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Logics and verification

Temporal logic

◮ Used to describe properties to be verified

◮ Comes in two basic flavours

Linear-time temporal logic

◮ Intepret separately over each possible run of the system

◮ To satisfy a property, every run must satisfy it

Branching-time temporal logic

◮ Collect all runs of the system in a single structure, the
computation tree

◮ Interpret formulas over computation tree

◮ Can quantify over runs, compare runs, . . .
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The Computation Tree

◮ We will work finite-state systems

◮ Start at an initial state and explore all executions

◮ Unfold the system into a tree
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◮ Suppose the system is a collection of interacting components

◮ During a run, some actions can be independent of each other

◮ Different sequences of actions may represent the same run
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Runs as partial orders

◮ Convenient to view each execution as a labelled partial order

◮ Actions can be related in two ways

◮ Causality
An occurrence of b causally depends on an occurrence of a if a

must happen before b happens

◮ Concurrency
An occurrence of b is independent of an occurrence of a if
they can occur in any order

e1 e2 e3

e4

e5



Runs as partial orders

◮ In many interesting cases, the runs of concurrent systems can
be described as traces [Mazurkiewicz]

◮ Actions are enriched with independence relation specifying
which pairs are independent

◮ Symmetric, irreflexive
◮ Typically derived from structure of underlying system

◮ Actions performed by disjoint sets of components

◮ In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization
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Temporal logics for concurrent systems

◮ Temporal logic interpreted on linearizations of runs makes too
many distinctions

◮ A property such as e2 is immediately followed by e4 is true in
some linearizations and not in others

◮ Modify temporal logic to express causality and concurrency

◮ What about linear-time vs branching-time?

◮ How do we represent the computation tree of a concurrent
system?



Computation tree of a concurrent system

◮ In sequential systems, computation tree glues together all runs
in a single branching structure

◮ In concurrent systems, each run is a labelled partial order (a
trace)

◮ Need to glue together traces to form a tree



Event structures

◮ Each action occurs in a context — what has happened earlier

◮ Each different occurrence of an action is an event

◮ In a single trace, events are related by causality or concurrency

◮ Across traces, events are related by conflict

◮ Choosing between two mutually incompatible events generates
different runs



Event Structures . . .

Formally, an event structure is of the form ES = (E ,≤,#)

◮ E is the set of events

◮ ≤ is the causality relation (a partial order)

◮ # is a binary conflict relation

◮ Irreflexive, symmetric

◮ Conflict is inherited via causality

◮ e#f and f ≤ f ′ implies e#f ′

◮ Two events are concurrent if they are not related by ≤ or #
— e co f



Event Structures . . .



Event Structures . . .

◮ A configuration of an event structure is a set X ⊆ E such that

◮ X is ↓-closed
◮ X is conflict free

◮ A configuration represents a set of events that have happened
so far — a global state of the system
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From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

◮ t#t ′ if t and t ′ are not compatible

◮ Identify events with prime traces

◮ Prime trace: Only one maximal element
◮ “Earliest” occurrence of an action



Temporal logics for event structures

◮ Interpret formulas at events of an event structure

◮ Event e denotes the minimal configuration ↓e where it occurs

◮ ↓e can be thought of as the local state of the components
involved in e

◮ Modalities to express causality, conflict, concurrency

◮ ES , e |= A≤ϕ if at every f such that e ≤ f , ES , f |= ϕ

◮ ES , e |= E≤ϕ if there exists f such that e ≤ f and ES , f |= ϕ

◮ ES , e |= A#ϕ if at every f such that e#f , ES , f |= ϕ

◮ ES , e |= E#ϕ if there exists f such that e#f and ES , f |= ϕ

◮ ES , e |= Acoϕ if at every f such that e co f , ES , f |= ϕ

◮ ES , e |= Ecoϕ if there exists f such that e co f and ES , f |= ϕ



⋖ and #µ

The immediate successor relation ⋖ generates ≤

e ⋖ f if e ≤ f and for all g , e ≤ g ≤ f ⇒ e = g or g = f

Corresponding modality

◮ ES , e |= A⋖ϕ if at every f such that e ⋖ f , ES , f |= ϕ

◮ ES , e |= E⋖ϕ if there exists f such that e ⋖ f and ES , f |= ϕ

Minimal conflict relation #µ generates # via ≤

e#µf if e#f and for all e′ ⋖ e, f ′ ⋖ f , it is not the case

that e#f ′ or e′#f

Corresponding modality

◮ ES , e |= A#µ
ϕ if at every f such that e#µf , ES , f |= ϕ

◮ ES , e |= E#µ
ϕ if there exists f such that e#µf and ES , f |= ϕ



The model-checking problem

◮ Start with a finite-state representation of the system, M

◮ Petri net
◮ Product of automata
◮ . . .

◮ Atomic propositions AP describing properties of (local) states

◮ Valuation assigns a subset of AP to each (local) state

◮ In ESM , event structure of M, each configuration ↓e
corresponds to a unique (global) state of M

◮ Formulas for system properties built from AP, boolean
operations, event structure modalities

◮ A≤(b ⇒ E#a)

◮ A⋖((b ⇒ E#µ
a) ∧ (a ⇒ E#µ

b))

◮ Does ESM , e |= ϕ?



The model-checking problem

Apparently only two papers addressing this topic.

◮ Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997

◮ Model-Checking Trace Event Structures
P Madhusudan
LICS 2003
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Apparently only two papers addressing this topic.

◮ Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997
Today

◮ Model-Checking Trace Event Structures
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LICS 2003
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Trace semantics



Event structure semantics



Penczek’s result

◮ Restrict the modalities

◮ Only A≤/E≤, A⋖/E⋖, A#mu/E#µ

◮ No Aco/Eco

◮ Though # is generated by #µ and ≤, cannot fully express
A#/E#

◮ # = ≤−1 ◦ #µ ◦ ≤

◮ No past modality to capture ≤−1



Quotienting the trace system

First attempt

◮ Two traces are equivalent if they reach the same global state

◮ This is not sufficient,

◮ [], [agbc] and [hdef ] all lead to (1, 2, 7)

◮ Causal futures are different

Refine further

◮ Two traces are equivalent if they reach the same global state
and the maximal actions in the traces are the same



Quotienting the trace system . . .

◮ Recall that events are prime traces

◮ Let e, f be two events

◮ Would like the following property

◮ If [e] = [f ], then ESM , e |= ϕ iff ESM , f |= ϕ

◮ This does not hold in general



Another example
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Quotienting the trace system . . .

◮ Recall that events are prime traces

◮ Let e, f be two events

◮ Would like the following property

◮ If [e] = [f ], then ESM , e |= ϕ iff ESM , f |= ϕ

◮ This does not hold in general

◮ In this example, [bd ] and [cd ] are prime traces reaching same
global state (1, 7, 8) with same maximal event d

◮ [a] and [ba] are prime traces that reach different global states

◮ [bd ]#µ[ba] and [cd ]#µ[a], so [bd ] and [cd ] don’t satisfy the
same E#µ

formulas.



Free-choice property

◮ Restrict systems to have the free-choice property

◮ Intuitively, choices available to one component cannot change
due to actions of another component

◮ Second example is not free-choice — if third process executes
c , second process loses option of performing b (and vice versa)

Formally

◮ If s
a
−→ s ′ involves components Pa and t

b
−→ t ′ involves

components Pb then

◮ Either Pa ∩ Pb = ∅, or,

◮ If s[j ] = t[j ] for some process j , then Pa = Pb and for all
j ∈ Pa = Pb, s[j ] = t[j ].



Free-choice property . . .

◮ Free-choice ensure that if e#µf ′ then

◮ There is a common prefix t such that e = ta, f = tb
◮ Actions a and b involve exactly the same set of components

Recall our definition of a quotiented trace system

t ≡ t ′ if t and t ′ reach the same global state and have

the same set of maximal actions

Our desired property

◮ If e ≡ f , then ESM , e |= ϕ iff ESM , f |= ϕ

can be proved by structural induction on ϕ from the following

◮ If e ≡ f and e ⋖ e′, there exists f ′ such that f ⋖ f ′ and
e′ ≡ f ′

◮ If e ≡ f and e#µe′, there exists f ′ such that f #µf ′ and
e′ ≡ f ′



The model-checking algorithm

Naive

◮ Compute the quotiented trace system for the given model

◮ This is a finite object

◮ Identify prime traces as events and constructed corresponding
“quotiented” event structure

◮ Decompose formulas and use CTL-style bottom-up labelling
to identify the formulas true at each event

More efficient

◮ Use partial order techniques to construct a representative
subset of the quotiented trace system

◮ Translate event structure logic to CTL and direcly use CTL
model checking on the quotiented trace system

◮ Use a special proposition to mark prime traces



Beyond Penczek’s result

◮ Can we extend the algorithm to full logic involving Aco/Eco

and A#/E#?

◮ Can the free-choice restriction be relaxed?


