Model-Checking Event Structures, Part 2

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update Meeting IIT Roorkee 14 July 2009

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Concurrent systems

Convenient to view each execution as a labelled partial order

Mazurkiewicz traces

- Actions are enriched with independence relation specifying which pairs are independent
 - Symmetric, irreflexive
 - Typically derived from structure of underlying system
 - Actions performed by disjoint sets of components

 In a linearization, adjacent independent actions can be swapped to yield an equivalent linearization

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□▶

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ● ■ ● ● ● ●

Can extract an event structure from the set of traces

Can extract an event structure from the set of traces

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

- $t \leq t'$ if t' extends t with more events
 - For instance, $[e_1e_2e_3] \leq [e_1e_4e_2e_3]$

- Can extract an event structure from the set of traces
- $t \leq t'$ if t' extends t with more events
 - For instance, $[e_1e_2e_3] \leq [e_1e_4e_2e_3]$
- ▶ t and t' are compatible if there is t'' such that $t \le t''$ and $t' \le t''$
 - ▶ For instance, [e₁e₂e₃] and [e₄] are compatible because both are dominated by [e₁e₂e₃e₄]

- Can extract an event structure from the set of traces
- $t \leq t'$ if t' extends t with more events
 - For instance, $[e_1e_2e_3] \leq [e_1e_4e_2e_3]$
- ▶ t and t' are compatible if there is t'' such that $t \le t''$ and $t' \le t''$
 - ▶ For instance, [e₁e₂e₃] and [e₄] are compatible because both are dominated by [e₁e₂e₃e₄]

• t # t' if t and t' are not compatible

- Can extract an event structure from the set of traces
- $t \leq t'$ if t' extends t with more events
 - For instance, $[e_1e_2e_3] \leq [e_1e_4e_2e_3]$
- ▶ t and t' are compatible if there is t'' such that $t \le t''$ and $t' \le t''$
 - ▶ For instance, [e₁e₂e₃] and [e₄] are compatible because both are dominated by [e₁e₂e₃e₄]

- t # t' if t and t' are not compatible
- Identify events with prime traces
 - Prime trace: Only one maximal element
 - "Earliest" occurrence of an action

Event Structures ...

(Labelled) Event Structures

Formally, an event structure is of the form $ES = (E, \leq, \#, \lambda)$

- E is the set of event occurrences
- is the causality relation (a partial order)
- # is a binary conflict relation
 - Irreflexive, symmetric
- Conflict is inherited via causality
 - e # f and $f \le f'$ implies e # f'
- ▶ $\lambda : E \to \Sigma$ labels each event occurrence with an action
- ► Two events are concurrent if they are not related by ≤ or # — e co f

Trace event structures

Let (Σ, I) be a trace alphabet

- $ES = (E, \leq, \#, \lambda)$ is a trace event structure if
 - $e \#_{\mu} f \Rightarrow \lambda(e) \neq \lambda(f)$
 - Determinacy!
 - If e < f or $e \#_{\mu} f$, $(\lambda(e), \lambda(f)) \notin I$
 - If $(\lambda(e), \lambda(f)) \notin I$ then $e \leq f$ or $f \leq e$ or e # f.

Trace event structures

Let (Σ, I) be a trace alphabet

 $ES = (E, \leq, \#, \lambda)$ is a trace event structure if

- $\blacktriangleright \ e \#_{\mu} f \Rightarrow \lambda(e) \neq \lambda(f)$
 - Determinacy!
- If e < f or $e \#_{\mu} f$, $(\lambda(e), \lambda(f)) \notin I$
- If $(\lambda(e), \lambda(f)) \notin I$ then $e \leq f$ or $f \leq e$ or e # f.

Fact

Any event structure constructed from the traces of a deterministic concurrent system is a trace event structure

Event structures as relational structures

Instead of temporal logics, consider

- First-Order Logic (FOL)
- (Variations of) Monadic Second Order logics (MSO)

FOL and MSO are logics over relational structures — a set with a collection of relations defined over the set

Labelled event structures give rise naturally to relational structures

- $ES = (E, \leq, \#, \lambda)$ labelled by $\Sigma = \{a_1, a_2, \dots, a_n\}$
- ► Corresponding relational structure is (E, ≤, #, ℓ_{a1}, ℓ_{a2}, ..., ℓ_{an})

► Each l_{ai} is a unary predicate such that l_{ai}(e) is true iff λ(e) = a_i

FOL and MSO

Relational structure $(E, \leq, \#, \ell_{a_1}, \ell_{a_2}, \ldots, \ell_{a_n})$

- $\{x, y, \ldots\}$: variables representing individual events
- $\{X, Y, \ldots\}$: variables representing sets of events

FOL

 $x = y \mid x \leq y \mid x \# y \mid \ell_{a}(x) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x.\varphi(x)$

MSOL

 $x = y \mid x \le y \mid x \# y \mid \ell_{a}(x) \mid \neg \varphi \mid \varphi \land \varphi \mid \exists x.\varphi(x) \mid \exists X.\varphi(x)$

The model-checking problem

- ▶ We are given a regular trace language *L*
 - Set of traces whose linearizations is a regular language
- From the prime traces, those with a single maximal event, we can extract an event structure ES_L

• Given a formula φ in FOL/MSO, does $ES_L \models \varphi$?

MSO over trace event structures is undecidable

[Walukiewicz]

- Alphabet $\{a, b, c\}$ with $I = \{(a, b), (b, a)\}$
- Consider trace language generated by words of the form a*b*c)
- Each prime trace/event $[a^{j}b^{k}c]$ encodes a grid point (j, k)
- Set variables describe an assignment of colours to these events
- MSO can describe that this colouring/tiling of the grid is valid

- To get around this, restrict MSO to Monadic Trace Logic (MTL)
 - Quantify over conflict-free subsets of E

FOL over trace event structures is decidable

- Let $\varphi(x_1, x_2, \dots, x_k)$ be an FOL formula
- ▶ φ defines a *k*-ary relation over events $R_{\varphi} = \{(e_1, e_2, \dots, e_k) \mid ES \models \varphi(e_1, e_2, \dots, e_k)\}$
- Recall that each event is actually a prime trace, so R_φ is a relation over traces in L
- ► Combine each tuple (t₁, t₂,..., t_k) ∈ R_φ into a single braided trace (over a new alphabet)
- Model-checking R_φ is equivalent to checking that the set of braided traces corresponding to R_φ is non-empty
- For each formula φ, the braided traces corresponding to R_φ form a regular trace language

Braiding traces

Overlap traces as far as possible, recording for each overlapped event, which components participate in that event

◆□ ▶ ◆圖 ▶ ◆臣 ▶ ◆臣 ▶

э

Braiding traces

Overlap traces as far as possible, recording for each overlapped event, which components participate in that event

▲日▼▲□▼▲□▼▲□▼ □ ののの

► Braided traces over new alphabet ∑_B with symbols (a, Y) where

- $a \in \Sigma$ is a letter from the original alphabet
- $Y \subseteq \{x_1, x_2, \ldots, x_k\}$
- ▶ $((a, X), (b, Y)) \in I_B$ if $(a, b) \in I$ or $X \cap Y = \emptyset$

- ► Braided traces over new alphabet ∑_B with symbols (a, Y) where
 - $a \in \Sigma$ is a letter from the original alphabet
 - $Y \subseteq \{x_1, x_2, \ldots, x_k\}$
- ▶ $((a, X), (b, Y)) \in I_B$ if $(a, b) \in I$ or $X \cap Y = \emptyset$

Observation

- If $(a, X) \leq (b, Y)$ in a braided trace, then $Y \subseteq X$
 - The second component monotonically decreases along each chain of dependent letters

This property can be checked by a finite-state automaton

Theorem

For each FOL formula $\varphi(x_1, x_2, ..., x_k)$, the corresponding braided trace language is regular

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Proof

By induction on the structure of φ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 φ is x = y

 φ is x = y

• $(t1, t2) \in R_{\varphi}$ iff $t_1 = t_2$

• Braided trace is isomorphic to t_1 (and t_2)

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• Each action is labelled $\{x_1, x_2\}$

 φ is x = y

- $\blacktriangleright (t1, t2) \in R_{\varphi} \text{ iff } t_1 = t_2$
- Braided trace is isomorphic to t₁ (and t₂)
- Each action is labelled {x₁, x₂}
- Check that projection onto Σ is a prime trace in L
 - Note: If L is a regular trace language, the prime traces of L also form a regular trace language

• Check that second component of each label is $\{x_1, x_2\}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 φ is $x \leq y$

- $(t1, t2) \in R_{\varphi}$ iff t_2 extends t_1
- Braided trace is isomorphic to t₂
- Each action is labelled $\{x_1, x_2\}$ or $\{x_2\}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

 φ is $x \leq y$

- $(t1, t2) \in R_{\varphi}$ iff t_2 extends t_1
- Braided trace is isomorphic to t₂
- Each action is labelled $\{x_1, x_2\}$ or $\{x_2\}$
- Check that projection onto Σ is a prime trace in L
- Check that second component of each label is {x₁, x₂} or {x₂}
- Check that second component decreases monotonically along each chain of dependent letters

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 φ is x # y

 φ is x # y

- $(t1, t2) \in R_{\varphi}$ iff t_1 and t_2 diverge
- ▶ At least one action each labelled only {*x*₁} and {*x*₂}
- Braided trace restricted to
 - actions labelled $\{x_1, x_2\}$ or $\{x_1\}$ is isomorphic to t_1
 - actions labelled $\{x_1, x_2\}$ or $\{x_2\}$ is isomorphic to t_2

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

 φ is x # y

- $(t1, t2) \in R_{\varphi}$ iff t_1 and t_2 diverge
- ▶ At least one action each labelled only {*x*₁} and {*x*₂}
- Braided trace restricted to
 - actions labelled $\{x_1, x_2\}$ or $\{x_1\}$ is isomorphic to t_1
 - actions labelled $\{x_1, x_2\}$ or $\{x_2\}$ is isomorphic to t_2
- ► Check that projections {x₁,...} and {x₂,...} are both prime traces in L
- Check that there is at least one event each with second component of label {x1} and {x2}
- Check that second component decreases monotonically along each chain of dependent letters

φ is $\exists y.\psi(y, x_1, \ldots, x_k)$

- ▶ By induction hypothesis, braided trace language for R_{ψ} is regular
- Define a natural projection operator to eliminate y from a set of braided traces
 - Project onto $(x_1, \ldots, x_k) \Rightarrow \text{drop } y$ from each event's label
 - Erase any event whose initial label was {y} (and hence now has an empty label)
- ► If B is a regular language of braided traces over variables x̄, its projection onto any subset of x̄ is also regular
- Braided trace language for φ is obtained by projecting the language for ψ onto (x₁, x₂,..., x_k)

arphi is $\neg\psi$: Easy

 $\varphi \text{ is } \psi_1 \wedge \psi_2$

- ψ₁(x₁,...,x_k) and ψ₂(y₁,...,y_m) so braided traces for φ are over (x₁,...,x_k, y₁,...,y_m)
- In general, some variables overlap between ψ₁, ψ₂ φ(x̄, ȳ, z̄) = ψ₁(x̄, z̄) ∧ ψ₂(ȳ, z̄)
- Define an "expansion" operator:
 - *B*, a set of braided traces over $\bar{u} = (u_1, u_2, \dots, u_k)$
 - $\bar{v} = (v_1, v_2, \dots, v_m)$, a new set of variables
 - ▶ $B \uparrow \overline{v}$: all braided traces over $(\overline{u}, \overline{v}) = (u_1, \dots, u_k, v_1, \dots, v_k)$ whose projection onto \overline{u} lies in B.
- Then, the language for φ is $(B_{\psi_1} \uparrow \bar{y}) \cap (B_{\psi_2} \uparrow \bar{x})$

MTL

- MTL is MSO with set quantifiers restricted to conflict-free subsets of *E*
- In FOL proof, each individual variable x is assigned an event e, which can be regarded as a prime trace

Can we represent conflict-free subsets of *E* as traces?

MTL

- MTL is MSO with set quantifiers restricted to conflict-free subsets of *E*
- In FOL proof, each individual variable x is assigned an event e, which can be regarded as a prime trace
- Can we represent conflict-free subsets of *E* as traces?
- If $X \subset E$ is conflict-free, so is $\downarrow X$
- ► Thus, ↓X is a trace (not necessarily prime)
- Not all events in $\downarrow X$ are part of the subset
 - Add a tag from {⊥, ⊤} to indicate which events in ↓X belong to X and which do not

MTL

- MTL is MSO with set quantifiers restricted to conflict-free subsets of *E*
- In FOL proof, each individual variable x is assigned an event e, which can be regarded as a prime trace
- Can we represent conflict-free subsets of *E* as traces?
- If $X \subset E$ is conflict-free, so is $\downarrow X$
- ► Thus, ↓X is a trace (not necessarily prime)
- Not all events in $\downarrow X$ are part of the subset
 - Add a tag from {⊥, ⊤} to indicate which events in ↓X belong to X and which do not

- \blacktriangleright Can again assign a set of braided traces with each formula arphi
- Show by induction on \u03c6 that this set is regular

In perspective

FOL over traces can express all natural temporal modalities

- ▶ $ES, e \models A_{\leq} \varphi$ if at every f such that $e \leq f$, $ES, f \models \varphi$
- ► *ES*, $e \models E_{\#}\varphi$ if there exists *f* such that e#f and *ES*, $f \models \varphi$

► $ES, e \models A_{co}\varphi$ if at every f such that $e \text{ co } f, ES, f \models \varphi$ ► ...

In perspective

FOL over traces can express all natural temporal modalities

- ▶ *ES*, $e \models A_{\leq} \varphi$ if at every *f* such that $e \leq f$, *ES*, $f \models \varphi$
- ▶ *ES*, $e \models E_{\#}\varphi$ if there exists f such that e#f and *ES*, $f \models \varphi$
- ► $ES, e \models A_{co}\varphi$ if at every f such that $e \text{ co } f, ES, f \models \varphi$ ► ...

In one shot, decidability of FOL over trace event structures shows that all (reasonable) temporal logics are decidable!

In perspective

FOL over traces can express all natural temporal modalities

- ▶ $ES, e \models A_{\leq} \varphi$ if at every f such that $e \leq f$, $ES, f \models \varphi$
- ▶ *ES*, $e \models E_{\#}\varphi$ if there exists f such that e#f and *ES*, $f \models \varphi$
- ► $ES, e \models A_{co}\varphi$ if at every f such that $e \text{ co } f, ES, f \models \varphi$ ► ...

In one shot, decidability of FOL over trace event structures shows that all (reasonable) temporal logics are decidable!

What more remains to be done?

In perspective ...

- System is presented as a regular trace language
- Implicitly, we assume a deterministic machine recognizing the language
- Model-checking is typically applied to a given system model
 - May be nondeterministic
 - Distinction between labelled and unlabelled systems in models like Petri nets

What is the status of branching-time model-checking for labelled concurrent systems?

In perspective ...

- In sequential systems, model-checking is intimately connected to automata theory
 - Tree automata
 - Alternating automata (on strings and trees)
- In concurrent systems, the theory of "string" automata is reasonably well-understood

- Asynchronous automata, Zielonka's theorem
- How do we define alternating automata on traces?