The decidability frontier for Petri nets

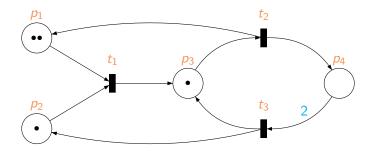
Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

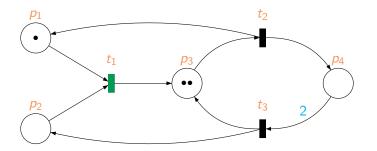
Formal Methods Update Meeting VIT Vellore 12 July 2011

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

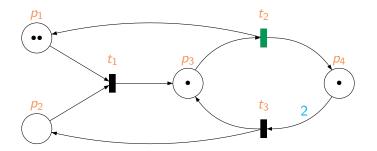
- A set *P* of places
- A set **T** of transitions
- Flow relation $F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$
- Initial marking $M_0: P \to \mathbb{N}_0$
- Dynamics: "Token game"



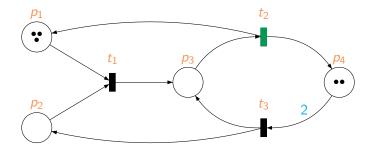
- A set *P* of places
- A set **T** of transitions
- Flow relation $F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$
- Initial marking $M_0: P \to \mathbb{N}_0$
- Dynamics: "Token game"



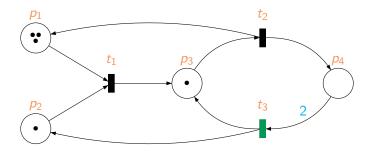
- A set *P* of places
- A set **T** of transitions
- Flow relation $F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$
- Initial marking $M_0: P \to \mathbb{N}_0$
- Dynamics: "Token game"



- A set *P* of places
- A set **T** of transitions
- Flow relation $F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$
- Initial marking $M_0: P \to \mathbb{N}_0$
- Dynamics: "Token game"



- A set *P* of places
- A set **T** of transitions
- Flow relation $F: (P \times T) \cup (T \times P) \rightarrow \mathbb{N}_0$
- Initial marking $M_0: P \to \mathbb{N}_0$
- Dynamics: "Token game"



Decision questions

• Reachability

Is a marking M (exactly) reachable from M_0 ?

Coverability

Is a marking M coverable from M_0 ?

• Can we reach M' such that for each p, $M'(p) \ge M(p)$

Termination

Is there an infinite execution?

Boundedness

Is the set of reachable markings finite

• Is there a bound *B* such that no place has more than *B* tokens in any reachable marking?

Place-boundedness

For a given place *p*, is the number of tokens on *p* bounded in all reachable markings?

- All these questions are decidable for "normal" Petri nets
 - Some proofs are easy (boundedness), others less so (reachability)
 - Classifying the computational complexity is a separate issue that we will not discuss

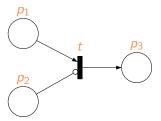
▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Inhibitor arcs

• Petri net places are like counters without test-for-zero

Inhibitor arcs

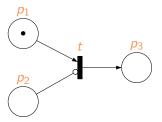
- Petri net places are like counters without test-for-zero
- If we can check for the absence of tokens, everything becomes undecidable



- t is enabled at M only if $M(p_1) > 0$ and $M(p_2) = 0$
- Two inhibitor arcs can simulate 2 counter machine

Inhibitor arcs

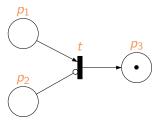
- Petri net places are like counters without test-for-zero
- If we can check for the absence of tokens, everything becomes undecidable



- t is enabled at M only if $M(p_1) > 0$ and $M(p_2) = 0$
- Two inhibitor arcs can simulate 2 counter machine

Inhibitor arcs

- Petri net places are like counters without test-for-zero
- If we can check for the absence of tokens, everything becomes undecidable



- t is enabled at M only if $M(p_1) > 0$ and $M(p_2) = 0$
- Two inhibitor arcs can simulate 2 counter machine

Boundedness

Karp-Miller reachability tree

- Start with the initial marking M₀
- Use BFS through space of reachable markings
 - Let M be a leaf node with t enabled at M such that $M \xrightarrow{t} M'$
 - Add M' as a new leaf if it does not already appear on the path from M_0 to M
 - Acceleration

If M' > M'' for some marking on the path from M_0 to M, set $M'(p) = \omega$ wherever M'(p) > M''(p)

Dickson's lemma

A marking M over k places is a vector over \mathbb{N}^k

Given any infinite sequence of markings M_1, M_2, \ldots , there must exist positions *i* and *j* such that i < j and $M_i \leq M_j$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Dickson's lemma

A marking M over k places is a vector over \mathbb{N}^k

Given any infinite sequence of markings M_1, M_2, \ldots , there must exist positions *i* and *j* such that i < j and $M_i \leq M_j$

• Cannot have an infinite set of incomparable markings

The Karp-Miller tree

Boundedness and termination are decidable

- The Karp-Miller tree is always finite, by Dickson's Lemma.
- The given net is bounded iff ω does not appear in the tree.
- The given net terminates if we can always expand all transitions fully in the tree.

- Never repeat a marking on any path
- Never apply acceleration

The Karp-Miller tree

Boundedness and termination are decidable

- The Karp-Miller tree is always finite, by Dickson's Lemma.
- The given net is bounded iff ω does not appear in the tree.

The given net terminates if we can always expand all transitions fully in the tree.

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Never repeat a marking on any path
- Never apply acceleration

The Karp-Miller tree, in fact, decides place-boundedness

Coverability

- For a set of markings S, Pred(S) is the set of markings from where we can reach S
- If *S* is upward-closed, so is *Pred*(*S*)
- Any upward closed set S has a finite set of minimal elements
 {s₁, s₂,..., s_k} such that S = ↑{s₁, s₂,..., s_k}—finite basis
 for S

- The set of markings that cover *M* is upward closed
- Iteratively compute a finite basis for $Pred(\uparrow M)$

What makes Petri net properties decidable?

- A set of incomparable markings must be finite
- Firing rule is compatible with marking order:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

What makes Petri net properties decidable?

- A set of incomparable markings must be finite
- Firing rule is compatible with marking order:

$$\begin{array}{cccc} M & \stackrel{t}{\rightarrow} & M' \\ & & & & \\ & & & & \\ M_1 & \stackrel{t}{\rightarrow} & M_1' \end{array}$$

- In fact $(M_1 M) = (M'_1 M')$
- Thus, $M < M_1$ implies $M' < M'_1$ strict monotonicity

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Well structured transition systems

Well quasi-order (wqo)

- (X, \preceq) , \preceq is reflexive and transitive
- Given any infinite sequence x₁, x₂,... over X, there must exist positions i and j such that i < j and x_i ≤ x_i

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Well structured transition systems

Well quasi-order (wqo)

- (X, \preceq) , \preceq is reflexive and transitive
- Given any infinite sequence x₁, x₂,... over X, there must exist positions i and j such that i < j and x_i ≤ x_i

▲日▼▲□▼▲□▼▲□▼ □ ののの

Note that this also rules out infinite descending chains.

Well structured transition systems

Well quasi-order (wqo)

- (X, \preceq) , \preceq is reflexive and transitive
- Given any infinite sequence x₁, x₂,... over X, there must exist positions i and j such that i < j and x_i ≤ x_j

Note that this also rules out infinite descending chains.

 (X, \rightarrow) is a well structured transition system if there is exists a wqo (X, \preceq) such that \rightarrow is compatible with \preceq

 $\begin{array}{rrrrr} x & \rightarrow & x' \\ \gamma_{|} & & \gamma_{|} \\ x_{1} & \rightarrow & x_{1}' \end{array}$

Well structured transition systems

Concrete decision procedures for Petri nets can be lifted to WSTSs

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Karp-Miller tree generalize to finite reachability tree
 - Can use this to decide termination

Well structured transition systems . . .

Concrete decision procedures for Petri nets can be lifted to WSTSs

- Karp-Miller tree generalize to finite reachability tree
 - Can use this to decide termination
 - For boundedness, we need strict monotonicity

$$\begin{array}{cccc} x &
ightarrow & x' \ & & \gamma & & \gamma \ x_1 &
ightarrow & x'_1 \end{array}$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Well structured transition systems

Concrete decision procedures for Petri nets can be lifted to WSTSs

- Karp-Miller tree generalize to finite reachability tree
 - Can use this to decide termination
 - For boundedness, we need strict monotonicity

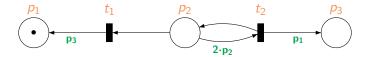
$$\begin{array}{cccc} x & \rightarrow & x' \\ \gamma & & \gamma \\ x_1 & \rightarrow & x_1' \end{array}$$

 Backward saturation to compute coverability if the WSTS has an effective pred-basis

Given a state $x \in X$, compute a finite basis for $Pred(\uparrow x)$

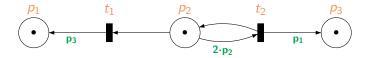
Petri net with arc weights labelled by polynomials over places

- Evaluate polynomial with respect to current marking
- Resulting value determine whether a transition is enabled
- ... and computes the effect of firing it.



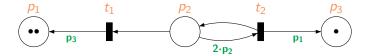
• Petri net with arc weights labelled by polynomials over places

- Evaluate polynomial with respect to current marking
- Resulting value determine whether a transition is enabled
- ... and computes the effect of firing it.



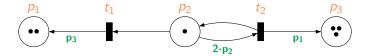
• Petri net with arc weights labelled by polynomials over places

- Evaluate polynomial with respect to current marking
- Resulting value determine whether a transition is enabled
- ... and computes the effect of firing it.



Petri net with arc weights labelled by polynomials over places

- Evaluate polynomial with respect to current marking
- Resulting value determine whether a transition is enabled
- ... and computes the effect of firing it.

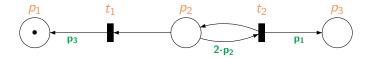


- Petri net with arc weights labelled by polynomials over places
 - Evaluate polynomial with respect to current marking
 - Resulting value determine whether a transition is enabled
 - ... and computes the effect of firing it.



Petri net with arc weights labelled by polynomials over places

- Evaluate polynomial with respect to current marking
- Resulting value determine whether a transition is enabled
- ... and computes the effect of firing it.



▲日▼▲□▼▲□▼▲□▼ □ ののの

Fibonacci net

For odd k, marking $m_k = (fib(k+1), 0, fib(k))$

Generalizaed nets ...

- All problems are undecidable in general
 - Subsume inhibitor arcs
 - To fire t_1 , we need $2 \cdot M(p2)$ tokens at p_2
 - *M*(*p*₂) must be 0!
- Subclasses clearly separate decision boundaries for reachability, coverability, termination, boundedness, place boundedness,

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Decision problems for reset post-G nets

• Reset arc: W(p, t) = p

• Resets (i.e., empties) input place p when t fires

• Transfer arc: W(p, t) = p = W(t, p')

• Transfers contents of p to p'

- Post-G net: only output arcs are non-classical
- Double Petri net: Post G-net where F(t, p) = p or $F(t, p) \in \mathbb{N}$.

F(t, p) = p: doubling arc: doubles the marking of p

Reset Post-G nets

- Input arcs are either reset or classical
- Output arcs can have arbitrary polynomials

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Reset Post-G nets

- Input arcs are either reset or classical
- Output arcs can have arbitrary polynomials

What's decidable

Coverability, termination

Reset post-G nets define WSTSs with effective pred-basis, but do not satisfy strict monotonicity.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reset Post-G nets

- Input arcs are either reset or classical
- Output arcs can have arbitrary polynomials

What's decidable

Coverability, termination

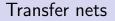
Reset post-G nets define WSTSs with effective pred-basis, but do not satisfy strict monotonicity.

What's not

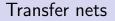
Boundedness

Reset post-G nets can "compute" polynomials. Complicated reduction from Hilbert's Tenth Problem.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @



• All non-classical arcs are pairs that define transfers

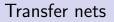


• All non-classical arcs are pairs that define transfers

What's decidable

Boundedness

Transfer nets define WSTSs with strict monotonicity.



• All non-classical arcs are pairs that define transfers

What's decidable

Boundedness

Transfer nets define WSTSs with strict monotonicity.

What's not

Place-boundedness

- Simulate a reset post-G net N by a transfer net N'.
- Add a dummy place to N to get N'. Simulate resets by transferring tokens to this dummy place.
- *N* is unbounded iff some place other than the dummy place is unbounded in *N*'.

Post-G nets

 Input arcs are classical, only output arcs have extended weights

What's decidable

Place-boundedness

Post-G nets define WSTSs with strict monotonicity and an additional continuity condition required to compute place boundedness from the finite reachability tree.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Reachability

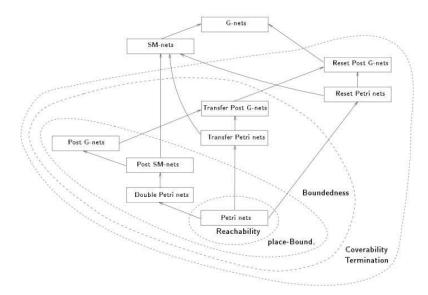
Undecidability

Reachability is undecidable for double Petri nets, reset Petri nets and transfer Petri nets with two extended arcs.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへぐ

Two extended arcs can simulate nets with inhibitor arcs.

What's decidable?



References

C. Dufourd, A. Finkel and P. Schnoebelen Reset nets between decidability and undecidability *Proc ICALP, 1998*

A. Finkel and P. Schnoebelen Well-Structured Transition Systems Everywhere! *Theoretical Computer Science*, 2002

◆□> ◆□> ◆三> ◆三> ・三 のへで