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Petri nets

A set P of places
A set T of transitions
Flow relation F : (P × T ) ∪ (T × P) → N0

Initial marking M0 : P → N0

Dynamics: “Token game”

p1

p2

p3 p4t1

t2

t3 2

••

•

•



Petri nets

A set P of places
A set T of transitions
Flow relation F : (P × T ) ∪ (T × P) → N0

Initial marking M0 : P → N0

Dynamics: “Token game”

p1

p2

p3 p4t1

t2

t3 2

•

••



Petri nets

A set P of places
A set T of transitions
Flow relation F : (P × T ) ∪ (T × P) → N0

Initial marking M0 : P → N0

Dynamics: “Token game”

p1

p2

p3 p4t1

t2

t3 2

••

• •



Petri nets

A set P of places
A set T of transitions
Flow relation F : (P × T ) ∪ (T × P) → N0

Initial marking M0 : P → N0

Dynamics: “Token game”

p1

p2

p3 p4t1

t2

t3 2

••
•

••



Petri nets

A set P of places
A set T of transitions
Flow relation F : (P × T ) ∪ (T × P) → N0

Initial marking M0 : P → N0

Dynamics: “Token game”

p1

p2

p3 p4t1

t2

t3 2

••
•

•

•



Decision questions

Reachability
Is a marking M (exactly) reachable from M0?

Coverability
Is a marking M coverable from M0?

Can we reach M ′ such that for each p, M ′(p) ≥ M(p)

Termination
Is there an infinite execution?

Boundedness
Is the set of reachable markings finite

Is there a bound B such that no place has more than B tokens
in any reachable marking?

Place-boundedness
For a given place p, is the number of tokens on p bounded in
all reachable markings?



Decision questions . . .

All these questions are decidable for “normal” Petri nets

Some proofs are easy (boundedness), others less so
(reachability)

Classifying the computational complexity is a separate issue
that we will not discuss
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Boundedness

Karp-Miller reachability tree

Start with the initial marking M0

Use BFS through space of reachable markings

Let M be a leaf node with t enabled at M such that M
t
−→ M ′

Add M ′ as a new leaf if it does not already appear on the path
from M0 to M

Acceleration

If M ′ > M ′′ for some marking on the path from M0 to M , set
M ′(p) = ω wherever M ′(p) > M ′′(p)
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A marking M over k places is a vector over Nk

Given any infinite sequence of markings M1,M2, . . ., there must
exist positions i and j such that i < j and Mi ≤ Mj



Dickson’s lemma

A marking M over k places is a vector over Nk

Given any infinite sequence of markings M1,M2, . . ., there must
exist positions i and j such that i < j and Mi ≤ Mj

Cannot have an infinite set of incomparable markings



The Karp-Miller tree

Boundedness and termination are decidable

The Karp-Miller tree is always finite, by Dickson’s Lemma.

The given net is bounded iff ω does not appear in the tree.

The given net terminates if we can always expand all transitions
fully in the tree.

Never repeat a marking on any path

Never apply acceleration



The Karp-Miller tree

Boundedness and termination are decidable

The Karp-Miller tree is always finite, by Dickson’s Lemma.

The given net is bounded iff ω does not appear in the tree.

The given net terminates if we can always expand all transitions
fully in the tree.

Never repeat a marking on any path

Never apply acceleration

The Karp-Miller tree, in fact, decides place-boundedness



Coverability

For a set of markings S , Pred(S) is the set of markings from
where we can reach S

If S is upward-closed, so is Pred(S)

Any upward closed set S has a finite set of minimal elements
{s1, s2, . . . , sk} such that S = ↑{s1, s2, . . . , sk}—finite basis
for S

The set of markings that cover M is upward closed

Iteratively compute a finite basis for Pred(↑M)
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What makes Petri net properties decidable?

A set of incomparable markings must be finite

Firing rule is compatible with marking order:

M
t
−→ M ′

≥ ≥

M1

t
−→ M ′

1

In fact (M1 −M) = (M ′

1 −M ′)

Thus, M < M1 implies M ′
< M ′

1 — strict monotonicity
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Given any infinite sequence x1, x2, . . . over X , there must exist
positions i and j such that i < j and xi � xj
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Well structured transition systems

Well quasi-order (wqo)

(X ,�), � is reflexive and transitive

Given any infinite sequence x1, x2, . . . over X , there must exist
positions i and j such that i < j and xi � xj

Note that this also rules out infinite descending chains.

(X ,→) is a well structured transition system if there is exists a
wqo (X ,�) such that → is compatible with �

x −→ x ′

� �

x1 −→ x ′
1
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Well structured transition systems . . .

Concrete decision procedures for Petri nets can be lifted to WSTSs

Karp-Miller tree generalize to finite reachability tree

Can use this to decide termination
For boundedness, we need strict monotonicity

x −→ x ′

≺ ≺

x1 −→ x ′
1

Backward saturation to compute coverability if the WSTS has
an effective pred-basis

Given a state x ∈ X , compute a finite basis for Pred(↑x)



Generalized Petri nets

Petri net with arc weights labelled by polynomials over places

Evaluate polynomial with respect to current marking

Resulting value determine whether a transition is enabled . . .

. . . and computes the effect of firing it.
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Generalized Petri nets

Petri net with arc weights labelled by polynomials over places

Evaluate polynomial with respect to current marking

Resulting value determine whether a transition is enabled . . .

. . . and computes the effect of firing it.
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p3
2·p2
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Fibonacci net

For odd k , marking mk = (fib(k+1), 0, fib(k))



Generalizaed nets . . .

All problems are undecidable in general

Subsume inhibitor arcs

To fire t1, we need 2 ·M(p2) tokens at p2

M(p2) must be 0!

Subclasses clearly separate decision boundaries for reachability,
coverability, termination, boundedness, place boundedness,



Decision problems for reset post-G nets

Reset arc: W (p, t) = p

Resets (i.e., empties) input place p when t fires

Transfer arc: W (p, t) = p = W (t, p′)

Transfers contents of p to p′

Post-G net: only output arcs are non-classical

Double Petri net: Post G-net where F (t, p) = p or
F (t, p) ∈ N.

F (t, p) = p: doubling arc: doubles the marking of p
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Reset Post-G nets

Input arcs are either reset or classical

Output arcs can have arbitrary polynomials

What’s decidable

Coverability, termination

Reset post-G nets define WSTSs with effective pred-basis, but do
not satisfy strict monotonicity.

What’s not

Boundedness

Reset post-G nets can “compute” polynomials. Complicated
reduction from Hilbert’s Tenth Problem.
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Transfer nets

All non-classical arcs are pairs that define transfers

What’s decidable

Boundedness

Transfer nets define WSTSs with strict monotonicity.

What’s not

Place-boundedness

Simulate a reset post-G net N by a transfer net N ′.

Add a dummy place to N to get N ′. Simulate resets by
transferring tokens to this dummy place.

N is unbounded iff some place other than the dummy place is
unbounded in N ′.



Post-G nets

Input arcs are classical, only output arcs have extended
weights

What’s decidable

Place-boundedness

Post-G nets define WSTSs with strict monotonicity and an
additional continuity condition required to compute place
boundedness from the finite reachability tree.



Reachability

Undecidability

Reachability is undecidable for double Petri nets, reset Petri nets
and transfer Petri nets with two extended arcs.

Two extended arcs can simulate nets with inhibitor arcs.



What’s decidable?
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