
INTERSECTION THEORY AND AMPLITUDE ON

SURFACES

T.R. RAMADAS, CMI

These is the penultimate version of notes, prepared for the Seshadri Con-
stants Workshop. We closely follow Chapter V.1 of Hartshorne’s Algebraic
Geometry.

1. Intersection number of two line bundles on a surface

By a surface, we will mean (unless otherwise stated) a nonsingular projective
surface over an algebraically closed field k. By a curve we mean a reduced,
irreducible curve. Given a surface X, we let Pic(X) denote the abelian
group of (isomorphism classes of) line bundles on X.

For the reader’s convenience, whenever possible I adopt the notations from
Hartshorne’s book.

Theorem 1.1. Let X be a surface.There is a unique symmetric bilinear
map Pic(X)× Pic(X)→ Z:

(L1, L2) 7→ L1.L2

such that if C1 and C2 are curves intersecting transversally and Li = OX(Ci),
then

L1.L2 = #(C1 ∩ C2), the number of points of C1 ∩ C2

Proof. Let V A(X) ⊂ Pic(X) be the semigroup of very ample line bundles. If
Li ∈ V A(X), there exist, by Bertini, sections σi such that the corresponding
divisors Ci are nonsingular curves intersecting transversally. Further

#(C1 ∩ C2) = deg L1|C2 = deg L2|C1

This shows that #(C1 ∩ C2) is independent of the choice of the σi as long
as the Ci intersect transversally. For Li ∈ V A(X) define

L1.L2 = #(C1 ∩ C2)

with Ci chosen as above. If L1, L
′
1 ∈ V A(X), we have

(L1 ⊗ L′1).L2 = deg (L1 ⊗ L′1)|C2 = deg L1|C2 + deg L′1|C2 = L1.L2 + L′1.L2

This shows that (L1, L2) 7→ L1.L2 is bi-additive on V A(X).
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Let M be an ample line bundle. Given any line bundle L, there exists
a power Mm such that both L ⊗ Mm and Mm are very ample, so that
L = (L⊗Mm)⊗M−m is “a difference of two very ample line bundles”. The
theorem is now a consequence of the next lemma. �

Lemma 1.2. Let A be an abelian group, S ⊂ A a sub-semigroup, and
S × S → Z a symmetric bi-additive map, (l1, l2) 7→ l1.l2. Suppose that the
map S × S → A, (a, b) 7→ a− b is surjective. Then the map (l1, l2) 7→ l1.l2
extends uniquely to a symmetric bilinear map

A×A→ Z

Proof. If such an extension exists, given ci = ai−bi, i = 1, 2, with ai, bi ∈ S,
we must have

c1.c2 = a1.a2 + b1.b2 − a1.b2 − b1.a2
so the extension, if it exists, is unique. It now suffices to prove the claim: the
RHS depends only on the ci. Suppose then that c1 = a′1−b′1 with a′1, b

′
1 ∈ S.

Then a′1 + b1 = a1 + b′1 = d (say), with d ∈ S. Then

a′1.a2 + b′1.b2 − a′1.b2 − b′1.a2 = d.a2 − b1.a2 − a1.b2 + d.b2

+ b1.b2 − d.b2 + a1.a2 − d.a2
= a1.a2 + b1.b2 − a1.b2 − b1.a2

so the claim stands proved. �

Notation: Given divisors D1, D2, we set

D1.D2 = L1.L2

where Li is the line bundle OX(Di).

Adjunction. Let ΩX denote cotangent bundle of X. The canonical bundle
KX is the determinant bundle det ΩX ; if KX = OX(K) (i.e., K is the divisor
defined by a meromorphic 2-form on X), we call K “the” canonical divisor.
If C is a nonsingular curve in a surface X, we have an exact sequence of
bundles on C:

0→ N ∗C → ΩX → KC → 0

where the conormal bundle N ∗C in turn is O(−C)|C , the isomorphism being
given by

f 7→ df |C
where f is a section of the ideal sheaf O(−C). From the above exact se-
quence, we get

KX |C = KC ⊗O(−C)|C
which in turn yields

K.C = −C.C + deg KC = −C.C + 2gC − 2

Equivalently,

gC =
1

2
C.(C +K) + 1
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2. Riemann-Roch on surfaces

Given a coherent sheaf F on X, we set hi(X,F) = dimkH
i(X,F). We

define the Euler characteristic to be

χ(F) = h0(X,F)− h2(X,F) + h2(X,F)

As before, we let K be the divisor defined by a meromorphic 2-form on X,
so that OX(K) is the canonical bundle KX .

Theorem 2.1. Let D be a divisor, and L = OX(D). Then

χ(L)− χ(OX) =
1

2
D.(D −K) =

1

2
(L.L− L.KX)

Proof. Write D = C−E, with C,E nonsingular curves of genera gC and gE
respectively. We have exact sequences:

0→ OX(C − E)→ OX(C)→ OX(C)|E → 0

and

0→ OX → OX(C)→ OX(C)|C → 0

which yields

χ(L)− χ(OX) = χ(OX(C)|C)− χ(OX(C)|E)

=
a
C.C + 1− gc − C.E − 1 + gE

= C2 − C.E + gE − gC

=
b
C2 − C.E +

1

2
{E.(E +K)− C.(C +K)}

=
1

2
{C2 − 2C.E + E2 + E.K − C.K}

=
1

2
{(C − E)2 − (C − E).K}

=
1

2
D.(D −K)

where the equality a uses the Riemann-Roch for curves and the equality b
uses Adjunction. �

Lemma 2.2. Let H be an ample divisor, and D a divisor satisfying D.H > 0
and D2 > 0. Then mD is linearly equivalent to an effective divisor for large
enough m.

Proof. Since D.H is strictly positive, (K −mD).H is negative for m large
enough so K − mD cannot be effective. So h2(OX(mD)) = h0(OX(K −
mD)) = 0 for m ≥ m0. By Riemann-Roch applied to mD, we have for
m ≥ m0:

h0(OX(mD)) = h1(OX(mD)) +
1

2
mD(mD −K) + χ(OX)
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Since D2 > 0, the m2 term dominates for large m and the RHS is strictly
positive. This proves the Lemma. �

The combination pa = pa(X) ≡ χ(OX)− 1 is called the arithmetic genus of
X.

2.1. Cup product and Intersection form; the Hodge Index Theo-
rem. If k = C, the surface X is a compact oriented real 4-manifold, and
the cup product induces a symmetric bilinear form on H2(X,Z):

H2(X,Z)×H2(X,Z)→ H4(X,Z) = Z

This induces a perfect (unimodular) pairing:

H2(X,Z)tf ×H2(X,Z)tf → H4(X,Z) = Z

where H2(X,Z)tf is H2(X,Z) modulo torsion. Let Q denote the corre-
sponding quadratic form. If X is a projective surface, any ample line
bundle L defines a class c1(L) in H2(X,Z) such that Q(c1(L)) > 0; the
Hodge index Theorem of Kähler geometry states that the above intersection
form is negative-definite on the orthogonal complement. As we noted above,
Amp(X) ⊂ Num(X) ⊂ H2(X,Z)tf . The intersection form constructed via
algebraic geometry agrees with the form constructed via cup-product. So
the Hodge Index Theorem implies the following statement over C, which is
in fact true for arbitrary closed k. This proof is due to Grothendieck.

Theorem 2.3. Let H be an ample divisor, and D a divisor, with [D] 6= 0
in Num(X) and D.H = 0. Then D2 < 0.

Proof. Suppose, by contradiction, that D2 ≥ 0. We consider two cases:

If D2 > 0, consider H ′ = D + nH. This is ample for n large enough, and
D.H ′ > 0. By Lemma 2.2, mD is effective for large enough m. But then
(mD).H > 0, which contradicts the hypothesis of the Theorem.

If D2 = 0, choose a divisor E such that D.E 6= 0 and E.H = 0 – such
a divisor exists since [D] is assumed nonzero in Num(X) – and consider
D′ = nD +E. Then D′.H = 0 and D′2 = 2nD.E +E2, so that for suitable
n ∈ Z, D′2 > 0. This yields a contradiction as above. �

3. Nakai-Moishezon Criterion for Amplitude

Suppose X ⊂ P(V ) is a surface embedded in a projective space, and C ⊂ X
a curve. By Bertini the generic hyperplane cuts X in a nonsingular curve
H, intersecting C transversally, and we can choose a second hyperplane
again cutting X in a nonsingular curve H ′, intersecting H transversally.
Clearly O(H) = O(1)|X , H.C = deg O(1)|C = #(H ∩ C) > 0 and H2 =
#(H ∩H ′) > 0.
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Suppose now that H is an ample divisor on a surface X and C ⊂ X a curve
as before. By definition, there is an embedding X ⊂ P(V ) such that O(1)|X
is isomorphic to O(mH) for some m ≥ 1. Then mH is linearly equivalent
to a hyperplane section, so

H.C > 0 and H2 > 0

The Nakai-Moishezon criterion is a converse to this:

Theorem 3.1. A divisor D on a surface is ample iff D2 > 0 and D.C > 0
for all curves C ⊂ X.

Proof. Let H be an ample divisor. Since some multiple of H is effective
(and in fact a sufficient large multiple is represented by a nonsingular curve),
H.D > 0. So Lemma 2.2 applies and mD is linearly equivalent to an effective
divisor for m large enough. After relabelling we can henceforth assume D
itself is effective – this has the consequence that the sheaf OX(−D) is a
sheaf of ideals.

Let L ≡ OX(D), and let σ denote the regular section (unique upto nonzero
scalar) of L such that (σ) = D.

We need to prove that L is ample. By assumption, L has positive degree
when restricted to any curve and is therefore ample on it. By Lemma ? it
is ample on any one-dimensional subscheme.

Consider the exact sequence:

0→ OX(−D)→ OX → OD → 0

which defines the one-dimensional subscheme D ⊂ X. By the above re-
marks, L|D is ample, and therefore there exists m0 s.t. H1(D,Lm) = 0 for
m ≥ m0. Note that OX(−D) = L−1, so the above sequence can also be
written:

0→ L−1 → OX → OD → 0

Tensor by Lm and consider the corresponding cohomology sequence. For
m ≥ m0 we get

0→ H0(X,Lm−1)→ H0(X,Lm)→ H0(D,Lm|D)→ H1(X,Lm−1)→ H1(X,Lm)→ 0

This shows that the maps H1(X,Lm−1) → H1(X,Lm) (given by multi-
plying by the defining section of L = O(D)) are surjective for m ≥ m0.
Since the k vector spaces H1(X,Lm−1) are finite-dimensional, eventually the
maps are isomorphisms, and thenceforth the restriction map H0(X,Lm)→
H0(D,Lm

D) is eventually onto.

Choose m large enough that

(1) H0(X,Lm)→ H0(D,Lm
D) is surjective, and

(2) Lm|D is very ample on D.
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We temporarily reinstate the notational distinction between a line bundle L
and the corresponding sheaf of sections L. Consider the (evaluation) map
on X:

H0(X,Lm)⊗C OX → Lm

The section σm generates Lm on the complement of D. Let now x ∈ D, and
consider the commutative diagram of maps of stalks:

H0(X,Lm)⊗C (OX)x (Lm)x

H0(X,Lm|D)⊗C (OD)x (Lm|D)x

Rx

Ex

rx

ex

The maps ex and Rx are surjective by design and rx is surjective because D
is a closed subscheme. This proves surjectivity of Ex.

We conclude that Lm is globally generated. Let Φ : X → P(H0(X,Lm)) be
the corresponding map. Under this map O(1) pulls back to Lm, so if we
prove that Φ is finite, it would follow that Lm is ample and hence L itself.
Since Φ is a map of projective varieties, it suffices1 to show that Φ has
finite fibres. If it were otherwise, there would exist a curve C ∈ X mapping
to a point in P(H0(X,Lm)) and Lm would be trivial on C, which would
contradict the hypothesis that L has positive degree on every curve. �

4. Nef line bundles

Definition A divisor D is nef if D.C ≥ 0 for every curve. (Equivalently,
a nef line bundle is one whose restriction to every curve has non-negative
degree.)

The next result is due to Kleiman:

Theorem 4.1. If D is nef, we have D2 ≥ 0.

Proof. Let H be a very ample divisor, and consider, for t ∈ R,

P (t) = (tH +D)2

Expanding the expression on the right we get

P (t) = t2H2 + 2tD.H +D2

Since H is ample, H2 > 0. By Bertini we can suppose H is a nonsingular
curve, so D.H ≥ 0. So P ′(t) ≥ 0 on t ≥ 0.

1Hartshorne’s Exercise III.11.2; this needs Stein factorisation!
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If D2 were strictly negative, we would have P (0) < 0, and P would have a
real positive root t0, with P (t) > 0 for t > t0. For t = a

b > t0, with a, b
positive integers, we have

P (t) =
1

b2
(aH + bD)2 > 0

which yields (aH + bD)2 > 0. In addition, (aH + bD).C > 0 for any curve
C, so that by Nakai criterion the divisor aH + bD is ample. This has the
consequence, which we will use in a minute, that for t as above

D.(tH +D) =
1

b
D.(aH + bD) ≥ 0

By continuity, D.(t0H +D) ≥ 0. To reach a contradiction, write (for t real
from now on)

P (t) = R(t) +Q(t)

where R(t) = t2H.H + tH.D and Q(t) = D.(tH + D). Since H2 > 0
and H.D ≥ 0, we have R(t0) > 0. Since Q(t0) ≥ 0 we have the desired
contradiction. �

5. Seshadri’s criterion

Let C ⊂ X be a curve and x ∈ X. Since X is nonsingular (in particular
locally factorial) and C has codimension one, the ideal OX(−C) of functions
vanishing on C is locally (at x) generated by a single function f , unique up
to a unit. The multiplicity multx(C) of C at x is the least integer m such
that f ∈ mm

x , where mx is the maximal ideal in the local ring Ox.

Let µ : X ′ → X be the blow-up of X at x; denote by E be the exceptional
divisor. The multiplicity of a curve C passing through x has the following
geometric interpretation: if C̃ is the proper transform of C in X ′, then

multx(C) = C̃.E

(In spite of the definition, the multiplicity is intrinsic to C.)

If C and D are two curves intersecting at x and having no other points in
common in a neighbourhood, their intersection multiplicity at x is

(C.D)x = dimk Ox/{f, g}
where f = 0 and g = 0 are local defining equations for C and D respectively,
and {f, g} is the ideal generated by f and g in the local ring Ox. We have
the following inequality:

(C.D)x ≥ multx(C)multx(D)

Theorem 5.1. Let X be a smooth projective surface, and L a line bundle
on X. Then L is ample iff there exists ε(L) > 0 such that for every (reduced,
irreducible) curve C and every point x ∈ C, we have

(1) deg L|C ≥ ε(L) multx C
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(In other words, the degree of L restricted to any curve C should be bounded
below uniformly in terms of the “maximum singularity” of C.)

Proof. Suppose first that L is ample. Then some power Lm is very ample.
Given C and a point x ∈ C, there exists (by Bertini) a section σ of Lm such
that E ≡ (σ) is a nonsingular curve passing though x, but C 6= E. (That
is, such that σ|C 6= 0 but σ(x) = o). Then

m deg L|C = deg Lm|C =
∑

y∈C∩E
i(E,C, y) ≥ i(E,C, x) ≥ multxC

Here i(E,C, y) is the intersection multiplicity of E and C at y. So (1) holds
with ε(L) = 1/m.

Conversely, suppose (1) holds for some positive ε(L). Using Nakai’s criterion,
it suffices to show that

L.L > 0

Fix a point x ∈ X, and let µ : X ′ → X be the blow-up of X at x; let E be
the exceptional divisor. Note that E is isomorphic to P1 and O(+E)|E is
the normal bundle to E, and hence equal to OP1(−1). Hence O(−E)|E is
the hyperplane bundle. In particular, E.E = degree O(E)|E = −1.

Let L = OX(D); then µ∗L = OX′(D′) where D′ is the inverse image of of
D by µ. We claim that µ∗Lm(−E) = OX′(mD′ − E) is nef on X ′ provided
ε(L) < 1/m. Granting this, we have by Kleiman’s Theorem:

(mD′ − E)2 = m2D.D + E.E = m2D.D − 1 ≥ 0

which yields the desired inequality D.D > 0.

Turning now to the claim, let C ′ be any (reduced, irreducible) curve in X ′.
We need to show that

deg µ∗L|C′ ≥ 1

m
deg O(E)|C′

If C ′ ⊂ E, then L is trivial on C ′ and O(E)) has negative degree on C ′. If
C ′ * E, let C = µ(C ′), so that C ′ is the proper transform of C. Now

deg µ∗L|C′ = deg L|C
and

deg O(E)|C′ = multx(C)

so that by hypothesis, the claim is proved. �


