
Model-Checking Event Structures, Part 2

Madhavan Mukund

Chennai Mathematical Institute

http://www.cmi.ac.in/˜madhavan

Formal Methods Update Meeting
IIT Roorkee
14 July 2009

Concurrent systems

◮ Convenient to view each execution as a labelled partial order

e1 e2 e3

e4

e5

Mazurkiewicz traces

◮ Actions are enriched with independence relation specifying
which pairs are independent

◮ Symmetric, irreflexive

◮ Typically derived from structure of underlying system

◮ Actions performed by disjoint sets of components

◮ In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization

[ε]

[e3]

[e4]

[e3e4]

[e3e4e5]

[ε]

[e3]

[e4]

[e3e4]

[e3e4e5]

[e1]

[e1e4]

[e1e2]

[e1e2e4]

[e1e2e3]

[e1e2e3e4]

[e1e2e3e4e5]

[ε]

[e3]

[e4]

[e3e4]

[e3e4e5]

[e1]

[e1e4]

[e1e2]

[e1e2e4]

[e1e2e3]

[e1e2e3e4]

[e1e2e3e4e5]

[e1e2e1]

[e1e2e1e2]

[e1e2e1e2e3]

[e1e2e1e4]

[e1e2e1e2e4]

[e1e2e1e2e3e4]

[e1e2e1e2e3e4e5]

From traces to event structures

◮ Can extract an event structure from the set of traces

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

◮ t#t ′ if t and t ′ are not compatible

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

◮ t#t ′ if t and t ′ are not compatible

◮ Identify events with prime traces

◮ Prime trace: Only one maximal element
◮ “Earliest” occurrence of an action

[ε]

[e3]

[e4]

[e3e4]

[e3e4e5]

[e1]

[e1e4]

[e1e2]

[e1e2e4]

[e1e2e3]

[e1e2e3e4]

[e1e2e3e4e5]

[e1e2e1]

[e1e2e1e2]

[e1e2e1e2e3]

[e1e2e1e4]

[e1e2e1e2e4]

[e1e2e1e2e3e4]

[e1e2e1e2e3e4e5]

[ε]

[e3]

[e4]

[e3e4]

[e3e4e5]

[e1]

[e1e4]

[e1e2]

[e1e2e4]

[e1e2e3]

[e1e2e3e4]

[e1e2e3e4e5]

[e1e2e1]

[e1e2e1e2]

[e1e2e1e2e3]

[e1e2e1e4]

[e1e2e1e2e4]

[e1e2e1e2e3e4]

[e1e2e1e2e3e4e5]

[e3]

[e4]

[e3e4e5]

[e1]

[e1e2]

[e1e2e3]

[e1e2e3e4e5]

[e1e2e1]

[e1e2e1e2]

[e1e2e1e2e3]

[e1e2e1e2e3e4e5]

Event Structures . . .

(Labelled) Event Structures

Formally, an event structure is of the form ES = (E ,≤,#, λ)

◮ E is the set of event occurrences

◮ ≤ is the causality relation (a partial order)

◮ # is a binary conflict relation

◮ Irreflexive, symmetric

◮ Conflict is inherited via causality

◮ e#f and f ≤ f ′ implies e#f ′

◮ λ : E → Σ labels each event occurrence with an action

◮ Two events are concurrent if they are not related by ≤ or #
— e co f

Trace event structures

Let (Σ, I) be a trace alphabet

ES = (E ,≤,#, λ) is a trace event structure if

◮ e#µf ⇒ λ(e) 6= λ(f)

◮ Determinacy!

◮ If e ⋖ f or e#µf , (λ(e), λ(f)) /∈ I

◮ If (λ(e), λ(f)) /∈ I then e ≤ f or f ≤ e or e#f .

Trace event structures

Let (Σ, I) be a trace alphabet

ES = (E ,≤,#, λ) is a trace event structure if

◮ e#µf ⇒ λ(e) 6= λ(f)

◮ Determinacy!

◮ If e ⋖ f or e#µf , (λ(e), λ(f)) /∈ I

◮ If (λ(e), λ(f)) /∈ I then e ≤ f or f ≤ e or e#f .

Fact
Any event structure constructed from the traces of a deterministic
concurrent system is a trace event structure

Event structures as relational structures

Instead of temporal logics, consider

◮ First-Order Logic (FOL)

◮ (Variations of) Monadic Second Order logics (MSO)

FOL and MSO are logics over relational structures — a set with a
collection of relations defined over the set

Labelled event structures give rise naturally to relational structures

◮ ES = (E ,≤,#, λ) labelled by Σ = {a1, a2, . . . , an}

◮ Corresponding relational structure is (E ,≤,#, ℓa1
, ℓa2

, . . . , ℓan)

◮ Each ℓai
is a unary predicate such that ℓai

(e) is true iff
λ(e) = ai

FOL and MSO

Relational structure (E ,≤,#, ℓa1
, ℓa2

, . . . , ℓan)

◮ {x , y , . . .} : variables representing individual events

◮ {X ,Y , . . .} : variables representing sets of events

FOL

x = y | x ≤ y | x#y | ℓa(x) | ¬ϕ | ϕ ∧ ϕ | ∃x .ϕ(x)

MSOL

x = y | x ≤ y | x#y | ℓa(x) | ¬ϕ | ϕ ∧ ϕ | ∃x .ϕ(x) | ∃X .ϕ(x)

The model-checking problem

◮ We are given a regular trace language L

◮ Set of traces whose linearizations is a regular language

◮ From the prime traces, those with a single maximal event, we
can extract an event structure ESL

◮ Given a formula ϕ in FOL/MSO, does ESL |= ϕ?

MSO over trace event structures is undecidable

[Walukiewicz]

◮ Alphabet {a, b, c} with I = {(a, b), (b, a)}

◮ Consider trace language generated by words of the form
a∗b∗c)

◮ Each prime trace/event [ajbkc] encodes a grid point (j , k)

◮ Set variables describe an assignment of colours to these events

◮ MSO can describe that this colouring/tiling of the grid is valid

◮ To get around this, restrict MSO to Monadic Trace Logic
(MTL)

◮ Quantify over conflict-free subsets of E

FOL over trace event structures is decidable

◮ Let ϕ(x1, x2, . . . , xk) be an FOL formula

◮ ϕ defines a k-ary relation over events

Rϕ = {(e1, e2, . . . , ek) | ES |= ϕ(e1, e2, . . . , ek)}

◮ Recall that each event is actually a prime trace, so Rϕ is a
relation over traces in L

◮ Combine each tuple (t1, t2, . . . , tk) ∈ Rϕ into a single braided
trace (over a new alphabet)

◮ Model-checking Rϕ is equivalent to checking that the set of
braided traces corresponding to Rϕ is non-empty

◮ For each formula ϕ, the braided traces corresponding to Rϕ
form a regular trace language

Braiding traces

Overlap traces as far as possible, recording for each overlapped
event, which components participate in that event

a b

c

a

e1 e2

e3

e4

a b

c

b

c

e′1 e′2

e′3

e′4

e′5

Braiding traces

Overlap traces as far as possible, recording for each overlapped
event, which components participate in that event

a, {x1, x2} b, {x1, x2}

c , {x1, x2}

a, {x1} b, {x2}

c , {x2}

(e1, e
′
1) (e2, e

′
2)

(e3, e
′
3)

e4 e′4

e′5

Braiding traces . . .

◮ Braided traces over new alphabet ΣB with symbols (a,Y)
where

◮ a ∈ Σ is a letter from the original alphabet

◮ Y ⊆ {x1, x2, . . . , xk}

◮ ((a,X), (b,Y)) ∈ IB if (a, b) ∈ I or X ∩ Y = ∅

Braiding traces . . .

◮ Braided traces over new alphabet ΣB with symbols (a,Y)
where

◮ a ∈ Σ is a letter from the original alphabet

◮ Y ⊆ {x1, x2, . . . , xk}

◮ ((a,X), (b,Y)) ∈ IB if (a, b) ∈ I or X ∩ Y = ∅

Observation

◮ If (a,X) ≤ (b,Y) in a braided trace, then Y ⊆ X

◮ The second component monotonically decreases along each
chain of dependent letters

◮ This property can be checked by a finite-state automaton

Braiding traces . . .

Theorem

For each FOL formula ϕ(x1, x2, . . . , xk), the corresponding braided
trace language is regular

Proof

By induction on the structure of ϕ

Braiding traces . . .

ϕ is x = y

Braiding traces . . .

ϕ is x = y

◮ (t1, t2) ∈ Rϕ iff t1 = t2

◮ Braided trace is isomorphic to t1 (and t2)

◮ Each action is labelled {x1, x2}

Braiding traces . . .

ϕ is x = y

◮ (t1, t2) ∈ Rϕ iff t1 = t2

◮ Braided trace is isomorphic to t1 (and t2)

◮ Each action is labelled {x1, x2}

◮ Check that projection onto Σ is a prime trace in L

◮ Note: If L is a regular trace language, the prime traces of L

also form a regular trace language

◮ Check that second component of each label is {x1, x2}

Braiding traces . . .

ϕ is x ≤ y

Braiding traces . . .

ϕ is x ≤ y

◮ (t1, t2) ∈ Rϕ iff t2 extends t1

◮ Braided trace is isomorphic to t2

◮ Each action is labelled {x1, x2} or {x2}

Braiding traces . . .

ϕ is x ≤ y

◮ (t1, t2) ∈ Rϕ iff t2 extends t1

◮ Braided trace is isomorphic to t2

◮ Each action is labelled {x1, x2} or {x2}

◮ Check that projection onto Σ is a prime trace in L

◮ Check that second component of each label is {x1, x2}
or {x2}

◮ Check that second component decreases monotonically along
each chain of dependent letters

Braiding traces . . .

ϕ is x#y

Braiding traces . . .

ϕ is x#y

◮ (t1, t2) ∈ Rϕ iff t1 and t2 diverge

◮ At least one action each labelled only {x1} and {x2}

◮ Braided trace restricted to

◮ actions labelled {x1, x2} or {x1} is isomorphic to t1
◮ actions labelled {x1, x2} or {x2} is isomorphic to t2

Braiding traces . . .

ϕ is x#y

◮ (t1, t2) ∈ Rϕ iff t1 and t2 diverge

◮ At least one action each labelled only {x1} and {x2}

◮ Braided trace restricted to

◮ actions labelled {x1, x2} or {x1} is isomorphic to t1
◮ actions labelled {x1, x2} or {x2} is isomorphic to t2

◮ Check that projections {x1, . . .} and {x2, . . . } are both prime
traces in L

◮ Check that there is at least one event each with second
component of label {x1} and {x2}

◮ Check that second component decreases monotonically along
each chain of dependent letters

Braiding traces . . .

ϕ is ∃y .ψ(y , x1, . . . , xk)

◮ By induction hypothesis, braided trace language for Rψ is
regular

◮ Define a natural projection operator to eliminate y from a set
of braided traces

◮ Project onto (x1, . . . , xk) ⇒ drop y from each event’s label

◮ Erase any event whose initial label was {y} (and hence now
has an empty label)

◮ If B is a regular language of braided traces over variables x̄ ,
its projection onto any subset of x̄ is also regular

◮ Braided trace language for ϕ is obtained by projecting the
language for ψ onto (x1, x2, . . . , xk)

Braiding traces . . .

ϕ is ¬ψ : Easy

ϕ is ψ1 ∧ ψ2

◮ ψ1(x1, . . . , xk) and ψ2(y1, . . . , ym) so braided traces for ϕ are
over (x1, . . . , xk , y1, . . . , ym)

◮ In general, some variables overlap between ψ1, ψ2

ϕ(x̄ , ȳ , z̄) = ψ1(x̄ , z̄) ∧ ψ2(ȳ , z̄)

◮ Define an “expansion” operator:

◮ B, a set of braided traces over ū = (u1, u2, . . . , uk)
◮ v̄ = (v1, v2, . . . , vm), a new set of variables
◮ B ↑ v̄ : all braided traces over (ū, v̄) = (u1, . . . , uk , v1, . . . , vk)

whose projection onto ū lies in B.

◮ Then, the language for ϕ is (Bψ1
↑ ȳ) ∩ (Bψ2

↑ x̄)

MTL

◮ MTL is MSO with set quantifiers restricted to conflict-free
subsets of E

◮ In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

◮ Can we represent conflict-free subsets of E as traces?

MTL

◮ MTL is MSO with set quantifiers restricted to conflict-free
subsets of E

◮ In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

◮ Can we represent conflict-free subsets of E as traces?

◮ If X ⊂ E is conflict-free, so is ↓X

◮ Thus, ↓X is a trace (not necessarily prime)

◮ Not all events in ↓X are part of the subset

◮ Add a tag from {⊥,⊤} to indicate which events in ↓X belong
to X and which do not

MTL

◮ MTL is MSO with set quantifiers restricted to conflict-free
subsets of E

◮ In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

◮ Can we represent conflict-free subsets of E as traces?

◮ If X ⊂ E is conflict-free, so is ↓X

◮ Thus, ↓X is a trace (not necessarily prime)

◮ Not all events in ↓X are part of the subset

◮ Add a tag from {⊥,⊤} to indicate which events in ↓X belong
to X and which do not

◮ Can again assign a set of braided traces with each formula ϕ

◮ Show by induction on ϕ that this set is regular

In perspective

FOL over traces can express all natural temporal modalities

◮ ES , e |= A≤ϕ if at every f such that e ≤ f , ES , f |= ϕ

◮ ES , e |= E#ϕ if there exists f such that e#f and ES , f |= ϕ

◮ ES , e |= Acoϕ if at every f such that e co f , ES , f |= ϕ

◮ . . .

In perspective

FOL over traces can express all natural temporal modalities

◮ ES , e |= A≤ϕ if at every f such that e ≤ f , ES , f |= ϕ

◮ ES , e |= E#ϕ if there exists f such that e#f and ES , f |= ϕ

◮ ES , e |= Acoϕ if at every f such that e co f , ES , f |= ϕ

◮ . . .

In one shot, decidability of FOL over trace event structures shows
that all (reasonable) temporal logics are decidable!

In perspective

FOL over traces can express all natural temporal modalities

◮ ES , e |= A≤ϕ if at every f such that e ≤ f , ES , f |= ϕ

◮ ES , e |= E#ϕ if there exists f such that e#f and ES , f |= ϕ

◮ ES , e |= Acoϕ if at every f such that e co f , ES , f |= ϕ

◮ . . .

In one shot, decidability of FOL over trace event structures shows
that all (reasonable) temporal logics are decidable!

What more remains to be done?

In perspective . . .

◮ System is presented as a regular trace language

◮ Implicitly, we assume a deterministic machine recognizing the
language

◮ Model-checking is typically applied to a given system model

◮ May be nondeterministic

◮ Distinction between labelled and unlabelled systems in models
like Petri nets

◮ What is the status of branching-time model-checking for
labelled concurrent systems?

In perspective . . .

◮ In sequential systems, model-checking is intimately connected
to automata theory

◮ Tree automata

◮ Alternating automata (on strings and trees)

◮ In concurrent systems, the theory of “string” automata is
reasonably well-understood

◮ Asynchronous automata, Zielonka’s theorem

◮ How do we define alternating automata on traces?

