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Abstract. The question underlying these lectures is: what can one say about
curves of negative self-intersection on a smooth projective surface X? The focus
here will be for surfaces X obtained by blowing up points of the projective plane.
There the occurrence of curves of negative self-intersection is closely connected to
how singular a plane curve can be. Objects considered will include the nef cone
Nef(X), the effective subsemigroup Eff(X), the semi-effective cone Seff(X), and
asymptotic quantities defined in terms of these, such as Seshadri constants, Wald-
schmidt constants and H-constants.
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1. Background

We will always take our ground field K to be an algebraically closed field, usually of arbitrary
characteristic.

1.1. The commutative algebraic perspective. Let p1, . . . , ps ∈ PN be distinct points and let
m1, . . . ,ms be nonnegative integers. As a notational convenience, we indicate this data as a formal
sum Z = m1p1 + · · · + mrpr (i.e., as an element of the free abelian group on the points of PN ),
which we will refer to as a fat point subscheme of PN .

The homogeneous coordinate ring of PN is R = K[x0, . . . , xN ] = K[PN ] (or sometimes, when
N = 2, K[x, y, z]).We regarded it as graded, so R = ⊕tRt, where Rt is the span of the homogeneous
polynomials (i.e., forms) of degree t. The ideal of Z is defined to be I(Z) = ∩iI(pi)

mi , where I(pi)
is the ideal generated by all forms vanishing at pi. Note that I(Z) is a homogeneous ideal; i.e., we
have I(Z) = ⊕t≥0I(Z)t, where I(Z)t = I(Z) ∩ Rt is the K-vector space span of the homogeneous
polynomials in I(Z) of degree t. (From the point of view of scheme theory, the ideal I(Z) defines
a 0-dimensional subscheme of PN , which we identify with Z. We will not go into the theory of
schemes but this is why we refer to Z as a subscheme of PN .)

We will regard a plane algebraic curve as being a divisor in the plane. So given F ∈ Rt,

factored into irreducible homogeneous factors as F = F f11 · · ·F
fr
r , the corresponding curve is C =

f1C1 + · · ·+ frCr, where Ci is the zero-locus in P2 of Fi.
Given a curve C defined by a homogeneous polynomial F and given a point p ∈ P2, we say

multpi C = m if F ∈ I(p)m but F 6∈ I(p)m+1, where I(p) is the ideal generated by all forms
vanishing at p (in fact I(p) is generated by any two linear forms vanishing at p which define
distinct lines).

The motivating question is: given t ≥ 0, when is there an algebraic plane curve of degree t with
points of multiplicity at least mi at each point pi? Equivalently, the question is: when is I(Z)t 6= 0?
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We see that the nonzero elements of I(Z)t (if any) define the curves C of degree t with multiplicity
at least mi at each point pi. How many such curves there are is of interest, and for this we consider
the dimension of I(Z)t for each t. We begin by noting that dimK Rt =

(
t+2
2

)
, and we define the

Hilbert function hI(Z) as

hI(Z)(t) = dim I(Z)t.

In particular, there actually is such a curve C if and only if hI(Z)(t) > 0.

Exercise 1.1.1. Let Z = mp for the point p = (0, 0, 1). Show that hI(Z)(t) = max(0,
(
t+2
2

)
−
(
m+1
2

)
).

(Indeed, vanishing with multiplicity at least m at p requires the coefficients of F ∈ Rt to satisfy(
m+1
2

)
linear conditions, and these conditions are independent if and only if t ≥ m − 1; i.e.,

hI(Z)(t) =
(
t+2
2

)
−
(
m+1
2

)
if and only if t ≥ m− 1.)

Corollary 1.1.2. Given a fat point subscheme Z = m1p1 + · · ·+msps of P2, we have

hI(Z)(t) ≥ max

(
0,

(
t+ 2

2

)
−
∑
i

(
mi + 1

2

))
.

Proof. To vanish at each point pi with multiplicity at least mi, the coefficients of a form of degree
t must satisfy

(
mi+1

2

)
linear equations on the vector space Rt of dimension dimRt =

(
t+2
2

)
. The

solution space, namely I(Z)t, thus has dimension at least dimRt minus the number of equations,

i.e., dim I(Z)t ≥
(
t+2
2

)
−
∑

i

(
mi+1

2

)
. �

The inequality in the preceding corollary comes from the fact that the
∑

i

(
mi+1

2

)
conditions

imposed on forms F ∈ Rt to vanish with multiplicity at least mi at each point pi need not be
independent. For example, to vanish at 3 collinear points p1, p2 and p3, there are 3 conditions, one
for each point. But applied to the space R1 of linear forms we see that a linear form vanishing at
p1 and p2 is forced to vanish at p3; the 3 conditions are not independent.

1.2. The geometric perspective. We now consider an alternative point of view. Recall that an
integral curve E on a smooth projective surfaceX is called an exceptional curve if E2 = E·KX = −1,
which implies that E is smooth and rational. What makes an exceptional curve exceptional is the
fact that there is a birational morphism π : X → Y contracting E to a smooth point, such that π is
the morphism obtained by blowing up Y at this point (see Castelnuovo’s Criterion, [32, Theorem
5.7]).

So let π : X → P2 be the birational morphism obtained by blowing up distinct points p1, . . . , ps ∈
P2. We set Cl(X) to be the divisor class group of X; i.e., the group of divisors modulo linear
equivalence. It is a free Z-module on the pullback ` = π−1L of a line and on the exceptional
curves ei = π−1(pi) obtained from the blow ups. An important divisor is the anticanonical divisor
−KX = 3`− e1 − · · · − es. Note that each divisor class is uniquely represented by a divisor of the
form d`−m1e1− · · ·−mses. Thus we may think of d`−m1e1− · · ·−mses either as a divisor or as
a divisor class. Moreover, it will be convenient to refer to the class d`−m1e1− · · · −mses as being
effective if the divisor d` −m1e1 − · · · −mses is linearly equivalent to an effective divisor (i.e., if
h0(X,OX(d`−m1e1 − · · · −mses)) > 0).

We recall the intersection product on Cl(X). We have `2 = 1, e2i = −1, ` · ei = ei · ej = 0 for all
i 6= j. Then for any divisors C = c`−

∑
i ciei and D = d`−

∑
i diei we have C ·D = cd−

∑
cidi. The

basic fact is that if C ∼ C ′ and D ∼ D′, where ∼ denotes linear equivalence, then C ·D = C ′ ·D′.
It will be helpful to extend the intersection product to Cl(X)⊗Z R, in the obvious way.

Remark 1.2.1. If C and D are integral and C 6= D, then C ·D ≥ 0, since C ·D is at least as large
as the number of points of intersection of C with D (in fact, C ·D is exactly equal to the number
of points in C ∩D, if we count each point of intersection with an appropriate multiplicity).
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Given a divisor C on X, we will denote hi(X,OX(C)) more simply just as hi(C). From the
formula of Riemann-Roch we have

h0(C)− h1(C) + h2(C) =
C2 − C ·KX

2
+ 1.

Given Z = m1p1 + · · ·+msps and t ≥ 0, we will use eZ to denote
∑

imiei and Ft(Z) to denote

t`− eZ . An easy check shows that (F 2 − F ·KX)/2 + 1 =
(
t+2
2

)
−
∑

i

(
mi+1

2

)
. Since h2(Ft(Z)) = 0

(because of Serre duality and t ≥ 0), we have

h0(Ft(Z)) = h1(Ft(Z)) +

(
t+ 2

2

)
−
∑
i

(
mi + 1

2

)
≥ max

(
0,

(
t+ 2

2

)
−
∑
i

(
mi + 1

2

))
.

In fact, there are natural identifications H0(t`) = Rt and H0(Ft(Z)) = I(Z)t, so we see h0(Ft(Z)) =
hI(Z)(t).

Understanding the geometry of a surface X means understanding the curves on X. Various
classes of curves on X are of interest. We begin with the set Eff(X) of classes of effective divisors.
This is closed under addition, hence it is a subsemigroup of Cl(X). We next have the set Nef(X) ⊂
Cl(X) ⊗Z R of all nef elements (i.e., all F ∈ Cl(X) ⊗Z R such that F · C ≥ 0 for all C ∈ Eff(X)).
Then a nef divisor is an element of Nef(X) ∩ Cl(X) and a nef R-divisor is an element of Nef(X),
but we will not be too fussy about distinguishing between nef divisors and nef R-divisors, leaving
it for the most part for the reader to gather from context. Note that Nef(X) is also closed under
addition, hence it is a subsemigroup of Cl(X), but by the next exercise, if mF ∈ Nef(X) for some
integer m > 0, then F ∈ Nef(X). We will refer to a subsemigroup of Cl(X) with this property as
a cone.

In addition we define the semi-effective cone Seff(X) ⊂ Cl(X)⊗Z Q; here we have F ∈ Seff(X)
if and only if mF ∈ Eff(X) for some m > 0. Then a semi-effective divisor is an element of
Seff(X)∩Cl(X) and a semi-effective Q-divisor is an element of Seff(X), but as with nefness we will
not be too fussy about distinguishing between them, leaving it for the most part for the reader to
gather from context. Finally we have the set Neg(X) of integral curves C on X with C2 < 0.

Exercise 1.2.2. Let Ci be integral curves on a surface X (where X is as above).

(a) If C =
∑

imiCi for mi ≥ 0, show that C · Ci ≥ 0 for all i implies C ∈ Nef(X).
(b) Show that mF ∈ Nef(X) for all m > 0 if and only if mF ∈ Nef(X) for some m > 0 if and

only if F ∈ Nef(X).
(c) Give an example of a surface X as above and a curve C on X with C 6∈ Eff(X) but with

2C ∈ Eff(X) (so Eff(X) need not be a cone).

Answer: (a) If C is not nef, then C ·D < 0 for some integral curve D. But C ·D ≥ 0 unless C
and D have a common component, so D must be Ci for some i; i.e., if C · Ci ≥ 0 for all i, then
C ·D ≥ 0 for all integral curves D.

(b) This is clear after noting that if m > 0, then mF · D ≥ 0 for all integral D if and only if
F ·D ≥ 0.

(c) Blow up the r =
(
n
2

)
points pi of pair-wise intersection of n general lines for n > 2 even.

Take 2C to be the proper transform of the lines. Then up to linear equivalence we have 2C =
n`− 2e1− · · ·− 2er ∈ Eff(X), but if D is the proper transform of any of the n lines, then C ·D < 0
(it is here that we use n > 2), thus if C ∈ Eff(X) we would have to have that the proper transforms
of all of the n lines must be components of C; i.e., −C = C − 2C ∈ Eff(X). But −C · ` = −n < 0;
since ` is nef, we cannot have −C ∈ Eff(X).
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−ε(Z)eZ

`

h

Figure 1. The slice of the cone Nef(X) by the plane spanned by ` and eZ is indicated by the
green sector. Let γ be the slope of the bottom ray of Nef(X), i.e., the slope of Nef(X) in the −eZ
direction. Then, intuitively, ε(Z) = −γ.

2. Seshadri and Waldschmidt constants

It is in general a hard problem to determine any of Eff(X), Nef(X), Seff(X) or Neg(X). One
way to study these is via Seshadri [13, 2] and Waldschmidt [51, 49, 8, 5, 17, 22] constants.

2.1. Seshadri constants. Let Z = m1p1 + ... + msps be a fat point subscheme of the plane, X
the surface obtained by blowing up the points pi. Then the multipoint Seshadri constant for Z is

ε(Z) = sup

{
1

t
: Ft(Z) ∈ Nef(X), t > 0

}
.

If we take the plane in Cl(X) spanned by ` and eZ , we get Figure 1, showing that ε(Z) tells us the
slope of the cone Nef(X) in the −eZ direction. Alternatively, we have

ε(Z) = sup

{
deg(C)∑

imi multpi(C)

}
where the sup is taken over all curves C containing at least one of the points pi.

2.2. Waldschmidt constants. The Waldschmidt constant is an analogous quantity for Seff(X):

α̂(Z) = inf{t : Ft(Z) ∈ Seff(X)⊗Z Q}.
We can also just work over Z:

α̂(Z) = inf
{ n
m

: Fn(mZ) ∈ Seff(X), n,m > 0
}

= inf
{ n
m

: Fn(mZ) ∈ Eff(X), n,m > 0
}
.

If we take the plane in Cl(X) spanned by ` and eZ , we get Figure 2, showing that α̂(Z) tells us the
slope of the cone Seff(X) in the −eZ direction.

For an alternative description of α̂(Z), for a nonzero homogeneous ideal (0) 6= I ⊆ R, define α(I)
to be the least degree t with It 6= (0).

Exercise 2.2.1. Show that

α̂(Z) = inf
m

{
α(I(mZ))

m

}
.

Answer: Let b(Z) = infm{α(I(mZ))/m}. Then Fα(I(mZ))(mZ) ∈ Eff(X) so Fα(I(mZ))/m(Z) ∈
Seff(X) so b(Z) ≥ α̂(Z). But there is a decreasing sequence of rationals t > α̂(Z) with limit
α̂(Z) and Ft(Z) ∈ Seff(X) for each t. For each t there is an m with Fmt(mZ) ∈ Eff(X), hence

α̂(Z) ≤ α(I(mZ))/m ≤ mt/m = t, so we must have α̂(Z) = infm

{
α(I(mZ))

m

}
.
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−eZ

α̂(Z)`

h

Figure 2. The slice of the cone Seff(X) by the plane spanned by ` and eZ is indicated by the
green sector. Let γ be the slope of the bottom ray of Seff(X), i.e., the slope of Seff(X) in the −eZ
direction. Then, intuitively, α̂(Z) = −1/γ.

Remark 2.2.2. As an aside, given a fat point subscheme Z ⊂ PN , we also mention that in fact

α̂(Z) = lim
m→∞

α(I(mZ))

m
.

(This is because of Fekete’s Subadditivity Lemma [23]. To see this, let m,n be positive integers. Let
F ∈ I(mZ) have degree α(I(mZ)) and G ∈ I(nZ) have degree α(I(nZ)). Then FG ∈ I((m+n)Z),
so α(I((m + n)Z)) ≤ α(I(mZ)) + α(I(nZ)). Fekete’s Subadditivity Lemma now says for each n

that α̂(I(Z)) = limm→∞
α(I(mZ))

m ≤ α(I(nZ))
n .)

It is a hard problem in general even to compute the values of ε(Z) and α̂(Z), but it’s conceptually
easy to at least get upper bounds.

Exercise 2.2.3.

(a) If F = Ft(Z) has F 2 > 0, show that F ∈ Seff(X).
(b) Let t ≥ 0 be such that Ft(Z)2 = 0. Show α̂(Z) ≤ t and ε(Z) ≤ 1/t.

Answer: (a) Use Riemann-Roch.
(b) Any divisor F = Ft′(Z) with F 2 > 0 is semi-effective. Thus α̂(Z) ≤ t′ for all such t′ and

since t is the limit of all such t′ we have α̂(Z) ≤ t′. And any nef divisor F has F 2 ≥ 0. So the
values of t′ such that F = Ft′(Z) is nef satisfy t′ ≥ t. Thus ε(Z) ≤ 1/t′ ≤ 1/t for each such t′.

Exercise 2.2.4. Let Z =
∑

imipi. Show α̂(Z)/ε(Z) ≥
∑

im
2
i . Give an example to show that

equality can fail.

Answer: Note that α̂(Z)/ε(Z) ≥
∑

im
2
i is equivalent to Fα̂(Z)·F1/ε(Z)(Z) ≥ 0 but this is clear, since

the intersection of a nef divisor with an effective divisor is always nonnegative. Now take 3 collinear
points p1, p2, p3 and one point p4 off that line. Let Z = p1 + p2 + p3 + p4. Then the class of F3(Z)
is in Nef(X) and Eff(X) and the class of F2(Z) is in Eff(X) and we have F3(Z) · F2(Z) = 2. Also,
(F3(Z)).(`−e1−e2−e3) = 0, so ε(Z) = 1/3. Next, take F = (`−e1−e2−e3)+2(`−e4); this is nef.
Note that the class ofG = 5`−3(e1+· · ·+e4) = 2(`−e1−e2−e3)+(`−e1−e4)+(`−e2−e4)+(`−e3−e4)
is in Eff(X), but F ·G = 0, so α̂(Z) = 5/3. Thus α̂(Z)/ε(Z) = 5 > 4.
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Using complex analysis over the complexes, Waldschmidt and Skoda [51, 49] gave the following
lower bound for α̂(Z) when Z is a reduced scheme of points in Pn:

α(I(Z))

N
≤ α̂(I(Z)).

See [37] for a proof using multiplier ideals. The simplest proof, discovered by the author and J.
Roé (see [30, p. 2], but be sure to look at version 1 of this posting), uses the containment results
of [19, 34] and gives a somewhat stronger result than that obtained by Waldschmidt and Skoda,
and in fact the following theorem holds more generally in terms of “symbolic powers” of ideals,
appropriately defined.

Theorem 2.2.5 ([19, 34]). For any fat point subscheme Z ⊂ Pn, we have I((N + m − 1)rZ) ⊆
I(mZ)r for all m, r > 0.

It follows that
α(I((N +m− 1)rZ)) ≥ α(I(mZ)r) = r α(I(mZ)),

hence
α(I((N +m− 1)rZ))

r(N +m− 1)
≥ r α(I(mZ))

r(N +m− 1)
.

As in Remark 2.2.2, taking limits as r →∞ now gives

α(I(mZ))

N +m− 1
≤ α̂(Z) ≤ α(I(mZ))

m
.

2.3. Chudnovksy’s Conjecture and Bound. In [8], Chudnovsky states the following result.

Theorem 2.3.1. Let Z = p1 + · · ·+ pr for distinct points p1, . . . , pr ∈ P2. Then

α(Z) + 1

2
≤ α̂(Z).

Proof. No explicit proof is given in [8], but from context it is pretty clear that Chudnovsky’s proof
is as follows. (See [29] for an alternate proof.)

Let R = K[P2] and let s =
(
α(I(Z))+2

2

)
− dim I(Z)α(I(Z)) (hence s <

(
α(I(Z))+2

2

)
). Then we can

pick a sequence of distinct points pij giving a subscheme Zs = pi1 + pi2 + · · ·+ pis of Z such that

I(Z)α(I(Z)) = I(Zs)α(I(Z)) ( I(Zs−1)α(I(Z)) ( · · · ( I(Z1)α(I(Z)) ( Rα(I(Z)),

where Zj = pi1 + · · ·+ pij}. We just need to keep picking points which are not base points for the
linear system of forms of degree α(I(Z)) vanishing on the previously picked points. (There is no
reason to expect that Zs = pi1 + pi2 + · · ·+ pis} is unique.)

Note that we cannot have s <
(
α(I(Z))+1

2

)
, since vanishing at s points imposes at most s condi-

tions, hence s <
(
α(I(Z))+1

2

)
implies that α(I(Zs)) < α(I(Z)), so there would be a nonzero form F

of degree α(I(Z))−1 vanishing on Zs. But this means, for every linear form L, that FL has degree
α(I(Z)) and vanishes on Zs, so is in I(Z)α(I(Z)) = I(Zs)α(I(Z)). Therefore F must vanish on all of
Z, contradicting α(I(Z)) being the least degree for which there is a nonzero form vanishing on Z.
(We also see that α(I(Zs)) = α(I(Z)).)

Thus we have (
α(I(Z)) + 1

2

)
≤ s <

(
α(I(Z)) + 2

2

)
.

Let Y = Zs and let t =
(
α(I(Z))+1

2

)
. Since α(I(Zs)) = α(I(Z)), no nonzero form of degree α(Z)− 1

vanishes on Y . Thus, in the same way as before, we can pick a subscheme Yt = q1 + · · · + qt ⊆ Y
such that

0 = I(Y )α(I(Z))−1 = I(Yt)α(I(Z))−1 ( I(Yt−1)α(I(Z))−1 ( · · · ( I(Y1)α(I(Z))−1 ( Rα(I(Z))−1,
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where Yj = q1 + · · ·+ qj .

Let U = Yt. Then α(I(U)) = α(I(Z)) and |U | =
(
α(I(Z))+1

2

)
. Note that I(U)α(I(Z)) is fixed com-

ponent free. (To see that the elements of I(U)α(I(Z)) are not all divisible by some fixed nonconstant
form, let Ui = U − qi = q1 + · · ·+ qi−1 + qi+1 + · · ·+ qt. Then dim I(Ui)α(I(Z))−1 = 1, since adding
one point to Ui, namely qi, gives U and dim I(U)α(I(Z))−1 = 0. Let Fi be a nonzero form spanning
I(Ui)α(I(Z))−1. Thus Fi(qi) 6= 0. Then F1, . . . , Ft have no nonconstant common factor, for if H were
such a common factor, then Fi(qi) 6= 0 for all i implies H(qi) 6= 0 for all i, thus Gt = Ft/H vanishes
on Ut, hence for any linear form L vanishing at qt we see GtL vanishes on U yet has degree at most
α(I(Z)) − 1, so α(I(U)) < α(I(Z)), contrary to what we proved above. Thus picking forms Li
that vanish on qi but on no other qj we get elements F1L1, . . . , FtLt ∈ I(U)α(I(Z)) with no common
component.)

Now let m > 0 and let F ∈ I(mZ)α(I(mZ)) be nonzero. The we can pick G ∈ I(U)α(I(Z)) with
no component in common with F . By Bezout’s Theorem we have

(α(I(mZ)))(α(I(Z))) = deg(F ) deg(G) ≥ m|U | = m

(
α(I(Z)) + 1

2

)
,

hence
α(I(mZ))

m
≥ α(I(Z)) + 1

2
.

This holds for all m, so
α(I(Z)) + 1

2
≤ α̂(Z).

�

Presumably based on this and on examples, Chudnovsky proposed the following conjecture [8]:

Conjecture 2.3.2. Let Z = p1 + · · ·+ pr for distinct points pi ∈ PN . Then

α(I(Z)) +N − 1

N
≤ α̂(Z).

In an attempt both to understand why this might be true, based on the proof of the bound
α(I(mZ))
N+m−1 ≤ α̂(Z) given above, and to explore possible improvements to the containment I(NrZ) ⊆
I(Z)r discussed above, an ideal containment conjecture was proposed in [29]:

Conjecture 2.3.3. Let Z = m1p1+· · ·+mrpr for distinct points pi ∈ PN and let M = (x0, . . . , xN )
be the irrelevant ideal. Then

I(NrZ) ⊆M r(N−1)I(Z)r.

Exercise 2.3.4. Let Z = m1p1 + · · ·+mrpr for distinct points pi ∈ PN and let M = (x0, . . . , xN ).
Show that Conjecture 2.3.3 implies Conjecture 2.3.2 (not only for reduced Z but for all fat point
subschemes Z).

Answer: Given I(NrZ) ⊆ M r(N−1)I(Z)r, we get α(I(NrZ)) ≥ α(M r(N−1)I(Z)r) = rα(I(Z)) +
r(N − 1). Thus for all r > 0 we get

α(I(NrZ))

rN
≥ α(I(Z)) + (N − 1)

N
.

Taking the limit as r →∞ gives the result.

For another paper addressing Chudnovsky’s conjecture, see [20].
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2.4. Submaximality. By Remark 1.2.1, it follows that curves C,D ⊂ X with no common com-
ponents have C ·D ≥ 0.

Let Z =
∑

imipi. Since we always have F1/ε(Z)(Z)2 ≥ 0 (i.e., ε(Z) ≤ 1/
√∑

im
2
i ) we say ε(Z)

is suboptimal if F1/ε(Z)(Z)2 > 0 (i.e., if ε(Z) < 1/
√∑

im
2
i ). In that case there is a rational t with√∑

im
2
i < t < 1/ε(Z) and for all such t we have Ft(Z) ∈ Seff(X) but Ft(Z) 6∈ Nef(X). Fix such

a t; then for some integer m > 0 we have m(Ft(Z)) = Fmt(mZ) ∈ Eff(X), so there are integral
curves Ci and positive integers ai such that m(Ft(Z)) =

∑
i aiCi, and for each rational t′ with

t ≤ t′ < 1/ε(Z) we have for some integer mt′ > 0 that mt′m(Ft′(Z)) = mt′m(t′ − t)`+m′
∑

i aiCi
is an effective divisor but not nef. Thus for each such t′ there is some Ci such that Ci · Ft′(Z) < 0
and we see moreover for this Ci that Ci · Ft′′(Z) < 0 for all t′′ in the range t ≤ t′′ ≤ t′. Since∑

i aiCi is a finite sum, there must be an index j such that Cj · Ft′(Z) < 0 for all t′ in the range
t ≤ t′ < 1/ε(Z). Since F1/ε(Z)(Z) is nef, we have limt′→1/ε(Z)Cj ·Ft′(Z) = Cj ·F1/ε(Z)(Z) ≥ 0 even
though Cj · Ft′(Z) < 0, so we conclude that Cj · F1/ε(Z)(Z) = 0.

Thus when ε(Z) is suboptimal, there is an integral curve C such that C · F1/ε(Z)(Z) = 0.
Such a curve is called a Seshadri curve for Z. It need not be unique, hence there can also be
effective divisors D which are not integral such that D · F1/ε(Z)(Z) = 0. Such divisors were called
abnormal by Nagata, and submaximal by some subsequent authors. For any submaximal curve
D ∼ d`−

∑
imiei, we have d− ε(Z)(

∑
imi) = 0, hence ε(Z) = d∑

imi
; i.e., D computes the value

of ε(Z).
Moreover, by the Hodge Index Theorem we have D2 < 0. I.e., C ∈ Neg(X) for every Seshadri

curve C. Thus we see to understand suboptimal Seshari constants it is helpful to understand the
occurrence of integral curves C with C2 < 0.

Exercise 2.4.1. Show that each Z has at most finitely many Seshadri curves and that they are
linearly independent in Cl(X).

Answer: Seshadri curves are components of an effective divisor, so there can be at most finitely
many. They live in a negative definite subspace of Cl(X) but meet each other nonnegatively. If
they were not independent, then some nonnegative linear combination A of some of them would
(up to linear equivalence) equal some nonnegative linear combination B of the rest; i.e., A ∼ B.
Since A ∼ 0 for an effective divisor A if and only if A = 0, to show linear independence we must
show A = 0 and B = 0, so say A 6= 0. Then A 6∼ 0 so 0 > A2 by negative definiteness, hence
0 > A2 = A·B ≥ 0. The contradiction shows that the Seshadri curves cannot fail to be independent.

The next proposition gives a way of computing Seshadri and Waldschmidt constants in certain
cases and of finding Seshadri curves.

Proposition 2.4.2. Let Y = m1p1+ · · ·+mrpr, Z = n1p1+ · · ·+nrpr ⊂ P2 be fat point subschemes
where Y is nontrivial (i.e., some mi > 0), let X be the blow up of the points pi, and let Fs(Y ) ∈
Seff(X) and Ft(Z) ∈ Nef(X). If Fs(Y ) · Ft(Z) = 0, then ε(Z) = 1/t and α̂(Y ) = s.

Proof. Since Ft(Z) is nef, we have ε(Z) ≤ 1/t. Since Fs(Y ) ∈ Seff(X), we have aFs(Y ) is effective
for some a > 0. Since `− ei is nef for all i, we have aFs(Y ) · (`− ei) ≥ 0, and since mi > 0 for some
i we therefore have aFs(Y ) · ` ≥ mi > 0. Thus aFs(Y ) ·Ft(Z) = 0 implies aFs(Y ) ·Fu(Z) < 0 for all
u < t, so we also have ε(Z) ≥ 1/t and hence ε(Z) = 1/t. Since Ft(Z) is nef, having Fs(Y )·Ft(Z) = 0
also means α(I(aY )) ≥ as for all a > 0, so α̂(Y ) ≥ s, but Fs(Y ) ∈ Seff(X) means α̂(Y ) ≤ s, so we
obtain α̂(Y ) = s. �
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Figure 3. A configuration of points giving rise to a Seshadri curve C with C2 < −1.

Example 2.4.3. Let X be the blow up of P2 at two points p1 and p2. Let Y = Z = p1 + p2. Then
Fs(Y ) ∈ Eff(X) for s = 1 (since Fs(Y ) is linearly equivalent to the proper transform C of the line
through p1 and p2) and Ft(Z) ∈ Nef(X) for t = 2 (since `− e1, `− e2 linearly equivalent to prime
divisors of nonnegative self-intersection, hence 2`−e1−e2 ∈ Nef(X)), and we have Fs(Y )·Ft(Z) = 0,
so Proposition 2.4.2 we have ε(Z) = 1/2 and α̂(Z) = α̂(Y ) = 1. Since (F2(Z))2 > 0, we see that
C is a Seshadri curve for Z (and so we expect C2 < 0 and indeed C2 = −1), and in fact S is the
unique Seshadri curve for Z.

Example 2.4.4. Let X be the blow up of P2 at three noncollinear points p1, p2 and p3. Let Y =
p1 +p2, Z = p1 +p2 +p3 and let Cij be the proper transform of the line through pi and pj for i 6= j.
Then F1(Y ) ∈ Eff(X) and F2(Z) ∈ Nef(X), and F1(Y ) · F2(Z) = 0. Thus again ε(Z) = 1/2 and
α̂(Y ) = 1 and C12 is a Seshadri curve for Z. But Cij is also a Seshadri curve for Y whenever i 6= j,
so here Y does not have a unique Seshadri curve. Note that C12 + C13 + C23 = F3(2Z) = 2F 3

2
(Z)

is effective and has F3(2Z) · F2(Z) = 0. Since F 3
2
(Z) ∈ Seff(X), we get α̂(Z) = 3/2.

Examples 2.4.3 and 2.4.4 exhibit Seshadri curves of self-intersection −1. If X is a blow up of
P2 at r points pi and if d` −m1e1 − · · · −mrer is linearly equivalent to an integral divisor C of
C2 < 0, then it is easy to see that C is a Seshadri curve for Z = m1p1 + · · · + mrpr. Thus it is
easy to exhibit Seshadri curves C with C2 < −1 (take the proper transform of the line through
r > 2 collinear points, for example). However, no examples are known of a Seshadri curve C with
C2 < −1 when the points pi are general. Indeed, it is an open problem to show that none exist.
We now give an example (originally from [14] but considered from the present point of view in [10])
of a Z where one of the points with nonzero coefficient is general which does have a Seshadri curve
C with C2 < −1.

Example 2.4.5. Let X be obtained by blowing up 10 points of P2 arranged as follows. Start with
4 points (say p1, . . . , p4), no three of which are collinear (represented by small open circles in Figure
3. The conics passing through these four points is a pencil (i.e., a 1-dimensional family) with three
singular members. The singular points (p5, p6, p7) of the singular members are shown as small
black dots. Take the line through any two of the singular points of the 3 singular members (this
is the dotted line in the figure); it intersects the third singular conic in two points (p8, p9), shown
as open circles with a small black dot inside. This gives 9 points pi, to which we add an additional
general point p0 for the 10 points which we blow up to obtain X. Then 4` − 3e0 − e1 − · · · − e9
is linearly equivalent to an integral curve C with C2 = −2 (see [10]). It is a Seshadri curve for
Z = 3p0 + p1 + · · · + p9. It is not unique since the proper transform for any of the three lines
through four of the points p1, . . . , p9 is also a Seshadri curve for Z.

In the next proposition we assume the ground field is the complex numbers. We say that a
statement holds for very general points p1, . . . , pr ∈ P2 if the set of points in (P2)r fort which the
claim is not true is not contained in a countable union of proper Zariski closed subsets.
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Proposition 2.4.6. For Z = p1 + · · ·+ pr for very general points p1, . . . , pr ∈ P2, we have α̂(Z) =
rε(Z).

Proof. By Exercise 2.2.4 we have α̂(Z) ≥ rε(Z). By Exercise 2.2.3 we have ε(Z) ≤ 1/
√
r and

α̂(Z) ≤
√
r.

First suppose that ε(Z) = 1/
√
r for some set of distinct points qi. Since ε(Z) is maximal in this

case, there is no Seshadri curve. Thus no divisor C = d`−m1e1 − · · · −mrer with C · F√r(Z) < 0

is effective. There are at most countably many C = d`−m1e1 − · · · −mrer with C · F√r(Z) < 0,

and for each one (by uppersemicontinuity of h0(X,OX(d`−m1e1− · · ·−mrer)) > 0), effectivity of
C is a closed condition on the set U of distinct points (p1, . . . , pr) ∈ (P2)r. These closed conditions
are proper closed subsets since the points (q1, . . . , qr) are in the complement of all of them. Since
ε(Z) = 1/

√
r holds on the complement of the union of these closed conditions, and it is nonempty,

we see that ε(Z) = 1/
√
r holds for very general points. I.e., ε(Z) = 1/

√
r holds somewhere if

and only if it holds for a very general set of points. But if ε(Z) = 1/
√
r holds somewhere, then√

r = rε(Z) ≤ α̂(Z) ≤
√
r, hence we get α̂(Z) = rε(Z) =

√
r for very general points.

Now assume that ε(Z) = 1/
√
r does not hold for a very general set of distinct points. Thus

it holds for no set of distinct points. This means there is some effective divisor C such that
C · F√r(Z) < 0 for every choice of points (p1, . . . , pr) ∈ U . But C is linearly equivalent to some
d` −m1e1 − · · · −mrer. By uppersemicontinuity, effectivity of d` −m1e1 − · · · −mrer is a closed
condition. Since no countable union of proper Zariski closed subsets equals U , this means there is a
divisor C = d`−m1e1−· · ·−mrer with C ·F√r(Z) < 0 such that the locus of points pi such that C
is effective is not contained in a proper closed set. I.e., there is one specific C which works for every
set of distinct points. We may assume we picked such a C for which d is as small as possible, and∑

imi is as large as possible for that d. Then C is integral for a nonempty open subset of V ′. (To
justify this, it is enough to show for each (p1, . . . , pr) ∈ V ′, there is no B = d′`−m′1e1− · · · −m′rer
such that both B and C −B are effective and nontrivial. Assume both B and C −B are effective;
for specificity say d′ ≥ d− d′. Then we have 0 ≤ d′ ≤ d and mi− d ≤ m′i ≤ d′. Thus there are only
finitely many such d′`−m′1e1−· · ·−m′rer. Since d is minimal, no such B with 0 < d′ < d is effective
for all points of U . This means there is a nonempty open subset V of U which excludes all sets of
points pi such that there is a B with 0 < d′ < d. Thus for each set of points pi in V , for any B such
that B · F√r(Z) < 0 where both B and C − B are effective has d′ = d, so C − B =

∑
i aiei where

necessarily ai ≥ 0. But by maximality of
∑

imi the loci such that C − ei is effective is a proper
closed subset of V . Hence there is a nonempty open subset V ′ of V which excludes all points of V
such that C −B is nontrivial, and hence B = C.)

Reindexing induces an automorphism of U , hence for each permutation π, there is a nonempty
open subset of U such that π(C) = d`−mπ(1)e1− · · · −mπ(r)er is effective and integral. Thus ther
is a nonempty open subset W such that all π(C) = d` −mπ(1)e1 − · · · −mπ(r)er are effective and
integral. Adding them up gives an effective class D = δ` − µe1 − · · · − µer with D · F√r(Z) < 0.

Since D · F√r(Z) < 0 implies D2 < 0 (so δ2 < rµ2), and since the only components of D are the

curves π(C), we have D · π(C) < 0 for some (and hence every) π.
Now consider Frµ/δ(Z). We have D · Frµ/δ(Z) = 0 and hence π(C) · Frµ/δ(Z) = 0 for all π. On

the other hand, δµFrµ/δ(Z) = δD+ (rµ2− δ2)` is effective and meets each of its components ` and
π(C) nonnegatively, so is nef. By Proposition 2.4.2 we have ε(Z) = δ/(rµ) and α̂(Z) = δ/µ, hence
α̂(Z) = rε(Z). �

Remark 2.4.7. In the proof above, we saw that if Z = p1 + · · · + pr are very general, for any
Seshadri curve C = d`−m1e1 − · · · −mrer, π(C) = d`−mπ(1)e1 − · · · −mπ(r)er is also a Seshadri
curve for every permutation π. By Exercise 2.4.1, their classes are linearly independent, and since
they are all orthogonal to F1/ε(Z)(Z), there can be at most r of them. Thus either m1 = · · · = mr
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(in which case we say C is uniform) or all but one of the mi are equal (in which case we say C is
almost uniform).

Remark 2.4.8. It will be helpful, for the next example, to recall the quadratic transform centered
at three noncollinear points, p1, p2 and p3 (also called a quadratic Cremona transformation).
Geometrically, it is a birational map P2 99K P2 given by blowing up the points and blowing down the
lines through pairs of the points. If we choose coordinates such that the points are the coordinate
vertices (0 : 0 : 1), (0 : 1 : 0), (1 : 0 : 0), then a point (a : b : c) such that abc 6= 0 maps to
( 1a : 1

b : 1
b ) = (bc : ac : ab). In the form (a : b : c) 7→ (bc : ac : ab) we see that the map is defined

away from the coordinate vertices. Given a finite set of points, no three collinear, the quadratic
transform centered at any three of them map the others to distinct points. Given such a set of
points p1, . . . , pr, r ≥ 3, if we apply the quadratic transform centered at p1, p2 and p3, we have the
images p4 7→ p′4, . . . , pr 7→ p′r, and it is convenient to regard p′1 as the image of the line through p2
and p3, p

′
2 as the image of the line through p1 and p3, and p′3 as the image of the line through p1

and p2. With this convention, applying the transform twice takes pi to pi for all i.
Note however, even if no three of the points p1, . . . , pr are collinear, that three of the points

p′1, . . . , p
′
r could be collinear after we apply the quadratic transform centered at three of them.

Suppose no three of the points are collinear, and we apply the quadratic transform centered at
p1, p2 and p3. Then the points p′i are distinct, and three of them, say p′i, p

′
j , p
′
k, are collinear if and

only if none of i, j, k are among 1, 2, 3 but p1, p2, p3, pi, pj , pk lie on a conic. And assuming no three
of the points pi are collinear and no six lie on a conic, in order for no six of the image points to lie
on a conic there can be no cubic through 7 of the points pi singular at one of the seven. And in
order for this to hold for the image points, similar higher order conditions must hold, and in order
for those to hold for the image points, even higher order conditions must hold on pi, etc. But if one
successively applies a finite sequence of quadratic transforms with centers in a finite set of points
(i.e., starting with a quadratic transform centered at three points of a set of points pi, and then
a second quadratic transform centered at three of the image points, and then a third quadratic
transform centered at three points in the images of the image points, etc.), one may assume at each
step that no three of the points is collinear, if the original points pi are general, since after finitely
many steps, the condition for there to be three among the resulting points which are collinear is a
finite union of proper closed conditions on the points.

Example 2.4.9. Consider Z = p1 + · · ·+ pr general points pi ∈ P2.
For r = 4, 2`− e1 − · · · − e4 is both nef and effective, so ε(Z) = 1/2 and α̂(Z) = 2. Since ε(Z)

is maximal, there are no Seshadri curves.
For r = 5, C = 2`−e1−· · ·−e5 is a Seshadri curve and F = (5/2)`−(e1+· · ·+e5) = (1/2)(2C+`)

is nef, so ε(Z) = 2/5 and α̂(Z) = 2. For an explanation of why C is irreducible, see Figure 4.
Alternatively, apply the quadratic transform centered at p1, p2, p3. Then as explained in Remark
2.4.8, we have the image points p′i, no three of which are collinear. The image of the line L through
p′4 and p′5 under the inverse transform is a conic Q through all five points pi, and the image of Q
under the original transform is L (hence Q is both unique and irreducible since L is).

For r = 6, Ci = 2`−e1−· · ·−e6+ei is a Seshadri curve for each i, and F = (5/2)`−(e1+· · ·+e6) =
(1/10)(2C1 + · · ·+ 2C6 + `) is nef, so ε(Z) = 2/5 and α̂(Z) = 2. As in the case of r = 5, each Ci is
irreducible.

For r = 7, Ci = 3`−e1−· · ·−e7−ei is a Seshadri curve for each i, and F = (8/3)`−(e1+· · ·+e7) =
(1/9)((Ci+ei)+C1+ · · ·+C7) is nef, so ε(Z) = 3/8 and α̂(Z) = 21/8. (To see that Ci is irreducible,
note that if it were not, then there would either be a line through 3 or more of the points, or a
conic through 6 or more, but neither happens for general points. Alternatively, apply the quadratic
transform centered at three of the points, one of which is pi, so say pi, pj , pk. The cubic Ci becomes
the conic Q through p′i and through the images of the four remaining points, and Ci is the image of
this conic under the inverse transform. Thus Ci is unique and irreducible. Moreover, the singular
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Figure 4. A pencil of conics through four general points p1, . . . , p4 (shown as white dots) has
exactly three singular members (see the three pairs of lines crossing at the three black dots). Every
other member of the pencil is irreducible (for example, the oval going through a fifth general point
p5, where p5 is shown as a dotted circle).

Figure 5. An irreducible sextic with a triple point and seven nodes.

point of each Ci is a node rather than a cusp. This is because if Ci were cuspidal, then Q would be
tangent to the line through p′j , p

′
k. This is a proper closed condition on the points pi, which general

points can be assumed to avoid.)
For r = 8, Ci = 6` − 2e1 − · · · − 2e8 − ei is a Seshadri curve for each i, and F = (17/6)` −

(e1 + · · · + e8) = (1/36)((Ci + ei) + 2C1 + · · · + 2C8) is nef, so ε(Z) = 6/17 and α̂(Z) = 48/17.
(This sextic is also unique and irreducible for general points pi, as can be seen by a more involved
but basically similar argument involving quadratic transforms which can be used to obtain the
sextic as the image of a unique irreducible curve of lower degree. See Figure 5 for a graph of an
example irreducible sextic having a triple point at p1 = (0, 3, 1) and double points at p2 = (−3, 2, 1),
p3 = (3, 2, 1), p4 = (−2, 0, 1), p5 = (2, 0, 1), p6 = (−2,−2, 1), p7 = (2,−2, 1) and p8 = (0,−3, 1).)

For r = 9, C = 3` − e1 − · · · − e9 is both nef and effective, so ε(Z) = 1/3 and α̂(Z) = 3. Since
ε(Z) is maximal, there are no Seshadri curves. (Here one cannot reduce a cubic through 9 general
points to a curve of lower degree using quadratic transforms. But such a cubic is irreducible since
otherwise it would have a component of a line through at least 3 of the points or a conic through at
least 7 of them which we may assume never happens for general points. It is unique since each point
imposes one condition on the 10 dimensional vector space of cubic forms; i.e., there is exactly one
cubic vanishing at 9 general points. in fact, this cubic is smooth. (To see this, consider the 3-uple
Veronese v : P2 → P9. This is an embedding of P2 into P9, hence by Bertini’s Theorem (which
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holds in every characteristic; see [32, Theorem 8.18]) the general hyperplane section is smooth.
But the general hyperplane section is the cubic through 9 general points, hence there is a unique
cubic through 9 general points, it is smooth and hence irreducible, since a plane curve which is not
irreducible has points where the components meet, which must be singular points.)

Examples 2.4.3, 2.4.4 and 2.4.9 show for r = 2, 3, 5, 6, 7, 8 general points that Seshadri curves C
exist for Z = p1 + · · · + pr, and in each case satisfies C2 = C ·KX = −1. For r > 9 very general
points, no examples are known of a Seshadri curve for Z = p1 + · · ·+ pr, but it is an open problem
to prove this and thus to compute ε(Z) or α̂(Z), except when r is a square, in which case Nagata
showed ε(Z) = 1/

√
r [40].

Conjecture 2.4.10 (Nagata, [40]). For r > 9 very general points of the complex plane P2, ε(Z) =
1/
√
r.

It is also an open conjecture for r > 9 generic points over any algebraically closed field with
sufficient transcendence degree over the prime field (where the prime field is the minimal subfield
and generic means points whose coordinates are algebraically independent over the prime field.)

3. Negative curves, SHGH, bounded negativity and H-constants

Let X be obtained by blowing up points of P2. What kinds of integral or even reduced curves
C ⊂ X with C2 < 0 can we get and how negative can C2 be?

3.1. Exceptional Curves. We found examples above of irreducible curves C with C2 = −1 on
a blow up X of P2 at r general points. In each case C also satisfied C · KX = −1. An integral
curve C on a smooth projective surface X with C2 = C · KX = −1 is called an exceptional
curve. By the adjunction formula for effective divisors on a smooth projective surface X, we have
C2 +C ·KX = 2pC − 2, where pC is the arithmetic genus of C. It follows that an exceptional curve
has pC = 0, so by the next exercise, we see exceptional curves are smooth and rational.

Exercise 3.1.1. Let C be an integral curve on a smooth projective surface X. If pC = 0, show
that C is smooth and rational.

Answer: If C were not smooth, we could blow up a singular point and take its proper transform C ′

on the blown up surface X ′. There we would have (C ′)2 < C2 and C ′ ·KX′ < C ·KX , so pC′ < pC ,
but for an integral curve the arithmetic genus is always nonnegative, so this is impossible if pC = 0.
Thus C is smooth, in which case the arithmetic genus is the geometric genus, which is thus 0 hence
C is rational.

Example 3.1.2. Two cases of exceptional curves we did not see before are C = 4`− 2e1 − 2e2 −
2e3−e4−· · ·−e8 and D = 5`−2e1−· · ·−2e6−e7−e8, `−e1−e2. In both cases, when the points pi
blown up are sufficiently general, C and D are the classes of effective integral divisors. This can be
seen using the same argument based on quadratic transforms used above: the quadratic transform
centered at p1, p2, p3 applied to the quartic gives a conic through the image points p′4, · · · , p′8,
hence both the conic and the quartic are integral. See Figure 6 for a quartic through the points
p1 = (−1, 2, 1), p2 = (−1,−1, 1), p3 = (2,−1, 1), p4 = (3,−3, 1), p5 = (−3, 3, 1), p6 = (3,−9, 1),
p7 = (−9, 3, 1) and p8 = (−87, 117, 79), with nodes at the first three points.

And the quadratic transform centered at p4, p5, p6 applied to the quintic gives a quartic through
the image points p′1, · · · , p′8 singular at p′1, p

′
2, p
′
3; we just saw this quartic is integral, hence so

is the quintic. See Figure 6 for a quintic through the points p1 = (−3, 0, 1), p2 = (−2,−2, 1),
p3 = (2,−45, 20), p4 = (2,−2, 1), p5 = (1, 0, 1), p6 = (−2, 2, 1), p7 = (0, 1, 1) and p8 = (2, 2, 1),
with nodes at the first six points.
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Figure 6. An irreducible quartic with three nodes and an irreducible quintic with six nodes.

Exercise 3.1.3. Given a blow up X of P2 at r distinct points p1, . . . , pr, we have the classes
`, e1, . . . , er. Recall that −KX = 3`− e1− · · · − er. Show that the subspace K⊥X ⊂ Cl(X) of classes

C with C ·KX = 0 is even (i.e., if C ·KX = 0, then C2 is even). Then show that K⊥X is negative
definite if and only if r ≤ 8 (i.e., where negative definite means that if C ·KX = 0, then C2 ≤= 0
with equality if and only if C = 0). Finally, find all solutions C = d` −m1e1 − · · · −mrer ∈ K⊥X
with C2 = −2 when r ≤ 8 (and, to keep down the number of trivial variations, assume m1 ≥ m2 ≥
m3 ≥ · · · ≥ m8 and d ≥ 0).

Answer: It is easy to see that v0 = `− e1− e2− e3, v1 = e1− e2, . . . , v7 = e7− e8 gives a basis for
K⊥X over the integers. Since v2i = −2 for each i, it is clear that (

∑
i aivi)

2 is even, since expanding
the product gives a sum

∑
i a

2
i v

2
i which is even, plus the cross terms

∑
i<j 2aiajvi · vj , which is also

even.
To show K⊥X is negative definite for r ≤ 8, we may as well let r = 8, since K⊥X for r < 8

is contained in K⊥X with r = 8 and the intersection products are the same. We now have the
Q-basis u0 = 8` − 3(e1 + · · · + e8), u1 = v1, u2 = e1 + e2 − 2e3, u3 = e1 + e2 + e3 − 3e4, . . .,
u8 = e1 + · · ·+ e7 − 7e8, which is orthogonal. Since u2i < 0 for each i, we see that K⊥X is negative

definite. For r ≥ 9, we have D = (r − 9)r`− 3KX ∈ K⊥X . This is nonzero, but D2 = r(r − 9) ≥ 0,

so K⊥X is not negative definite.

Now we find all solutions C = d` −m1e1 − · · · −mrer ∈ K⊥X with C2 = −2 when r ≤ 8. Since
any solution with r < 8 also gives a solution for r = 8 by taking mi = 0 for i > r, we continue to
assume r = 8.

Now suppose C = d` −m1e1 − · · · −m8e8 ∈ K⊥X . Let D = d` −m(e1 + · · · + e8), where m is

the average of the mi. Then D ∈ K⊥X , but D2 ≥ C2 (since D2 − C2 =
∑

i(m
2
i −m2) ≥ 0) with

D2 > C2 unless D = C. Note that 3d − 8m = 0, so m = 3d/8, hence D2 = d2 − 8m2 = −d2/8.
Thus −2 = C2 ≤ D2 = −d2/8, so 0 ≤ d ≤ 4. But if d = 4, then D2 = −2 and m = 3/2; since
m is not an integer we have C2 < D2 = −2, so d = 4 cannot occur. Thus 0 ≤ d ≤ 3. If d = 0,
then we have

∑
imi = 0 and

∑
im

2
i = 2, so the only solution is −e1 + e8 (under the assumption

that m1 ≥ m2 ≥ m3 ≥ · · · ≥ m8, or ei − ej , i 6= j without the assumption). If d = 1, then we
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have
∑

imi = 3 and
∑

im
2
i = 3, thus the only solution is `− e1 − e2 − e3. If d = 2, then we have∑

imi = 6 and
∑

im
2
i = 6, thus the only solution is 2` − e1 − · · · − e6. If d = 3, then we have∑

imi = 9 and
∑

im
2
i = 11, thus the only solution is 3`− 2e1 − e2 − · · · − e8.

Exercise 3.1.4. Given a blow up X of P2 at r distinct points p1, . . . , pr, we have the classes
`, e1, . . . , er. Find all solutions C = d`−m1e1 − · · · −mrer with r ≤ 8 to C2 = C ·KX = −1 (and
again, to keep down the number of trivial variations, assume m1 ≥ m2 ≥ m3 ≥ · · · ≥ m8).

Answer: We may as well let r = 8, since any solution with r < 8 also gives a solution for r = 8
by taking mi = 0 for i > r. Suppose we have D2 = −2 and D · KX = 0. Then (D − KX)2 =
(D −KX) ·KX = −1, so we get all solutions for C by adding −KX to all solutions for D. Adding
−KX to ±D for each D found in Exercise 3.1.3, starting with those D with d = 0 and working our
way up, we get: 3`− 2e1− e2− · · · − e7; 4`− 2e1− 2e2− 2e3− e4− · · · − e8, 2`− e1− e2− · · · − e5;
5`− 2e1 − · · · − 2e6 − e7 − e8, `− e1 − e2; 6`− 3e1 − 2e2 − · · · − 2e8, e9.

Exercise 3.1.5. Let X be the blow up of P2 at 9 distinct points p1, . . . , p9. For each v ∈ K⊥X with
v · e9 = 0 let Cv = e9 + v + (v2/2)KX . Show that (in spite of the 2 in the denominator) Cv is an
integral divisor class, that it satisfies C2 = C · KX = −1 and that it is the class of an effective
divisor. Finally, if C2 = C ·KX = −1, show that C = Cv for some v ∈ K⊥X with v · e9 = 0.

Answer: Since v ∈ K⊥X which is even by Exercise 3.1.3, we know that v2 is even, hence Cv is
integral. We compute that Cv ·KX = e9 ·KX = −1 and that C2

v = e29 = −1.
Note that v2 ≤ 0, with 0 if and only if v = 0, since v is in K⊥X′ ⊂ Cl(X ′) for the blow up X ′ of the

first eight points, and we know thatK⊥X′ is negative definite. Thus `·Cv = `·v−3v2/2 = `·v+3|v2|/2.
Thus this is nonnegative if `·v ≥ 0. To see that this is always nonnegative, write v in the orthogonal
basis u0 = ` − 3(e1 + · · · + e8)/8, u1 = v1, u2 = e1 + e2 − 2e3, u3 = e1 + e2 + e3 − 3e4, . . .,
u8 = e1 + · · ·+e7−7e8. Thus v =

∑
i aiui. If a0 ≥ 0, then we saw that ` ·Cv ≥ 0. Say a0 < 0. Then

v2 ≤ (a0u0)
2 ≤ 0 and `·v = `·a0u0 = a0, so `·Cv = `·v+3|v2|/2 ≥ `·a0u0+3a20|u20|/2 = 3a20/16−|a0|.

This is positive if a0 ≤ −6, and since v is integral, we just need to check the cases 0 > a0 ≥ −5
that the minimum value of |v2| is enough to ensure that ` · v + 3|v2|/2 ≥ 0.

So let v = −b0` + b1e1 + · · · + b8e8 with 0 > b0 ≥ −5. Clearly we may assume that bi ≥ 0 for
all i > 0. For 0 > b0 ≥ −3, the minimum value of |v2| is 2 (since the intersection form is negative
definite and even); for example, we get |v2| = 2 with −(`− e1− e2− e3), −(2`− e1− · · · − e6), and
−(3`− 2e1 − e2 − · · · − e8). But in these cases we get ` · v + 3|v2|/2 = b0 + 3 ≥ 0.

We know from the solution to Exercise 3.1.3 that there are no classes v with v2 = −2 when
b0 < −3, so the minimum possible value of |v2| is 4 (and in fact v2 = −4 for −(4` − 2e1 − · · · −
2e4− e5−· · ·− e8) and −(5`− 2e1−· · ·− 2e7− e8)). Thus ` · v+ 3|v2|/2 = b0 + 6 ≥ 1 in both cases.

Now from Riemann-Roch we have h2(X,Cv) = 0 since C − v · ` ≥ 0, so h0(X,Cv) = h1(X,Cv) +
(C2

v − Cv ·KX)/2 + 1 ≥ 1.
Finally, let C = d`−m1e1−· · ·−m9e9 satisfy C2 = C·KX = −1. Then v = C−e9+(m9+1)KX has

D·e9 = 0 and v ∈ K⊥X , and we have Cv = e9+(C−e9+(m9+1)KX)+(C−e9+(m9+1)KX)2/2)KX =
C + (m9 + 1)KX)− (m9 + 1)KX = C.
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Exercise 3.1.6. Let X be the blow up of P2 at r > 9 distinct points p1, . . . , p9. Show that there
exist solutions C = d`−m1e1− · · ·−mrer to C2 = C ·KX = −1 with C · ` < 0, and thus C cannot
be the class of an effective divisor.

Answer: Let C = −3`+ e1 + · · ·+ e10 +m(3`− e1 − · · · − e9) for any m ≤ 0.

For general points p1, . . . , p9, the points lie on a smooth cubic C ′, so its proper transform C
on the blow up X of the points is a smooth elliptic curve. Since C = −KX is nef, there is no
integral curve D with −KX · D < 0. If the points pi are sufficiently general over a sufficiently
large field K (such as either the complex numbers or K has sufficiently large transcendence degree
over the prime field), then the inclusion C ⊂ X induces an injection Cl(X)→ Cl(C). This means
the only integral curve D with −KX · D = 0 is D = C. Now suppose E is a divisor satisfying
E2 = E · KX = −1. Then for sufficiently general points pi we must have that E is linearly
equivalent to an integral curve. We know that E is linearly equivalent to an effective divisor, and
taking E to be that divisor we see that it is reduced with a single component. (This is because
−KX · E = 1 so there is one component which meets C, and all other components are orthogonal
to C, hence must be C. Thus E = A + mC for some m ≥ 0 and some integral divisor A with
−KX · A = 1. But now −1 = E2 = (A+mC)2 = A2 + 2mA · C = A2 + 2m, so A2 = −1− 2m, so
−2− 2m = A2 +A ·KX = 2pA − 2, so −m = pA ≥ 0 hence m = 0.)

In particular, the surface X obtained by blowing up r = 9 (and hence r ≥ 9 since the curves
arising after the first 9 blow ups remain when blowing up additional points) sufficiently general
points of a smooth plane cubic C ′ over a sufficiently large field K, has infinitely many smooth
rational curves E with E2 = −1.

3.2. The Weyl group and exceptional curves. For r > 9, Exercise 3.1.6 shows that not every
solution to E2 = E ·KX = −1 in Cl(X) comes from an exceptional curve. So it is of interest to
know which solutions do.

Remark 3.2.1. Given distinct points p1, . . . , pr ∈ P2, let X be the surface obtained by blowing up
the points. The birational map P2 99K P2 given by the quadratic transform centered at noncollinear
points p1, p2, p3 corresponds to blowing up the points p1, p2, p3 and blowing down the proper trans-
forms of the lines through pairs of the points (see Remark 2.4.8). Thus it is the birational map given
by g ◦ f−1, where f : X → P 2 is the morphism give by blowing up the points pi and g : X → P2

is the morphism given by contracting e′1 = ` − e2 − e3, e′2 = ` − e1 − e3, e′3 = ` − e1 − e2, e′4 =
e4, . . . , e

′
r = er. The pullback of a line with respect to g is `′ = d` − m1 − e1 − · · · − mrer, and

satisfies 1 = (`′)2 = (d`−m1− e1− · · · −mrer)
2, 0 = `′ · e′i = (d`−m1− e1− · · · −mrer) · e′i for all

i, hence mi = 0 for i > 3, and d = m1 +m2 = m1 +m3 = m2 +m3, hence m1 = m2 = m3 = d/2,
so 1 = 4m2−3m2. Thus m = ±1, but `′ is nef, so m = 1. Thus `′ = 2`− e1− e2− e3; i.e., a general
line pulls back to a conic through p1, p2, p3 under the quadratic transform.

Note that ` 7→ `′ and ei 7→ e′i for all i can be regarded as a change of basis for Cl(X). It is
given by the “reflection” s0 by the class v0 = ` − e1 − e2 − e3; i.e., we define s0 : Cl(X) → Cl(X)
by s0(x) = x + (x · v0)v0. Similarly for 1 ≤ i < r we can define si : Cl(X) → Cl(X) by si(x) =
x + (x · vi)vi, where vi = ei − ei+1. For each 0 ≤ i < r, note that s2i is the identity, and that
si(vi) = −vi. When r = 0 or 1, let Wr be the identity group; when r = 2, let Wr be generated
by s1 (so Wr is the group of permutations of e1 and e2), and when r ≥ 3, let Wr be generated by
s0, . . . , sr−1.

Every element w ∈Wr can be regarded as a change of basis; given F = d`−m1e1−· · ·−mrer ∈
Cl(X), let w(F ) = d′` −m′1e1 − · · · −m′rer and let `′ = w−1(`), e′1 = w−1(e1), . . . , e

′
r = w−1(er).
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. . .

v0

v1 v2 v3 v4 v5 v6 vr−1

Figure 7. The Dynkin diagram associated to the Weyl group Wr.

Then w(F ) = d′w(`′) −m′1w(e′1) − · · · −m′rw(e′r) = d′` −m′1e1 − · · · −m′rer, hence applying w−1

gives F = d′`′ −m′1e′1 − · · · −m′re′r.

The group Wr is the Weyl group associated to a Dynkin diagram. (For r ≥ 4, the Dynkin
diagram is given in Figure 7. The dots represent the elements vi and the number of edges between
dots vi and vj give the value of vi · vj .) It is infinite exactly when r ≥ 9. Note that the subgroup
of Wr generated by s1, . . . , sr−1 is just the group of permutations on e1, . . . , er. It is also useful
to note that w(KX) = KX for all w ∈ Wr, and that Wr preserves the intersection form; that is,
w(x) · w(y) = x · y for all w ∈Wr and all x, y ∈ Cl(X).

Example 3.2.2. When r ≥ 3 and the points pi are sufficiently general, it turns out that the classes
of the exceptional curves form a single orbit under Wr [41]; i.e., if E is the class of an integral curve
C with C2 = C ·KX = −1, then w(E) = er for some w ∈ Wr, and every class w(er) is the class
of an integral curve C with C2 = C ·KX = −1. When the points are not general, a class E in the
orbit of er need not be the class of an exceptional curve. For example, say p1, p2, p3 are collinear.
Then the only exceptional curves on X are e1, e2 and e3, even though `− e1 − e2 is in the orbit of
e3. The problem is that ` − e1 − e2 has two components, ` − e1 − e2 − e3 and e3. However, since
exceptional curves are stable under generalizing the points pi, if E is an exceptional curve, then its
class is in the orbit of er. But note for w,w′ ∈Wr that w(er) · w′(er) ≥ 0 unless w(er) = w′(er).

As an example, consider F = 5`− 3e1− 3e2− e3− · · ·− e10 satisfies F 2 = F ·KX = −1, but F is
never the class of an exceptional curve. To see this, consider s0(F ) = 3`− e1− e2 + e3− e4 · · ·− e10.
Thus s0(F ) · e3 < 0, even though s0(F ) 6= e3. Thus F cannot be in the orbit of e10, hence F is
never the class of an exceptional curve.

To avoid special but not very interesting cases, when we consider the action of Wr on Cl(X) we
will always assume that r ≥ 3. The previous example shows it is useful to be able to tell when
classes F and G are in the same orbit of Wr. Define the subsemigroup ∆r ⊂ Cl(X) by

∆r = {F ∈ Cl(X) : F · vi ≥ 0, 0 ≤ i < r}.
Then ∆r is a fundamental domain for Wr∆r = ∪w∈Wrw∆r (known as Tit’s cone). In particular,
for each element F ∈ ∆r, the orbit WrF meets ∆r only at F ; i.e., WrF ∩∆r = {F} [52, Theorem
4.3(a)]. Another useful fact is that if F ∈ ∆r, then for all w ∈Wr we have w(F ) = F + v for some
nonnegative linear combination v of v0, . . . , vr−1; see [26, Lemma 0.9] or [38, I.3.3].

Another useful fact that can be proved directly from the action of Wr (but which takes some
development) is that if e, e′ ∈ Wrer and e 6= e′, then e · e′ ≥ 0. Another way to see this is that for
sufficiently general points pi (as mentioned above), the classes distinct classes in Wrer are classes
of prime divisors. Thus e, e′ ∈Wrer with e 6= e′ imlplies that e · e′ ≥ 0.

Exercise 3.2.3. Let X be the blow up of P2 at distinct points p1, . . . , pr for r ≥ 3. Show that
∆r is the set of all nonnegative linear combinations of the classes ν−1 = −3` + e1 + · · · + er,
ν0 = −2`+ e1 + · · ·+ er, ν1 = −2`+ e2 + · · ·+ er, ν2 = −`+ e3 + · · ·+ er, ν3 = e4 + · · ·+ er, . . .,
νr−1 = er, and νr = 3`− e1 − e2 − e3 − · · · − er.
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Answer: For 0 ≤ i < r that νi is dual to vi; νi · vj is 1 if i = j and 0 if i 6= j. Thus, given any
F ∈ ∆r, let G =

∑
i(F ·vi)νi. Then F−G is orthogonal to every vi. But the only classes orthogonal

to all vi are the integer multiples of −KX = 3`− e1 − · · · − er (here is where we use r ≥ 3). Thus
F −G is a multiple of −KX = νr, hence ν0, . . . , νr−1 together with νr and ν−1 generate ∆r.

For geometrical and algorithmic reasons, subcones ∆′′r ⊂ ∆r and ∆′r ⊂ ∆r are more useful.
Define

∆′′r = {F ∈ ∆r : F · er ≥ 0}
and

∆′r = {F ∈ ∆r : F · ` ≥ 0, F · (`− e1) ≥ 0}.
Part of the geometrical interest of ∆′′r and ∆′r comes from the following exercise and subsequent
theorem.

Exercise 3.2.4. Let X be the blow up of P2 at distinct points p1, . . . , pr for r ≥ 3. Show that
Wr∆

′
r = {F ∈ Cl(X) : w(F ) · ` ≥ 0, w(F ) · (`− e1) ≥ 0 for all w ∈Wr}.

Answer: For each w ∈ Wr there is (as noted above) a nonnegative linear combination v of
v0, . . . , vr−1 such that w(F ) = F + v, so w(F ) · `, w(F ) · (` − e1) ≥ 0 for all w ∈ Wr and all
F ∈ ∆′r. Thus Wr∆

′
r ⊆ {F ∈ Cl(X) : w(F ) · `, w(F ) · (` − e1) ≥ 0 for all w ∈ Wr}. On the other

hand, if G ∈ {F ∈ Cl(X) : w(F ) · `, w(F ) · (` − e1) ≥ 0 for all w ∈ Wr}, then there is an element
w ∈Wr such that w(G) · ` is as small as possible, which if we write w(G) = d`−m1e1−· · ·−mrer,
ensures that d ≥ mi1 + mi2 + mi3 for all i1 < i2 < i3, and by reordering the coefficients mi we
may assume that m1 ≥ · · · ≥ mr and d ≥ m1 + m2 + m3. Thus w(G) ∈ ∆r and by assumption,
w(G) · `, w(G) · (`− e1) ≥ 0, so w(G) ∈ ∆′r and hence G ∈Wr∆

′
r.

Theorem 3.2.5. Let X be the blow up of r ≥ 3 distinct points pi ∈ P2.

(a) Then Wr∆
′′
r = {F ∈ Cl(X) : F · w(er) ≥ 0 for all w ∈Wr} and hence Nef(X) ⊆Wr∆

′′
r .

(b) If the points pi are sufficiently general (very general over the complexes or generic over an
arbitrary algebraically closed field K), then Eff(X) ⊆Wr∆

′
r.

Proof. (a) If F ·w(er) ≥ 0 for all w ∈Wr, then also w′(F ) ·w′w(er) for all w,w′ ∈Wr. In particular,
w(F ) ·` ≥ 0 for all w ∈Wr, since ` = (`−e1−e2)+e1+e2, and (`−e1−e2), e1, e2 all are in the orbit
of er (since r ≥ 3). Thus there is a minimum value of w(F ) · `. Let d`−m1e1− · · · −mrer = w(F )
for some w that achieves this minimum, hence d ≥ 0. Since Wr includes the permutations on
m1, . . . ,mr, we may as well assume that m1 ≥ m2 ≥ · · · ≥ mr (hence w(F ) · vi ≥ 0 for i > 0).
Since w(F ) · er ≥ 0 we have mr ≥ 0 (hence w(F ) · er ≥ 0). If d < m1 +m2 +m3, then the reflection
s0 by v0 applied to w(F ) would give s0(w(F )) · ` < w(F ) · `, so we must have d ≥ m1 +m2 +m3,
hence w(F ) · v0 ≥ 0. Thus w(F ) ∈ ∆′′r ; i.e., {F ∈ Cl(X) : F · E ≥ 0 for all E ∈Wrer} ⊆Wr∆

′′
r .

On the other hand, if F ∈ Wr∆
′′
r , then w(F ) ∈ ∆′′r for some w ∈ Wr, so w(F ) · er ≥ 0, and

since w(F ) ∈ ∆′r, for each w′ ∈Wr there is (as noted above) a nonnegative linear combination v of
v0, . . . , vr−1 such that w′(w(F )) = w(F )+v, so w′(w(F ))·er = (w(F )+v)·er ≥ 0 for all w ∈Wr and
all F ∈ ∆′′r . Thus F ·w(er) ≥ 0 for all w ∈Wr, so F ∈ {F ∈ Cl(X) : F ·w(er) ≥ 0 for all w ∈Wr}.

Since er ∈ ∆r and ` · er = 0, we have ` · (er) ≥ 0 for all w ∈ Wr. Thus h2(X,w(er)) = 0 for

all w ∈ Wr. Therefore h0(X,w(er))− h1(X,w(er)) = (w(er))2−KX ·w(er)
2 + 1 = e2r−KX ·er

2 + 1 = 1, so

h0(X,w(er)) > 0. It now follows that Nef(X) ⊆Wr∆
′′
r .
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(b) Given that the points pi are sufficiently general, it follows by [26, Theorem 0.1] that w(`) and
w(`− e1) are nef for all w ∈Wr. Let F = d`−m1e1−· · ·−mrer be the class of an effective divisor.
Then F ·w(`) ≥ 0 and F ·w(`− e1) ≥ 0 for all w ∈Wr, so also w(F ) · ` ≥ 0 and w(F ) · (`− e1) ≥ 0
for all w ∈Wr, hence F ∈Wr∆

′
r, so Eff(X) ⊆Wr∆

′
r. �

Remark 3.2.6. Note that Eff(X) ⊆Wr∆
′
r fails in general, since, for one example, `− e1− e2− e3

can be in Eff(X) but it is never in Wr∆
′
r. Also, equality in Nef(X) ⊆ Wr∆

′′
r can fail for r > 9,

since in that case −KX = 3`− e1 − · · · − er is never in Nef(X) but is in ∆′′r .

Exercise 3.2.7. Let X be the blow up of P2 at distinct points p1, . . . , pr for r ≥ 3. Show that ∆′′r is
the set of all nonnegative linear combinations of the classes h0 = νr + ν0 = `, h1 = νr + ν1 = `− e1,
h2 = νr + ν2 = 2`− e1− e2, h3 = νr + ν3 = 3`− e1− e2− e3, . . ., hr−1 = νr + νr−1 = 3`− e1− e2−
e3− · · · − er−1, and hr = 3`− e1− e2− e3− · · · − er, and thus that ∆′′r ⊆ ∆′r. Moreover, show that
F = d`−m1e1 − · · · −mrer ∈ ∆′′r if and only if d ≥ m1 +m2 +m3 and m1 ≥ · · · ≥ mr ≥ 0. And
finally show that each element of ∆′′r is a nonnegative linear combination of the hi in a unique way.

Answer: It is easy to check that nonnegative linear combinations of the classes hi are in ∆′′r and
in ∆′r. Moreover, for 0 ≤ i, j < r, we have hi · vj = δij , the Kronecker δ, while hr · vj = 0 for all

j. Thus if F ∈ ∆′′r , then for G =
∑r−1

i=0 (F · vi)hi, the class F − G is orthogonal to all vi, hence
F = G+m(3`− e1 − · · · − er) = G+mhr for some integer m. But F · er ≥ 0 while G · er = 0, so
m ≥ 0.

Now assume F = d`−m1e1− · · · −mrer ∈ ∆′′r . Since ∆′′r ⊂ ∆r, we have d ≥ m1 +m2 +m3 and
m1 ≥ · · · ≥ mr. Since F · er ≥ 0 we have mr ≥ 0. Conversely, it is clear from the definition of ∆′′r
and of ∆r that d ≥ m1+m2+m3 and m1 ≥ · · · ≥ mr ≥ 0 implies F = d`−m1e1−· · ·−mrer ∈ ∆′′r .
The uniqueness comes from the fact that the classes hi are linearly independent.

Remark 3.2.8. Elements of ∆′r have Zariski-like decompositions, as we now show. Let F =
d` − m1e1 − · · · − mrer ∈ ∆′r. Define F− to be F− = −

∑
E(E · F )E where the sum is over all

E ∈ Wrer with E · F < 0. We show this is a finite sum, that F − F− = F+ ∈ ∆′′r and that
(F+) · (F−) = 0.

First assume F ·(`−e1−e2) < 0. Since F ∈ ∆′r, we have d ≥ 0, d ≥ m1 (hence d+m2 ≥ m1+m2 so
m2 ≥ m1 +m2−d), d ≥ m1 +m2 +m3 and m1 ≥ · · · ≥ mr. Since d−m1−m2 = F · (`− e1− e2) <
0, we have 0 < m1 + m2 − d ≤ m2 ≤ m1. Thus F ′ = F − (m1 + m2 − d)(` − e1 − e2) =
(2d − m1 − m2)` − (d − m2)e1 − (d − m1)e2 − m3e3 − · · · − mrer. Since d ≥ m1 + m2 + m3,
we see 0 > d − m1 − m2 ≥ m3 ≥ · · · ≥ mr, so mi < 0 for i ≥ 3. Thus F = ((2d − m1 −
m2)` − (d − m2)e1 − (d − m1)e2) + (m1 + m2 − d)(` − e1 − e2) + |m3|e3 + · · · + |mr|er. Let
F+ = ((2d−m1 −m2)`− (d−m2)e1 − (d−m1)e2).

Note that (F+) · ` ≥ 0, (F+) · (` − e1) ≥ 0, (F+) · (` − e1 − e2) = (F+) · v0 = 0 and (F+) · vi ≥ 0
for all i > 0 and (F+) · er ≥ 0 (since r ≥ 3). Thus F+ ∈ ∆′′r . So (F+) · w(er) ≥ 0 for all w ∈ Wr.
Therefore for any element e ∈ Wrer other than ` − e1 − e2, e3, . . . , er, we have e · e′ ≥ 0 for all
e′ ∈ {` − e1 − e2, e3, . . . , er}, thus e · F ≥ 0. In particular, F− = F − F+, so F+ = F − F− ∈ ∆′′r
and we have (F+) · (F−) = 0.

Now let F = d` −m1e1 − · · · −mrer ∈ ∆′r, but assume F · (` − e1 − e2) ≥ 0. Thus d ≥ 0, d ≥
m1, d ≥ m1+m2, d ≥ m1+m2+m3,m1 ≥ · · · ≥ mr. If mr ≥ 0, then F ∈ ∆′′r , so F ·w(er) ≥ 0 for all
w ∈Wr. Thus F− = 0, F+ = F − F− ∈ ∆′′r and (F+) · (F−) = 0. If mr < 0, let i be the least index
such that mi < 0. Then F = (d`−

∑
j<imjej) + (

∑
j≥i |mj |ej) and we have d`−

∑
j<imjej ∈ ∆′′r ,

so F · e ≥ 0 for all e ∈ Wrer except ei, · · · , er, so we have F− =
∑

j≥i |mj |ej , F+ = F − F− and

again (F+) · (F−) = 0.
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Thus every element F = Wr∆
′
r has a unique decomposition F = (F+) + (F−), where F− =

−
∑

E(E · F )E where the sum is over all E ∈ Wrer with E · F < 0 and F+ ∈ Wr∆
′′
r and we have

(F+) ·(F−) = 0. To find the decomposition, find w ∈Wr (as discussed below) such that w(F ) ∈ ∆′r,
and get the decomposition w(F ) = (w(F )+) + (w(F )−) as done above for elements in ∆′r; then
F+ = w−1(w(F )+) and F− = w−1(w(F )−).

Part of the interest in ∆′′r and ∆′r is algorithmic. Given F ∈ Cl(X), it is easy to tell if WrF
intersects ∆′′r (resp., ∆′r), and if so to find the intersection and thus to find the decomposition
F = (F+) + (F−). To see how, recall, as noted above, that w(F ) = F + v for some nonnegative
linear combination v of the vi if F ∈ ∆r.

This implies that WrF does not intersect ∆′′r if w(F ) · ` < 0 or w(F ) · er < 0 for some w ∈ Wr.
This is because hi · `, hi · er, vi · `, vi · er ≥ 0 for all i, so we see that w(F ) · ` ≥ 0 and w(F ) · er ≥ 0
for all w ∈Wr and all F ∈ ∆′′r .

By Exercise 3.2.4 we have w(F ) · ` ≥ 0 and w(F ) · (` − e1) ≥ 0 for all w ∈ Wr and all F ∈ ∆′r,
so we see that WrF does not intersect ∆′r if w(F ) · ` < 0 or w(F ) · (`− e1) < 0 for some w ∈Wr.

Here’s how to apply these facts, using a greedy reduction algorithm. We first do the case of ∆′′r ,
then we do the similar but easier case of ∆′r.

Consider the case of ∆′′r . Given any F = d` − m1e1 − · · · − mrer ∈ Cl(X), permute the mi

(i.e., apply si for i > 0 as needed) to get coefficients m′i with m′1 ≥ m′2 ≥ · · · ≥ m′r, and take
d′ = d. Call the resulting class F1 = d′` − m′1e1 − · · · − m′rer. If d′ ≥ m′1 + m′2 + m′3, then
F1 ∈ ∆r, hence F1 ∈ ∆′′r if and only if m′r ≥ 0. If d′ < m′1 + m′2 + m′3, applying s0 gives
s0(F1) · ` < F1 · `. Now s0(F1) = d∗` −m∗1e1 − · · · −m∗rer and after reordering we get coefficients
m′′i with m′′1 ≥ m′′2 ≥ · · · ≥ m′′r and d′′ = d∗. Call the resulting class F2 = d′′`−m′′1e1 − · · · −m′′rer.
If d′′ ≥ m′′1 +m′′2 +m′′3, then F2 ∈ ∆r, hence F2 ∈ ∆′′r if and only if m′′r ≥ 0. If d′′ < m′′1 +m′′2 +m′′3,
we reorder and apply s0 again. Continuing in this way, we get a sequence of classes F1, F2, . . . with

F1 · ` > F2 · ` > · · · . Eventually we either get that some iterate Fi = d(i)`−m(i)
1 e1 − · · · −m(i)

r er is

in ∆r and thus Fi ∈ ∆′′r if and only if m
(i)
r ≥ 0, or we get Fi · ` = d(i) < 0 and hence WrF does not

intersect ∆′′r .
Consider the case of ∆′r. Given any F = d`−m1e1 − · · · −mrer ∈ Cl(X), permute the mi (i.e.,

apply si for i > 0 as needed) to get coefficients m′i with m′1 ≥ m′2 ≥ · · · ≥ m′r, and take d′ = d. Call
the resulting class F1 = d′`−m′1e1−· · ·−m′rer. If d′ ≥ m′1+m′2+m′3, then F1 ∈ ∆r, hence F1 ∈ ∆′r
if and only if d′ ≥ 0 and d′ −m′1 ≥ 0. If d′ < m′1 + m′2 + m′3, applying s0 gives s0(F1) · ` < F1 · `.
Now s0(F1) = d∗`−m∗1e1−· · ·−m∗rer and after reordering we get coefficients m′′i with m′′1 ≥ m′′2 ≥
· · · ≥ m′′r and d′′ = d∗. Call the resulting class F2 = d′′`−m′′1e1−· · ·−m′′rer. If d′′ ≥ m′′1 +m′′2 +m′′3,
then F2 ∈ ∆r, hence F2 ∈ ∆′r if and only if d′′ ≥ 0 and d′′ −m′′1 ≥ 0. If d′′ < m′′1 + m′′2 + m′′3, we
reorder and apply s0 again. Continuing in this way, we get a sequence of classes F1, F2, . . . with

F1 · ` > F2 · ` > · · · . Eventually we either get that some iterate Fi = d(i)`−m(i)
1 e1 − · · · −m(i)

r er is

in ∆r and thus Fi ∈ ∆′r if and only if d(i) ≥ 0 and d(i) −m(i)
1 ≥ 0, or we get Fi · ` = d(i) < 0 and

hence WrF does not intersect ∆′r.

Example 3.2.9. Consider F = 13` − 3e1 − 4e2 − 6e3 − 6e4 − 6e5 − 6e6. Then the sequence
of classes we get using the algorithm above is: F1 = 13` − 6e1 − 6e2 − 6e3 − 6e4 − 4e5 − 3e6,
F2 = 8`−6e1−4e2−3e3−e4−e5−e6, and F3 = 3`−e1−e2−e3−e4+e5+2e6. We see that F3 is in ∆6

and ∆′6 and not in ∆′′6, and we can write F3 = (F3)++(F3)−, where (F3)+ = 3`−e1−e2−e3−e4 ∈ ∆′′6
and (F3)− = e5 + 2e6. Also note that F 2 = F 2

i and F · KX = Fi · KX for all i (this helps
one to check that the Fi’s are being computed correctly). On the other hand, the sequence for
G = 12` − 3e1 − 4e2 − 6e3 − 6e4 − 6e5 − 6e6 is G1 = 12` − 6e1 − 6e2 − 6e3 − 6e4 − 4e5 − 3e6,
G2 = 6`− 6e1 − 4e2 − 3e3, and G3 = −1`+ e1 + 3e2 + 4e3, so G 6∈ ∆6.

3.3. The SHGH Conjecture. Theorem 3.2.5 shows that Wr∆
′
r and Wr∆

′′
r are related to Eff(X)

and Nef(X). A more precise connection is given by the SHGH Conjecture [48, 27, 24, 33]. The
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restriction to r ≥ 3 is just to simplify the statement. If Xr is the blow up of r ≥ 0 distinct points
of P2, then Cl(X0) ⊂ Cl(X1) ⊂ Cl(X2) ⊂ · · · and we have Eff(Xr) = Eff(Xr+1) ∩ Cl(Xr) and
Nef(Xr) = Nef(Xr+1) ∩ Cl(Xr) for all r, if we know Eff(Xr+1) then we know Eff(Xr), and if we
know Nef(Xr+1) then we know Nef(Xr). Thus nothing in the conjecture is lost by assuming r ≥ 3.
Also, under the assumption of generality in the conjecture, we have F ∈ Eff(X) if and only if
w(F ) ∈ Eff(X) for all w ∈Wr (and indeed hi(X,F ) = hi(X,w(F )) for all w ∈Wr; see section 8 of
[11]), and F ∈ Nef(X) if and only if w(F ) ∈ Nef(X) for all w ∈ Wr. Thus to determine whether
F is effective or nef, check as in the algorithm described above whether WrF intersects ∆′r (if not,
then F is not effective) or ∆′′r (if not, then F is not nef); if it does intersect, test the reduced class
for effectivity or nefness. I.e., it is enough to consider classes F in ∆′r or in ∆′′r . Moreover, since
F ∈ ∆′r implies F · ` ≥ 0, we have h2(X,F ) = 0 whenever F is in ∆′r or in ∆′′r .

Conjecture 3.3.1 (SHGH Conjecture). Let X be the blow up of r ≥ 3 sufficiently general points
(very general over the complexes or generic over an arbitrary algebraically closed field K).

(a) Let F ∈ ∆′r. Then

h0(X,F ) = max

(
0,
F 2
+ − F+ ·KX

2
+ 1

)
.

(b) Let F ∈ ∆′′r . Then F is nef if and only if F 2 ≥ 0.

Conjecture 3.3.1 is known to be true when s ≤ 9 (see the results of [28] for example) or when s
is a square [21, 9, 45].

Exercise 3.3.2. Assume the SHGH Conjecture, and that X satisfies the hypotheses of the SHGH
Conjecture.

(a) Show that F ∈ ∆′r is effective if and only if
F 2
+−F+·KX

2 + 1 > 0.
(b) If F ∈ ∆′r is effective, then

h1(X,F ) = max

(
0,−

F 2
− − F− ·KX

2

)
and, moreover, h1(X,F ) > 0 if and only if F · er < −1.

(c) Show that h0(X,F )h1(X,F ) = 0 if F is nef.
(d) Show C ∈ Wrer if C is an integral effective curve with C2 < 0; i.e., Neg(X) = Wrer, so

C2 < 0 implies C2 = −1.

Answer: (a) The fact that F is effective if and only if
F 2
+−F+·KX

2 + 1 > 0 is immediate form the
statement of part (a) of the conjecture.

(b) Assume F is effective. Then h0(X,F ) =
F 2
+−F+·KX

2 + 1 > 0, but F+ · F− = 0, so

h0(X,F )−h1(X,F ) =
F 2 − F ·KX

2
+1 =

F 2
+ − F+ ·KX

2
+1+

F 2
− − F− ·KX

2
= h0(X,F )+

F 2
− − F− ·KX

2
.

Thus h1(X,F ) = −F 2
−−F−·KX

2 . If h1(X,F ) > 0, then we must have F 2
− − F− · KX < 0, but

F− = miei + · · ·+mrer with 0 ≤ mi ≤ · · · ≤ mr, so −F 2
−−F−·KX

2 = −1
2

∑
j≥imj(mj − 1) is negative

if and only if F · er = −mr < −1.
(c) Assume F is nef. If F 6∈ Eff(X), then h0(X,F ) = 0 so h0(X,F )h1(X,F ) = 0. If F ∈ Eff(X),

then pick w ∈ Wr such that w(F ) ∈ ∆′r. Since w(F ) is also nef, we have w(F ) · er ≥ 0, so
h1(X,F ) = h1(X,w(F )) = 0, and again h0(X,F )h1(X,F ) = 0.

(d) Assume C is an integral effective curve with C2 < 0 but C 6∈ Wrer. Since w(er) is an
integral curve for every w ∈ Wr (see Example 3.2.2), then C · w(er) ≥ 0 for all w ∈ Wr, so
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w(C) ∈ ∆′′r for some w ∈ Wr by Theorem 3.2.5(a). Since w(C) · er ≥ 0, we see that (w(C))− = 0,

so w(C) = (w(C))+, hence 0 < h0(X,C) = h0(X,w(C)) = h0(X, (w(C))+) =
(w(C))2+−(w(C))+·KX

2 +

1 = C2−C·KX
2 + 1. But C2 < 0, and either pa(C) > 0 or pa(C) = 0 and C2 < −1 (otherwise C

is an exceptional curve, hence C ∈ Wrer, contrary to assumption), so C2 + C ·KX = 2pa(C) − 2

gives −C ·KX = C2 − 2pa(C) + 2 ≤ 0. Thus 0 < h0(X,C) = C2−C·KX
2 + 1 ≤ C2

2 + 1 < 1, which is
impossible.

Exercise 3.3.3. Show that SHGH implies Nagata (i.e., Conjecture 3.3.1 implies Conjecture 2.4.10).

Answer: Say C ′ is a plane curve through r > 9 very general points pi of degree d with multiplicity
at least m at each point pi. Let Z = p1 + · · · + pr. Let X be the blow up of the points. Then
C = d` −m(e1 + · · · + er) is effective. But D = 3m` −m(e1 + · · · + er) ∈ ∆′′r and D · er ≥ 0, so

D = D+, hence h0(X,D) = max(0, D
2−D·KX

2 + 1) = max(0, (m
2+m)(9−r)

2 + 1) ≤ max(0, 10− r) = 0,
so d ≥ 3m, hence C ∈ ∆′′r , but C · er ≥ 0 so w(C) · er ≥ 0 for all w ∈ Wr. Therefore C · w(er) ≥ 0
for all w ∈ Wr, so C does not, by Exercise 3.3.2, meet any negative curve negatively, hence C is
nef, so C2 ≥ 0. Thus d2 ≥ rm2, so α̂(Z) ≥

√
r, but α̂(Z) ≤

√
r by Exercise 2.2.3, so α̂(Z) =

√
r,

and hence ε(Z) = 1/
√
r by Proposition 2.4.6.

3.4. Bounded Negativity. We have seen that a surface X can have infinitely many integral
curves C with C2 < 0. In positive characteristic, taking graphs of Frobenius morphisms C → C,
where C is a smooth curve of genus g ≥ 2, one can obtain integral curves on C × C of arbitrarily
negative self-intersection (see [32, Exercise V.1.10]). No other examples of this sort of behavior seem
to be known. Thus this gave rise to the following conjecture, known as the Bounded Negativity
Conjecture:

Conjecture 3.4.1. Let X be a smooth rational or complex projective surface. Then there is an
integer bX such that C2 ≥ bX for all integral curves C on X.

When −KX is semi-effective, the conjecture is true. In that case we have C2 = 2pC − 2−C ·KX

and −KX · C ≥ 0 except possibly when C is a component of −mKX for some m > 0 for which
−mKX is effective, but −mKX has only finitely many components. Thus except for at most finitely
many C we have C2 ≥ −2.

The conjecture can also be stated for effective reduced divisors:

Conjecture 3.4.2. Let X be a smooth rational or complex projective surface. Then there is an
integer BX such that C2 ≥ BX for all reduced curves C on X.

Certainly, Conjecture 3.4.2 implies Conjecture 3.4.1. Conversely, consider an effective curve
C = C1+ · · ·+Cr with C2 < 0, where the curves Ci are integral and distinct. Suppose Ci ·C ≥ 0 for
some i (which we may assume to be r). Then C2 = (C1+· · ·+Cr−1)·C+Cr·C ≥ (C1+· · ·+Cr−1)·C =
(C1 + · · ·+ Cr−1)

2 + (C1 + · · ·+ Cr−1) · Cr ≥ (C1 + · · ·+ Cr−1)
2, since Ci · Cr ≥ 0 for i < r.

Thus we can reduce to the case that C · Ci < 0 for all i. Suppose now there were integers ai,
not all 0, such that

∑
i aiCi were numerically trivial. Then we would have disjoint sums such that∑

j aijCij =
∑

k−aikCik with aij ≥ 0 and aik ≤ 0, and hence neither sum numerically trivial. But

(
∑

j aijCij )
2 < (

∑
j aijCij ) · C < 0, while (

∑
j aijCij ) · (

∑
k−aikCik) ≥ 0. Hence the classes of the

Ci are linearly independent up to numerical equivalence. Thus r is at most the Picard number sX
of X, so C2 ≥

∑
iC

2
i ≥ sXbX ; i.e., BX ≥ sXbX , so Conjecture 3.4.1 implies Conjecture 3.4.2.
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3.5. H-constants. The Bounded Negativity Conjecture says that reduced curves on a surface can’t
be too negative, but that raises the question of how negative can they be. Fixing the surface is
very constraining, so to gain understanding one can try to construct curves which are as negative
as possible by changing the surface to accommodate the curve, and then devising a measure of
negativity that is independent of the surface and which allows for comparison of the negativity.
That’s the idea of H-constants.

Example 3.5.1. Take any reduced curve C ′ ⊂ P2 of some degree d. Pick points p1, . . . , pr ∈ C ′.
Let X → P2 be the blow up of the points pi and take C to be the proper transform of C ′. Then
C2 ≤ d2−r, so for r large enough we obtain a reduced curve C with C2 ≤ d−r arbitrarily negative.

In order to compare negativity of C2 for different choices of C ′ and of the points pi, we can
introduce H-constants [18, 36, 42, 43, 44, 50]. Given C ′ ⊂ P2 and distinct points p1, . . . , pr ∈ P2

(not necessarily points of C ′), define

H(C ′, p1, . . . , pr) =
deg(C ′)−

∑
i(multpi(C

′))2

r
.

If we blow up the points pi to get X and take C to be the proper transform of C ′, note that
H(C ′, p1, . . . , pr) = C2/r. Clearly, if C2 < 0, then H(C ′, p1, . . . , pr) is more negative if we only
count points pi which are on C ′. Moreover, if the points pi all are smooth points of C ′, then we
get H(C ′, p1, . . . , pr) = −1 + (deg(C ′)/r).

Exercise 3.5.2. Let C ′ ⊂ P2 be a reduced plane curve with points p1, . . . , pr ∈ P2. Assume
H(C ′, p1, . . . , pr) ≤ −1. Show that some of the points pi are singular points of C ′ and that

H(C ′, q1, . . . , qs) ≤ H(C ′, p1, . . . , pr),

where {q1, . . . , qs} is the subset of {p1, . . . , pr} of those points pi which are singular points of
C ′. Moreover show that H(C ′, q1, . . . , qs) < H(C ′, p1, . . . , pr) unless either H(C ′, q1, . . . , qs) =
H(C ′, p1, . . . , pr) = −1 or every point pi is a singular point of C ′.

Answer: Let d = deg(C ′). If none of the points pi are singular points, then H(C ′, p1, . . . , pr) ≥
(d2 − r)/r > −1, so we see that some of the points must be singular points of C ′. Also, let
{a1, . . . , at} be the subset of {p1, . . . , pr} of those points pi which are points of C ′. Then 0 >
d2 −

∑
i(multpi(C

′))2 = d2 −
∑

j(multaj (C
′))2, and since t ≤ r we get

H(C ′, a1, . . . , at) ≤ H(C ′, p1, . . . , pr) ≤ −1.

Moreover, if t < r, then H(C ′, a1, . . . , at) < H(C ′, p1, . . . , pr) ≤ −1. So we reduce to the case that
every point pi is a point of C ′.

Now assume H(C ′, q1, . . . , qs) = H(C ′, p1, . . . , pr) and {q1, . . . , qs} ( {p1, . . . , pr} and so s < r.
Let u = r − s. We have

H(C ′, q1, . . . , qr) = H(C ′, p1, . . . , pr) =
sH(C ′, q1, . . . , qs)− u

s+ u
,

which simplifies to H(C ′, q1, . . . , qr) = −1 as claimed.

By Exercise 3.5.2, in order to get reduced curves C ′ with H(C ′, p1, . . . , pr) < −1 and as negative
as possible, it is best if each point pi is a singular point of C ′. So for simplicity we define H(C ′)
for a reduced singular curve C ′ to be

H(C ′) =
(deg(C ′))2 −

∑
i(multpi(C

′))2

r
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where the sum is over all of the singular points pi of C ′. No examples are yet known where taking
a proper subset of the singular points gives a more negative value, but it seems possible that this
could happen.

It is an open problem to determine how negative H(C ′) can be. Let us define

H(P2) = inf{H(C ′)}

where the infimum is over all reduced singular curves C ′ and

Hirr(P2) = inf{H(C ′)}

where the infimum is over all integral singular curves C ′.

Fact 3.5.3 ([3]). Hirr(P2) ≤ −2.

There are curves C ′d of degree d with
(
d−1
2

)
points of multiplicity 2 arising as images of P1 in P2.

Then H(C ′d) > −2 but limd→∞H(C ′d) = −2. No example is currently known of an integral curve
C ′ with H(C ′) ≤ −2 (even if char(K) = p > 0).

Fact 3.5.4 ([46]). H(P2) ≤ −4.

In positive characteristics, H(C) can be made arbitrarily negative when C is a union of lines
(take all of the lines defined over a large finite subfield). Thus the case of unions of lines is of
interest mostly in characteristic 0. If C ′ is a union of lines in the complex projective plane, then
H(C ′) > −4 [3], but the most negative example currently known where C ′ is a union of lines in
characteristic 0 is H(C ′) = 225/67 ≈ −3.36. In this case C ′ is a union of 45 lines, where there are
201 singular points, 36 of multiplicity 5, 45 of multiplicity 4 and 120 of multiplicity 3 [53].

When looking at examples of C when C is a union of lines, some simplifications arise. Given a
plane curve C which is a union of d lines, for 2 ≤ k 6 d, let tk be the number of points of C of
multiplicity exactly k (i.e., the number of points where exactly k lines cross).

Exercise 3.5.5. Show that
(
d
2

)
=
∑d

k=2 tk
(
k
2

)
. Conclude that

H(C) =
d−

∑d
k=2 ktk∑d

k=2 tk
.

Answer: The number of pairs of d lines is
(
d
2

)
, but at each in P2 each pair meets at a unique point,

and if the point is a point of multiplicity k, then
(
k
2

)
of the pairs occur there. So counting the pairs

at each singular points gives
∑d

k=2 tk
(
k
2

)
pairs, hence

(
d
2

)
=
∑d

k=2 tk
(
k
2

)
.

The number of singular points is
∑d

k=2 tk. And from
(
d
2

)
=
∑d

k=2 tk
(
k
2

)
we get d2−d =

∑d
k=2(k

2−
k)tk or d2 −

∑
k k

2tk = d−
∑

k ktk. Thus

H(C) =
d2 −

∑d
k=2 k

2tk∑d
k=2 tk

=
d−

∑
k ktk∑d

k=2 tk
.

The example above where C is a union of 45 lines with H(C) = 225/67 suggests it might be
fruitful to look at unions of lines such that t2 is small. The smallest possibility is t2 = 0. Such line
arrangements are easy to find in positive characteristics (and so not so interesting), but there are
no nontrivial examples over the reals [39]:
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Theorem 3.5.6. Given a real line arrangement of s lines with ts = 0 (i.e., the lines are not
concurrent), we have

t2 ≥ 3 +
∑
k>2

tk(k − 3).

Using this one can show that H(C) > −3 for real line arrangements C, and easy examples show
that one can achieve −3 in the limit. It is currently an open problem to determine how negative
H(C) can be for rational real line arrangements. The known real arrangements whose H-values
approach −3 have singular points with irrational coordinates.

Remark 3.5.7. Only four complex examples seem to be known:
• Any set of s ≥ 3 concurrent lines.
• The Fermat arrangement of 3n lines for n ≥ 3: The lines of this arrangement are defined by

the factors of (xn − yn)(xn − zn)(yn − zn), shown for n = 3 in Figure 8 [25]. Each line contains
n+ 1 of the points, and we have tk = 0 except for t3 = n2 and tn = 3 when n > 3 or t3 = 12 when
n = 3. This gives H-constants greater than −3 but with limit −3 as n→∞.

xn − yn xn − zn

yn − zn

Figure 8. The Fermat arrangement of 3n complex lines (defined by the factors of (xn − yn)(xn −
zn)(yn − zn)) and their n2 + 3 points of intersection (indicated by circles and dots) for n = 3. (The
coordinate axes are represented by dotted lines. At each coordinate vertex there occur n of the 3n
lines, defined by the forms shown; the n2 + 3 points consist of a complete intersection of n2 points
plus the 3 coordinate vertices. No combinatorially equivalent arrangement exists over the reals: one
must regard the three empty circles as representing collinear points on one of the dashed lines, and
likewise the three circles with central black dots as also representing collinear points on the other
dashed line.)

• The Klein arrangement of 21 lines [35]: here tk = 0 except for t4 = 21 and t3 = 28. For this
arrangement, each line contains 4 points where 3 lines cross and 4 points where 3 lines cross. This
gives an H-constant of exactly −3.
• The Wiman arrangement of 45 lines [53] mentioned above: here tk = 0 except for t5 = 36,

t4 = 45 and t3 = 120. For this arrangement, each line contains 4 points where 5 lines cross, 4
points where 4 lines cross and 8 points where 3 lines cross. This gives the H-constant −225/67
noted above.

It seems to be an open problem to find additional examples of complex line arrangements with
t2 = 0, or to show that there are no others.

If one considers arrangements of curves other than lines, then one can find additional examples
where there are no singular points of multiplicity 2. One way to generate examples is to take two
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Figure 9. Four conics meeting triply in 8 points with no other points of intersection, where A is
5x2+9y2 = 81, B is 4x2−5y2 = 16, C is 54x2+61xy+24y2 = 216, and D is 54x2−61xy+24y2 = 216.

curves, A and B, of degree d with no common components. Then take C to be the union of r
elements of the pencil determined by A and B, so deg(C) = rd and C typically has d2 points of
multiplicity r, and no other singular points. This generalizes the trivial example of r concurrent
lines, and so is not all that interesting. Such examples typically give H(C) = 0, but the components
of C can themselves be singular (and the singular sets of the components can overlap) so one can
also get H(C) < 0 this way, but it looks either hard or impossible for H(C) to be more negative
than the minimum H(Ci) among the components Ci of C.

A somewhat more interesting example is given in [8]. Here the curve C is the union of four conics
(see Figure 9), but in the background there again is a pencil. Note that each conic goes through 6
of the 8 singular points of C. If one blows up the singular points and the origin (as shown in Figure
9), then |−KX | on the resulting surface X is an elliptic fibration with four reducible singular fibers.
Each reducible fiber consists of the proper transform of one of the conics together with the proper
transform of the line through the two singular points of C not on that conic. In this case we get
H(C) = −1.

A very interesting family of examples exists where each curve is a smooth plane cubic and the
singular points all have multiplicity at least 4 was given in [46], and is the basis for Fact 3.5.4; see
[4] for an exposition. Again, pencils of curves are in the background; the cubics are taken from four
pencils of cubics with overlapping base points. For each curve C in this family we have H(C) > −4
but the H-values achieve −4 in the limit.

One can get even more examples by taking finite maps P2 → P2, and pulling back known
examples. But this again does not seem to lead to examples with H-constants more negative than
what are already known.

3.6. Waldschmidt constants and the ideal containment problem. Let Z = m1p1 + · · · +
mrps ⊂ PN be a fat point subscheme. Recall that the ideal of Z is I = I(Z) = ∩iI(pi)

mi ⊂ K[PN ].

The mth symbolic power of I is denoted I(m). In the situation here, we can take it to be defined
as I(m) = I(mZ) = ∩iI(pi)

mmi .

3.6.1. The resurgence. We know from results of [19, 34] that I(Nr) ⊆ Ir. This raises the question

of of for which m and r do we have I(m) ⊆ Ir. One can also ask what is the smallest real c ≥ 0
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such that m > rc implies I(m) ⊆ Ir. We know c ≤ N by [19, 34], but could there be c < N that
works for all I?

Examples of [7] show for every N and c < N , that there is an ideal I = I(Z) depending on c

and positive integers m and r such that m > cr but I(m) 6⊆ Ir.
But we can still ask what is the best c for a given ideal. This leads to the definition of the

resurgence ρ(I) [7]:

ρ(I(Z)) = sup
{m
r

: I(mZ) 6⊆ I(Z)r
}
.

Note that ρ(I(Z)) is the least c such that m/r > c guarantees that I(m) ⊆ Ir.
Then [7] proves the following bounds on ρ(I(Z)), in terms of α̂(Z), α(I(Z)) and the Castelnuovo-

Mumford regularity reg(I(Z)) of I(Z). (For a fat point subscheme Z = m1p1 + · · ·+mrpr ⊂ PN ,

reg(I(Z))− 1 is the least t ≥ 0 such that dim I(Z)t =
(
t+N
N

)
−
∑

i

(
mi+N−1

N

)
.)

Theorem 3.6.1.
α(I(Z))

α̂(Z)
≤ ρ(I(Z)) ≤ reg(I(Z))

α̂(Z)

Proof. The upper bound is somewhat more involved; for this we refer to [7]. The proof for the
lower bound works by showing for any m and r with m/r < α(I(Z))/α̂(Z) that there are infinitely
many s such that I(smZ) 6⊆ I(Z)sr.

So suppose that m/r < α(I(Z))/α̂(Z). Thus mα̂(Z) < rα(I(Z)) = α(I(Z)r), but α̂(Z) =
inf{α(I(sZ))/s} = lims→∞ α(I(sZ))/s, so for all s � 0 we have mα̂(Z) ≤ mα(I(sZ))/s <
α(I(Z)r). But α(I(smZ))/s ≤ mα(I(sZ))/s so α(I(smZ)) < sα(I(Z)r) = α(I(Z)sr), hence
I(smZ) 6⊆ I(Z)sr, so m/r = sm/(sr) ≤ ρ(I(Z)). Since this holds for all m and r with m/r <
α(I(Z))/α̂(Z), we see that α(I(Z))/α̂(Z) ≤ ρ(I(Z)). �

3.6.2. A question of Huneke. According to Theorem 2.2.5, given the ideal I = I(Z) of a fat point

subscheme Z ⊂ P2, we have I(4) ⊆ I2. In wondering whether there were a more general universal
containment, Huneke asked if it were true that I(3) ⊂ I2.

After many experiments and partial results, I conjectured [2] for the ideal I = I(Z) of any fat

point subscheme Z ⊂ PN in any characteristic that I(rN−N+1) ⊆ Ir. In particular for r = N = 2
this would imply I(3) ⊂ I2.

The first counterexample [15] used the singular points Z of the plane curve (xn − yn)(xn −
zn)(yn − zn) = 0 for n = 3, whose components comprise the Fermat line arrangement (see Figure
8), but in fact every n ≥ 3 gives a counterexample [31, 47]. Many additional counterexamples are

known [6, 12, 16, 1], but over the complex numbers no counterexamples to I(rN−N+1) ⊆ Ir are
currently known for any N > 2 when r > 2. In positive characteristics, counterexamples for larger
r and N are much easier to find [31].

It is in fact true for all currently known nontrivial complex line arrangements in P2 with t2 = 0
(see Remark 3.5.7), that I(3Z) 6⊆ I(Z)2, where Z is the set of singular points of the curve given
by the union of the lines [3]. Moreover, all known examples of I(3Z) 6⊆ I(Z)2 currently come from
line arrangements (where Z is a subset of the singular points of the curve given by the union of the
lines, or Z comes from such using flat extensions [1]). It would be interesting to characterize which
line arrangements give Z for which I(3Z) 6⊆ I(Z)2.

3.7. Negative curves and an SHGH type problem. By Exercise 3.3.2(d), if X is the blow
up of a finite set of sufficiently general points of P2, then the SHGH Conjecture (Conjecture 3.3.1)
implies that the only reduced irreducible curves C with C2 < 0 have C2 = −1. One way to look at
this is to consider the birational morphism π : X → P2 given by blowing up the points and ask if
there are prime divisors C on X whose class is not in the image of π∗ : Cl(Y ) → Cl(P2) but have
C2 < −1. And SHGH says that there aren’t any.
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In this form, the question can be made relative. Let Y be any smooth rational projective surface
and let π : X → Y be the birational morphism obtained by blowing up general points of Y . Then
[10] raises the question: Are there ever prime divisors C on X whose class is not in the image of
π∗ : Cl(Y )→ Cl(Y ) but have C2 < −1? Surprisingly the answer is yes [10].

Example 3.7.1. One example is attributed to Serre [32, Exercise III.10.7]. Start with P2 over a
field of characteristic 2 and let Y be the blow up of the 7 points whose coordinates involves just
0 and 1 (i.e., Y is the blow up of the 7 points p1, . . . , p7 of the Fano plane P2). Now let X → Y
be the blow up of an eighth general point p8. Then C = 3` − e1 − · · · − e7 − 2e8 is reduced and
irreducible and has C2 = −2 [10].

Another example comes from [14]. Let Y be the blow up of the 9 points p1, . . . , p9 ∈ P2 as
shown in Figure 3 (see Example 2.4.5. Let X → Y be the blow up of a general 10 point p10. Then
C = 4`− e1 − · · · − e9 − 3e10 is reduced and irreducible and has C2 = −2 [10].

Additional examples are given by the known line configurations with t2 = 0. Let p1, . . . , pr be
the points dual to the lines of either the Fermat, Klein or Wiman arrangements of lines (see Remark
3.5.7), but in the case of the Fermat arrangement, take n ≥ 5. Let Y be the blow up of the points
pi. Let X be the blow up of a general point pr+1. Then C = d`− e1 − · · · − er −mer+1 is reduced
and irreducible for d = m+ 1 and has C2 < −1 [10], where r = 3n and m = n+ 1 for the Fermat
arrangement, r = 21 and m = 9 for the Klein, and r = 45 and m = 19 for the Wiman. Thus we
get C2 = 3− n for the Fermat arrangement, −2 for the Klein and −6 for the Wiman.

Let’s say that a fat point subscheme Z = m1p1 + · · · + msps ⊂ P2 fails to impose independent
conditions on forms of degree d if dim I(Z)d > max(0, dimRd−

∑
i

(
mi+1

2

)
). One way to think of the

SHGH Conjecture is that it characterizes exactly when Z fails to impose independent conditions
on forms of degree d, in case the points pi are general.

A more general problem is to have a fat point subscheme Y = n1q1 + · · · + nrqr ⊂ P2 where
the points qi are distinct but not necessarily general, in addition to Z = m1p1 + · · ·+msps where
the pi are general, and ask to classify those mi, Y and d such that Z fails to impose independent
conditions on I(Y )d, meaning dim I(Z + Y )d > max(0, dim I(Y )d −

∑
i

(
mi+1

2

)
).

The paper [10] characterizes (but does not classify) such Z, Y and d in the special case that s = 1
and d = m1 + 1, for reduced Y = q1 + · · ·+ qr.
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[39] E. Melchior. Über Vielseite der Projektive Ebene. Deutsche Mathematik 5: 461–475, 1941.
[40] M. Nagata. On the 14-th problem of Hilbert, Amer. J. Math. 33 (1959), 766–772.
[41] M. Nagata. On rational surfaces II, Mem. Coli. Sci. Kyoto (A) 32 (1960), 271–293.
[42] P. Pokora. Harbourne constants and arrangements of lines on smooth hypersurfaces in P3

C, Taiwanese Journal of
Mathematics 20(1): 25-31 (2016), arXiv:1505.03822
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