,Z) x H*(X,7Z) — HYX,Z) = Z
This induces a perfect (unimodular) pairing:
H*(X,72)" x H*(X,2)Y - HYX,Z) =17

where H?(X,Z)% is H?(X,Z) modulo torsion. Let Q denote the corre-
sponding quadratic form. If X is a projective surface, any ample line
bundle L defines a class ¢;(L) in H?(X,Z) such that Q(ci(L)) > 0; the
Hodge index Theorem of Kéhler geometry states that the above intersection
form is negative-definite on the orthogonal complement. As we noted above,
Amp(X) € Num(X) € H?(X,Z)". The intersection form constructed via
algebraic geometry agrees with the form constructed via cup-product. So
the Hodge Index Theorem implies the following statement over C, which is
in fact true for arbitrary closed k. This proof is due to Grothendieck.

Theorem 2.3. Let H be an ample divisor, and D a divisor, with [D] # 0
in Num(X) and D.H = 0. Then D? < 0.

Proof. Suppose, by contradiction, that D? > 0. We consider two cases:

If D?> > 0, consider H' = D + nH. This is ample for n large enough, and
D.H' > 0. By Lemma 2.2, mD is effective for large enough m. But then
(mD).H > 0, which contradicts the hypothesis of the Theorem.

If D? = 0, choose a divisor E such that D.E # 0 and E.H = 0 — such
a divisor exists since [D] is assumed nonzero in Num(X) — and consider
D' =nD+ E. Then D'.H =0 and D> = 2nD.E + E?, so that for suitable
n € Z, D'? > 0. This yields a contradiction as above. O

3. NAKAI-MOISHEZON CRITERION FOR AMPLITUDE

Suppose X C P(V) is a surface embedded in a projective space, and C' C X
a curve. By Bertini the generic hyperplane cuts X in a nonsingular curve
H, intersecting C transversally, and we can choose a second hyperplane
again cutting X in a nonsingular curve H’, intersecting H transversally.
Clearly O(H) = O(1)|x, H.C = deg O(1)|c = #(HN C) > 0 and H? =
#(HNH)>0.
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Suppose now that H is an ample divisor on a surface X and C C X a curve
as before. By definition, there is an embedding X C P(V) such that O(1)|x
is isomorphic to O(mH) for some m > 1. Then mH is linearly equivalent
to a hyperplane section, so

H.C >0and H> >0

The Nakai-Moishezon criterion is a converse to this:

Theorem 3.1. A divisor D on a surface is ample iff D*> > 0 and D.C > 0
for all curves C C X.

Proof. Let H be an ample divisor. Since some multiple of H is effective
(and in fact a sufficient large multiple is represented by a nonsingular curve),
H.D > 0. So Lemma 2.2 applies and mD is linearly equivalent to an effective
divisor for m large enough. After relabelling we can henceforth assume D
itself is effective — this has the consequence that the sheaf Ox(—D) is a
sheaf of ideals.

Let L = Ox (D), and let o denote the regular section (unique upto nonzero
scalar) of L such that (o) = D.

We need to prove that L is ample. By assumption, L has positive degree
when restricted to any curve and is therefore ample on it. By Lemma 7 it
is ample on any one-dimensional subscheme.

Consider the exact sequence:
0—Ox(—D)—Ox - 0Op—0

which defines the one-dimensional subscheme D C X. By the above re-
marks, L|p is ample, and therefore there exists mq s.t. H'(D,L™) = 0 for
m > mg. Note that Ox(—D) = L™!, so the above sequence can also be
written:

0L ' =50x—=>0p—=0
Tensor by L™ and consider the corresponding cohomology sequence. For
m > mg we get

0— H' (X, L™ ") — HY(X,L™) — H°(D,L™|p) — H'(X, L™ ') — H'(X,L™) = 0

This shows that the maps H'(X,L™ ') — HYX,L™) (given by multi-
plying by the defining section of L = O(D)) are surjective for m > my.
Since the k vector spaces H'(X, L™™1!) are finite-dimensional, eventually the
maps are isomorphisms, and thenceforth the restriction map H°(X, L™) —
HY(D, L) is eventually onto.

Choose m large enough that
(1) H°(X,L™) — H°(D, L'%) is surjective, and

(2) L™|p is very ample on D.
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We temporarily reinstate the notational distinction between a line bundle L
and the corresponding sheaf of sections L. Consider the (evaluation) map
on X:

HY(X,L™) ®c Ox — L™

The section o™ generates L™ on the complement of D. Let now x € D, and
consider the commutative diagram of maps of stalks:

HO(X,L™) &¢ (Ox)e —2— (L™)a

| |

HY%(X,L™|p) ®c (Op)s —= (L™|D)a

The maps e, and R, are surjective by design and r, is surjective because D
is a closed subscheme. This proves surjectivity of F,.

We conclude that L™ is globally generated. Let ® : X — P(H°(X,L™)) be
the corresponding map. Under this map O(1) pulls back to L™, so if we
prove that ® is finite, it would follow that L™ is ample and hence L itself.
Since ® is a map of projective varieties, it suffices! to show that ® has
finite fibres. If it were otherwise, there would exist a curve C' € X mapping
to a point in P(H°(X,L™)) and L™ would be trivial on C, which would
contradict the hypothesis that L has positive degree on every curve. ([

4. NEF LINE BUNDLES

Definition A divisor D is nef if D.C' > 0 for every curve. (Equivalently,
a nef line bundle is one whose restriction to every curve has non-negative
degree.)

The next result is due to Kleiman:

Theorem 4.1. If D is nef, we have D? > 0.

Proof. Let H be a very ample divisor, and consider, for ¢ € R,
P(t) = (tH + D)?
Expanding the expression on the right we get
P(t) = t*H* + 2tD.H + D*
Since H is ample, H? > 0. By Bertini we can suppose H is a nonsingular

curve, so D.H > 0. So P'(t) >0ont > 0.

Hartshorne’s Exercise II1.11.2; this needs Stein factorisation!
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If D? were strictly negative, we would have P(0) < 0, and P would have a
real positive root tg, with P(t) > 0 for ¢t > tg. For t = § > to, with a,b
positive integers, we have

1
P(t) = 35(af + bD)? >0

which yields (aH + bD)? > 0. In addition, (aH + bD).C > 0 for any curve
C, so that by Nakai criterion the divisor aH + bD is ample. This has the
consequence, which we will use in a minute, that for ¢ as above

1
D.(tH + D) = 1 D.(aH +bD) > 0

By continuity, D.(toH + D) > 0. To reach a contradiction, write (for ¢ real
from now on)

P(t) = R(t) + Q(1)
where R(t) = t?H.H + tH.D and Q(t) = D.(tH + D). Since H? > 0
and H.D > 0, we have R(ty) > 0. Since Q(tp) > 0 we have the desired
contradiction. O

5. SESHADRI’S CRITERION

Let C C X be a curve and € X. Since X is nonsingular (in particular
locally factorial) and C' has codimension one, the ideal Ox (—C') of functions
vanishing on C'is locally (at x) generated by a single function f, unique up
to a unit. The multiplicity mult,(C) of C at x is the least integer m such
that f € m', where m, is the maximal ideal in the local ring O,.

Let p: X’ — X be the blow-up of X at x; denote by E be the exceptional

divisor. The multiplicity of a curve C' passing through x has the following

geometric interpretation: if C' is the proper transform of C' in X', then
mult,(C) = C.E

(In spite of the definition, the multiplicity is intrinsic to C'.)

If C' and D are two curves intersecting at « and having no other points in
common in a neighbourhood, their intersection multiplicity at x is

(C.D)y = dimy, Or/{f, g}

where f = 0 and g = 0 are local defining equations for C' and D respectively,
and {f, g} is the ideal generated by f and g in the local ring O,. We have
the following inequality:

(C.D); > mult, (C)mult, (D)
Theorem 5.1. Let X be a smooth projective surface, and L a line bundle

on X. Then L is ample iff there exists e(L) > 0 such that for every (reduced,
irreducible) curve C and every point x € C, we have

(1) deg Lic > e(L) mult, C
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(In other words, the degree of L restricted to any curve C' should be bounded
below uniformly in terms of the “maximum singularity” of C.)

Proof. Suppose first that L is ample. Then some power L™ is very ample.
Given C and a point x € C, there exists (by Bertini) a section o of L such
that £ = (o) is a nonsingular curve passing though z, but C' # E. (That
is, such that o|c # 0 but o(z) = 0). Then

m deg Llc = deg L™ |c = Z i(E,C,y) >i(E,C,x) > mult,C
yeCNE
Here i(FE, C,y) is the intersection multiplicity of F and C at y. So (1) holds
with ¢(L) = 1/m.

Conversely, suppose (1) holds for some positive €(L). Using Nakai’s criterion,
it suffices to show that
L.L>0

Fix a point z € X, and let 4 : X’ — X be the blow-up of X at z; let E be
the exceptional divisor. Note that E is isomorphic to P* and O(+E)|g is
the normal bundle to E, and hence equal to Opi(—1). Hence O(—E)|g is
the hyperplane bundle. In particular, E.E = degree O(E)|g = —1.

Let L = Ox(D); then p*L = Ox/(D’) where D’ is the inverse image of of
D by p. We claim that p*L™(—F) = Ox/(mD’ — E) is nef on X’ provided
e(L) < 1/m. Granting this, we have by Kleiman’s Theorem:

(mD' — E)> =m?D.D+E.E=m?D.D—-1>0
which yields the desired inequality D.D > 0.

Turning now to the claim, let C’ be any (reduced, irreducible) curve in X.
We need to show that

N 1
deg p*L)cr > %deg O(E)|¢cr
If ¢! C E, then L is trivial on €’ and O(E)) has negative degree on C’. If
C' ¢ E, let C = p(C"), so that C” is the proper transform of C. Now
deg p* Ll = deg Llc

and
deg O(E)|cr = mult,(C)
so that by hypothesis, the claim is proved. O



