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Concurrent systems

» Convenient to view each execution as a labelled partial order
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Mazurkiewicz traces

» Actions are enriched with specifying
which pairs are independent

» Symmetric, irreflexive
» Typically derived from structure of underlying system
> Actions performed by disjoint sets of components

» In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization
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From traces to event structures

» Can extract an event structure from the set of traces
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From traces to event structures

Can extract an event structure from the set of traces

v

» + < t' if t' extends t with more events
» For instance, [e1exe3] < [e1e4e063]
» t and t' are compatible if there is t” such that + < " and
t/ S t//

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

v

t#t"if t and t’ are compatible

v

Identify with

: Only one maximal element
» “Earliest” occurrence of an action
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Event Structures . ..




(Labelled) Event Structures

Formally, an event structure is of the form £S = (£, <, #. \)

» £ is the set of event occurrences

v

< is the causality relation (a partial order)

v

# is a binary conflict relation

> lIrreflexive, symmetric

v

Conflict is inherited via causality
» e#f and f < " implies e#f’

A E — 3 labels each event occurrence with an action

v

v

Two events are concurrent if they are not related by < or #
—ecof



Trace event structures

Let (. /) be a trace alphabet

ES = (E,<,#,)\) is a if
> et f = Ae) # A(F)
» Determinacy!
> If e < f or et f, (A(e), A(F)) ¢ I
> If (A(e). \(F)) & [ then e < f or f < e or ef.



Trace event structures

Let (. /) be a trace alphabet
ES = (E.<,4#,)\)isa if
> e#,f = M) # \(f)
» Determinacy!
> If e < fore#,f, (Ne),\(F)) &1
> If (A(e), A(f)) ¢ | then e < forf < eore#f.
Fact

Any event structure constructed from the traces of a
concurrent system is a trace event structure



Event structures as relational structures

Instead of temporal logics, consider

» First-Order Logic (FOL)
» (Variations of) Monadic Second Order logics (MSO)

FOL and MSO are logics over — a set with a
collection of relations defined over the set

Labelled event structures give rise naturally to relational structures
> £S = (E,<,#.)) labelled by > = {a1,a,, ..., an}
» Corresponding relational structure is (£, <, #. 0/, (., ..., la,)

» Each /. is a unary predicate such that /, (e) is true iff
Ae) = a;



FOL and MSO

Relational structure (E. <. # .0, (... [,)
» {x.y,...} : variables representing individual events

» {X,Y....}: variables representing sets of events
FOL
x=y|x<y|x#y|Llax) ]| o] @Ne|Ixp(x)

MSOL

x=y|x<y|xgty [ La(x) [ e[ @ne|Ixp(x) | TX.0(x)



The model-checking problem

» We are given a regular trace language L

» Set of traces whose linearizations is a regular language

» From the prime traces, those with a single maximal event, we
can extract an event structure £S5,

» Given a formula ¢ in FOL/MSO, does E£S; = 7



MSO over trace event structures is undecidable

[Walukiewicz]
» Alphabet {a. b, c} with | = {(a,b).(b,a)}

v

Consider trace language generated by words of the form
a*b*c)

Each prime trace/event [2/b"c| encodes a grid point (. k)

v

v

Set variables describe an assignment of colours to these events

v

MSO can describe that this colouring/tiling of the grid is valid

» To get around this, restrict MSO to Monadic Trace Logic
(MTL)

» Quantify over conflict-free subsets of £



FOL over trace event structures is decidable

> Let ¢(x1,x0.....x;) be an FOL formula

> ¢ defines a k-ary relation over events
R, = {(e1, e,..., ex) | ES = (e, e,. .., ex)}

> Recall that each event is actually a prime trace, so i is a
relation over traces in L

» Combine each tuple (1.1, ..., ti) € R, into a single
(over a new alphabet)

» Model-checking 7 is equivalent to checking that the set of
braided traces corresponding to 2, is non-empty

» For each formula ¢, the braided traces corresponding to .
form a regular trace language
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Braiding traces . ..

» Braided traces over new alphabet > 5 with symbols (a, Y)
where

» a2 € X is a letter from the original alphabet
» Y C {Xl.XQ ..... Xk}

> ((a,X),(b,Y)) € lgif (a,b) €lor XNY =0



Braiding traces . ..

» Braided traces over new alphabet > 5 with symbols (a, Y)
where

» a2 € X is a letter from the original alphabet
» Y C {Xl.XQ ..... Xk}

> ((3,X),(b,Y)) €lgif(ab)elor XNY =0

Observation

> If (2, X) < (b, Y) in a braided trace, then ¥ C X

» The second component monotonically decreases along each
chain of dependent letters

» This property can be checked by a finite-state automaton



Braiding traces . ..

Theorem

For each FOL formula ¢(x;. %, ... . xx), the corresponding braided
trace language is regular

Proof

By induction on the structure of ¢
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Braiding traces . ..
pisx =y

» (tL,t2) e R, iff t1 =t
» Braided trace is isomorphic to t; (and )

» Each action is labelled {x;, x>}



Braiding traces . ..
pisx =y

> (tl, t2) € RY« iff 7 =t
» Braided trace is isomorphic to t; (and )
» Each action is labelled {x;, x>}

» Check that projection onto X is a prime trace in L

» Note: If L is a regular trace language, the prime traces of L
also form a regular trace language

» Check that second component of each label is {x1,x}
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Braiding traces . ..
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» Braided trace is isomorphic to 1

» Each action is labelled {x;.x} or {x:}



Braiding traces . ..

pisx <y

> (t1,t2) € R, iff £, extends t;
» Braided trace is isomorphic to 1
» Each action is labelled {x;.x} or {x:}

» Check that projection onto X is a prime trace in L

» Check that second component of each label is {x;, x> }
or {x}

» Check that second component decreases monotonically along
each chain of dependent letters
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Braiding traces . ..
@ is x#y

> (t1,t2) € R, iff t; and t, diverge
> At least one action each labelled only {x; } and {x>}

» Braided trace restricted to

» actions labelled {x;, x>} or {x; } is isomorphic to t;
» actions labelled {x;,x} or {x>} is isomorphic to t,



Braiding traces . ..

@ is x#y

>

>

>

(t1,t2) € R, iff t; and > diverge
At least one action each labelled only {x;} and {x}

Braided trace restricted to
» actions labelled {x;, x>} or {x; } is isomorphic to t;
» actions labelled {x;,x} or {x} is isomorphic to t,

Check that projections {xi,...} and {xo, ...} are both prime
traces in L

Check that there is at least one event each with second
component of label {x;} and {x}

Check that second component decreases monotonically along
each chain of dependent letters



Braiding traces . ..

» By induction hypothesis, braided trace language for R, is
regular

» Define a natural projection operator to eliminate y from a set
of braided traces

» Project onto (x,. .., xx) = drop y from each event's label

» Erase any event whose initial label was {y} (and hence now
has an empty label)

» If B is a regular language of braided traces over variables X,
its projection onto any subset of x is also regular

» Braided trace language for © is obtained by projecting the
language for ¢ onto (x1,x0, ..., Xk )



Braiding traces . ..

wis =) : Easy

@Y is 1‘1 N 1‘2

> 1 (x1, ... xc) and Uo(yi. ..., ym) so braided traces for o are

over (X1, ..., Xk, Vi Vm)
» In general, some variables overlap between /1, 1
o(X,7,2) = ¥1(X, Z) A pa(7, 2)

» Define an “expansion” operator:

» B, a set of braided traces over 0 = (uy, o, . .., ug)
» V= (v1,v,..., Vin), @ new set of variables
» Blv: braided traces over (u,v) = (uy, ..., ug, vi,

whose projection onto i lies in B.

» Then, the language for ¢ is (B, 1 ) N (By, | X)



MTL

» MTL is MSO with set quantifiers restricted to conflict-free
subsets of £

» In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

» Can we represent conflict-free subsets of £ as traces?
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» Add a tag from { L, T} to indicate which events in | X belong
to X and which do not



MTL

MTL is MSO with set quantifiers restricted to conflict-free
subsets of £

In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

Can we represent conflict-free subsets of £ as traces?

If X C E is conflict-free, so is | X

» Thus, | X is a trace (not necessarily prime)

» Not all events in | X are part of the subset

» Add a tag from { L, T} to indicate which events in | X belong
to X and which do not

Can again assign a set of braided traces with each formula ¢

» Show by induction on ¢ that this set is regular



In perspective

FOL over traces can express all natural temporal modalities

> £S.e = Ay if at every f such that e < f, ES.f = ¢
> ES. e = Eup if there exists f such that e#f and ES.f |= ¢

> £S.e = A if at every f such that e co f, ES,f |= ¢
> ...
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In perspective . ..

> System is presented as a regular trace language

» Implicitly, we assume a deterministic machine recognizing the
language

» Model-checking is typically applied to a given system model

» May be nondeterministic

» Distinction between labelled and unlabelled systems in models
like Petri nets

» What is the status of branching-time model-checking for
labelled concurrent systems?



In perspective . ..

» In sequential systems, model-checking is intimately connected
to automata theory

» Tree automata
» Alternating automata (on strings and trees)

» In concurrent systems, the theory of “string” automata is
reasonably well-understood

» Asynchronous automata, Zielonka's theorem

» How do we define alternating automata on traces?



