Model-Checking Event Structures, Part 2

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/ " madhavan

Formal Methods Update Meeting
IIT Roorkee
14 July 2009

Concurrent systems

» Convenient to view each execution as a labelled partial order

€l —) » €3

N

I

€5

€4

Mazurkiewicz traces

» Actions are enriched with specifying
which pairs are independent

» Symmetric, irreflexive
» Typically derived from structure of underlying system
> Actions performed by disjoint sets of components

» In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization

[e3€4]

[636465]

[e1e263]

[61 €e3 64]

[61 €e3 6465]

/

[e1€2]

[e1e2€4]

[e1]

[ere4]

_— T\

[e3]

[e4]
/ \[
e

64]

[636465]

,////Jd\\\\

/ [e1] [es]
[e1€2] [€4]
[e1e263] [e1e4] [e3€4]
[e1e2€4]
\ L [e1e261]
[e1e2e3¢4] [e1ezere4] | [eseses]
[61 €261 62]
[e1e2e1e064]
1 /[6162616263]
[e1e2e3e465] [erere1ere364]
[e1exerere3e465]

From traces to event structures

» Can extract an event structure from the set of traces

From traces to event structures

» Can extract an event structure from the set of traces

» + < t' if t' extends t with more events

» For instance, [e1exe3] < [e1e4e063]

From traces to event structures

» Can extract an event structure from the set of traces

» + < t’ if t/ extends t with more events

» For instance, [e1exe3] < [e1e4e063]

» t and t' are compatible if there is t” such that + < " and
t < ¢

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

From traces to event structures

Can extract an event structure from the set of traces

v

» + < t’ if t/ extends t with more events

» For instance, [e1exe3] < [e1e4e063]

» t and t' are compatible if there is t” such that + < " and
t < ¢

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

v

t#t"if t and t’ are compatible

From traces to event structures

Can extract an event structure from the set of traces

v

» + < t' if t' extends t with more events
» For instance, [e1exe3] < [e1e4e063]
» t and t' are compatible if there is t” such that + < " and
t/ S t//

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

v

t#t"if t and t’ are compatible

v

Identify with

: Only one maximal element
» “Earliest” occurrence of an action

,////Jd\\\\

/ [e1] [es]
[e1€2] [€4]
[e1e263] [e1e4] [e3€4]
[e1e2€4]
\ L [e1e261]
[e1e2e3¢4] [e1ezere4] | [eseses]
[61 €261 62]
[e1e2e1e064]
1 /[6162616263]
[e1e2e3e465] [erere1ere364]
[e1exerere3e465]

//////kL\\\\

[e1] [e3]

[q@///// [€4]
[e1e263] [e1e4] [e3€4]
[QQ%L
[erexeq]
[e1ere3e4] lereere] | [eseses]
[erexe1 9]
[erere1e264]
| ___lererereoes]
[e1e2e3€465) [erere1ere364]
[e1e2e1e2e38465]

o F = = £ DA

Event Structures . ..

(Labelled) Event Structures

Formally, an event structure is of the form £S = (£, <, #. \)

» £ is the set of event occurrences

v

< is the causality relation (a partial order)

v

is a binary conflict relation

> lIrreflexive, symmetric

v

Conflict is inherited via causality
» e#f and f < " implies e#f’

A E — 3 labels each event occurrence with an action

v

v

Two events are concurrent if they are not related by < or #
—ecof

Trace event structures

Let (. /) be a trace alphabet

ES = (E,<,#,)\) is a if
> et f = Ae) # A(F)
» Determinacy!
> If e < f or et f, (A(e), A(F)) ¢ I
> If (A(e). \(F)) & [then e < f or f < e or ef.

Trace event structures

Let (. /) be a trace alphabet
ES = (E.<,4#,)\)isa if
> e#,f = M) # \(f)
» Determinacy!
> If e < fore#,f, (Ne),\(F)) &1
> If (A(e), A(f)) ¢ | then e < forf < eore#f.
Fact

Any event structure constructed from the traces of a
concurrent system is a trace event structure

Event structures as relational structures

Instead of temporal logics, consider

» First-Order Logic (FOL)
» (Variations of) Monadic Second Order logics (MSO)

FOL and MSO are logics over — a set with a
collection of relations defined over the set

Labelled event structures give rise naturally to relational structures
> £S = (E,<,#.)) labelled by > = {a1,a,, ..., an}
» Corresponding relational structure is (£, <, #. 0/, (., ..., la,)

» Each /. is a unary predicate such that /, (e) is true iff
Ae) = a;

FOL and MSO

Relational structure (E. <. # .0, (... [,)
» {x.y,...} : variables representing individual events

» {X,Y....}: variables representing sets of events
FOL
x=y|x<y|x#y|Llax)]| o] @Ne|Ixp(x)

MSOL

x=y|x<y|xgty [La(x) [e[@ne|Ixp(x) | TX.0(x)

The model-checking problem

» We are given a regular trace language L

» Set of traces whose linearizations is a regular language

» From the prime traces, those with a single maximal event, we
can extract an event structure £S5,

» Given a formula ¢ in FOL/MSO, does E£S; = 7

MSO over trace event structures is undecidable

[Walukiewicz]
» Alphabet {a. b, c} with | = {(a,b).(b,a)}

v

Consider trace language generated by words of the form
a*b*c)

Each prime trace/event [2/b"c| encodes a grid point (. k)

v

v

Set variables describe an assignment of colours to these events

v

MSO can describe that this colouring/tiling of the grid is valid

» To get around this, restrict MSO to Monadic Trace Logic
(MTL)

» Quantify over conflict-free subsets of £

FOL over trace event structures is decidable

> Let ¢(x1,x0.....x;) be an FOL formula

> ¢ defines a k-ary relation over events
R, = {(e1, e,..., ex) | ES = (e, e,. .., ex)}

> Recall that each event is actually a prime trace, so i is a
relation over traces in L

» Combine each tuple (1.1, ..., ti) € R, into a single
(over a new alphabet)

» Model-checking 7 is equivalent to checking that the set of
braided traces corresponding to 2, is non-empty

» For each formula ¢, the braided traces corresponding to .
form a regular trace language

Braiding traces

Overlap traces as far as possible, recording for each overlapped
event, which components participate in that event

Braiding traces

Overlap traces as far as possible, recording for each overlapped
event, which components participate in that event

Braiding traces . ..

» Braided traces over new alphabet > 5 with symbols (a, Y)
where

» a2 € X is a letter from the original alphabet
» Y C {Xl.XQ Xk}

> ((a,X),(b,Y)) € lgif (a,b) €lor XNY =0

Braiding traces . ..

» Braided traces over new alphabet > 5 with symbols (a, Y)
where

» a2 € X is a letter from the original alphabet
» Y C {Xl.XQ Xk}

> ((3,X),(b,Y)) €lgif(ab)elor XNY =0

Observation

> If (2, X) < (b, Y) in a braided trace, then ¥ C X

» The second component monotonically decreases along each
chain of dependent letters

» This property can be checked by a finite-state automaton

Braiding traces . ..

Theorem

For each FOL formula ¢(x;. %, xx), the corresponding braided
trace language is regular

Proof

By induction on the structure of ¢

pisx=y

(g <Fr «

wa

Braiding traces . ..
pisx =y

» (tL,t2) e R, iff t1 =t
» Braided trace is isomorphic to t; (and)

» Each action is labelled {x;, x>}

Braiding traces . ..
pisx =y

> (tl, t2) € RY« iff 7 =t
» Braided trace is isomorphic to t; (and)
» Each action is labelled {x;, x>}

» Check that projection onto X is a prime trace in L

» Note: If L is a regular trace language, the prime traces of L
also form a regular trace language

» Check that second component of each label is {x1,x}

pisx<y

(g <Fr «

i
a
i

wa

Braiding traces . ..

pisx <y

> (t1,t2) € R, iff £, extends t;
» Braided trace is isomorphic to 1

» Each action is labelled {x;.x} or {x:}

Braiding traces . ..

pisx <y

> (t1,t2) € R, iff £, extends t;
» Braided trace is isomorphic to 1
» Each action is labelled {x;.x} or {x:}

» Check that projection onto X is a prime trace in L

» Check that second component of each label is {x;, x> }
or {x}

» Check that second component decreases monotonically along
each chain of dependent letters

(g <Fr «

i
a
i

wa

Braiding traces . ..
@ is x#y

> (t1,t2) € R, iff t; and t, diverge
> At least one action each labelled only {x; } and {x>}

» Braided trace restricted to

» actions labelled {x;, x>} or {x; } is isomorphic to t;
» actions labelled {x;,x} or {x>} is isomorphic to t,

Braiding traces . ..

@ is x#y

>

>

>

(t1,t2) € R, iff t; and > diverge
At least one action each labelled only {x;} and {x}

Braided trace restricted to
» actions labelled {x;, x>} or {x; } is isomorphic to t;
» actions labelled {x;,x} or {x} is isomorphic to t,

Check that projections {xi,...} and {xo, ...} are both prime
traces in L

Check that there is at least one event each with second
component of label {x;} and {x}

Check that second component decreases monotonically along
each chain of dependent letters

Braiding traces . ..

» By induction hypothesis, braided trace language for R, is
regular

» Define a natural projection operator to eliminate y from a set
of braided traces

» Project onto (x,. .., xx) = drop y from each event's label

» Erase any event whose initial label was {y} (and hence now
has an empty label)

» If B is a regular language of braided traces over variables X,
its projection onto any subset of x is also regular

» Braided trace language for © is obtained by projecting the
language for ¢ onto (x1,x0, ..., Xk)

Braiding traces . ..

wis =) : Easy

@Y is 1‘1 N 1‘2

> 1 (x1, ... xc) and Uo(yi. ..., ym) so braided traces for o are

over (X1, ..., Xk, Vi Vm)
» In general, some variables overlap between /1, 1
o(X,7,2) = ¥1(X, Z) A pa(7, 2)

» Define an “expansion” operator:

» B, a set of braided traces over 0 = (uy, o, . .., ug)
» V= (v1,v,..., Vin), @ new set of variables
» Blv: braided traces over (u,v) = (uy, ..., ug, vi,

whose projection onto i lies in B.

» Then, the language for ¢ is (B, 1) N (By, | X)

MTL

» MTL is MSO with set quantifiers restricted to conflict-free
subsets of £

» In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

» Can we represent conflict-free subsets of £ as traces?

MTL

» MTL is MSO with set quantifiers restricted to conflict-free
subsets of £

» In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

» Can we represent conflict-free subsets of £ as traces?

» If X C E is conflict-free, so is | X
» Thus, | X is a trace (not necessarily prime)
» Not all events in | X are part of the subset

» Add a tag from { L, T} to indicate which events in | X belong
to X and which do not

MTL

MTL is MSO with set quantifiers restricted to conflict-free
subsets of £

In FOL proof, each individual variable x is assigned an event
e, which can be regarded as a prime trace

Can we represent conflict-free subsets of £ as traces?

If X C E is conflict-free, so is | X

» Thus, | X is a trace (not necessarily prime)

» Not all events in | X are part of the subset

» Add a tag from { L, T} to indicate which events in | X belong
to X and which do not

Can again assign a set of braided traces with each formula ¢

» Show by induction on ¢ that this set is regular

In perspective

FOL over traces can express all natural temporal modalities

> £S.e = Ay if at every f such that e < f, ES.f = ¢
> ES. e = Eup if there exists f such that e#f and ES.f |= ¢

> £S.e = A if at every f such that e co f, ES,f |= ¢
> ...

In perspective

FOL over traces can express all natural temporal modalities

> £S.e = Ay if at every f such that e < f, ES.f = ¢
» ES. e = Eyyp if there exists f such that e#f and ES.f = ¢

> £S.e = A if at every f such that e co f, ES,f |= ¢
> ...

In one shot, decidability of FOL over trace event structures shows
that all (reasonable) temporal logics are decidable!

In perspective

FOL over traces can express all natural temporal modalities

> £S.e = Ay if at every f such that e < f, ES.f = ¢
» ES. e = Eyyp if there exists f such that e#f and ES.f = ¢

> £S.e = A if at every f such that e co f, ES,f |= ¢
> ...

In one shot, decidability of FOL over trace event structures shows
that all (reasonable) temporal logics are decidable!

In perspective . ..

> System is presented as a regular trace language

» Implicitly, we assume a deterministic machine recognizing the
language

» Model-checking is typically applied to a given system model

» May be nondeterministic

» Distinction between labelled and unlabelled systems in models
like Petri nets

» What is the status of branching-time model-checking for
labelled concurrent systems?

In perspective . ..

» In sequential systems, model-checking is intimately connected
to automata theory

» Tree automata
» Alternating automata (on strings and trees)

» In concurrent systems, the theory of “string” automata is
reasonably well-understood

» Asynchronous automata, Zielonka's theorem

» How do we define alternating automata on traces?

