
Model-Checking Event Structures

Madhavan Mukund

Chennai Mathematical Institute

http://www.cmi.ac.in/˜madhavan

Formal Methods Update Meeting
IIT Roorkee
13 July 2009

Logics and verification

Temporal logic

◮ Used to describe properties to be verified

◮ Comes in two basic flavours

Logics and verification

Temporal logic

◮ Used to describe properties to be verified

◮ Comes in two basic flavours

Linear-time temporal logic

◮ Intepret separately over each possible run of the system

◮ To satisfy a property, every run must satisfy it

Logics and verification

Temporal logic

◮ Used to describe properties to be verified

◮ Comes in two basic flavours

Linear-time temporal logic

◮ Intepret separately over each possible run of the system

◮ To satisfy a property, every run must satisfy it

Branching-time temporal logic

◮ Collect all runs of the system in a single structure, the
computation tree

◮ Interpret formulas over computation tree

◮ Can quantify over runs, compare runs, . . .

The Computation Tree

◮ We will work finite-state systems

◮ Start at an initial state and explore all executions

◮ Unfold the system into a tree

The Computation Tree

◮ We will work finite-state systems

◮ Start at an initial state and explore all executions

◮ Unfold the system into a tree

s0

s1 s2

s3

a

b

a a

c

The Computation Tree

◮ We will work finite-state systems

◮ Start at an initial state and explore all executions

◮ Unfold the system into a tree

s0

s1 s2

s3

a

b

a a

c

(s0, ε)

(s1, a) (s2, a)

(s0, aa) (s1, ab) (s3, ac)

(s0, aba) (s1, abb)(s1, aaa) (s2, aaa)

(s3, aaac)...
...

...

Concurrent systems

◮ Suppose the system is a collection of interacting components

◮ During a run, some actions can be independent of each other

◮ Different sequences of actions may represent the same run

Concurrent systems

◮ Suppose the system is a collection of interacting components

◮ During a run, some actions can be independent of each other

◮ Different sequences of actions may represent the same run

Concurrent systems

◮ Suppose the system is a collection of interacting components

◮ During a run, some actions can be independent of each other

◮ Different sequences of actions may represent the same run

e1e2e3e4e5

e1e2e4e3e5

e1e4e2e3e5

e4e1e2e3e5

Runs as partial orders

◮ Convenient to view each execution as a labelled partial order

◮ Actions can be related in two ways

◮ Causality
An occurrence of b causally depends on an occurrence of a if a

must happen before b happens

◮ Concurrency
An occurrence of b is independent of an occurrence of a if
they can occur in any order

e1 e2 e3

e4

e5

Runs as partial orders

◮ In many interesting cases, the runs of concurrent systems can
be described as traces [Mazurkiewicz]

◮ Actions are enriched with independence relation specifying
which pairs are independent

◮ Symmetric, irreflexive
◮ Typically derived from structure of underlying system

◮ Actions performed by disjoint sets of components

◮ In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization

e1 e2 e3 e4 e5

e1 e2 e4 e3 e5

e1 e4 e2 e3 e5

e4 e1 e2 e3 e5

Temporal logics for concurrent systems

◮ Temporal logic interpreted on linearizations of runs makes too
many distinctions

◮ A property such as e2 is immediately followed by e4 is true in
some linearizations and not in others

◮ Modify temporal logic to express causality and concurrency

◮ What about linear-time vs branching-time?

◮ How do we represent the computation tree of a concurrent
system?

Computation tree of a concurrent system

◮ In sequential systems, computation tree glues together all runs
in a single branching structure

◮ In concurrent systems, each run is a labelled partial order (a
trace)

◮ Need to glue together traces to form a tree

Event structures

◮ Each action occurs in a context — what has happened earlier

◮ Each different occurrence of an action is an event

◮ In a single trace, events are related by causality or concurrency

◮ Across traces, events are related by conflict

◮ Choosing between two mutually incompatible events generates
different runs

Event Structures . . .

Formally, an event structure is of the form ES = (E ,≤,#)

◮ E is the set of events

◮ ≤ is the causality relation (a partial order)

◮ # is a binary conflict relation

◮ Irreflexive, symmetric

◮ Conflict is inherited via causality

◮ e#f and f ≤ f ′ implies e#f ′

◮ Two events are concurrent if they are not related by ≤ or #
— e co f

Event Structures . . .

Event Structures . . .

◮ A configuration of an event structure is a set X ⊆ E such that

◮ X is ↓-closed
◮ X is conflict free

◮ A configuration represents a set of events that have happened
so far — a global state of the system

From traces to event structures

◮ Can extract an event structure from the set of traces

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

◮ t#t ′ if t and t ′ are not compatible

From traces to event structures

◮ Can extract an event structure from the set of traces

◮ t ≤ t ′ if t ′ extends t with more events

◮ For instance, [e1e2e3] ≤ [e1e4e2e3]

◮ t and t ′ are compatible if there is t ′′ such that t ≤ t ′′ and
t ′ ≤ t ′′

◮ For instance, [e1e2e3] and [e4] are compatible because both are
dominated by [e1e2e3e4]

◮ t#t ′ if t and t ′ are not compatible

◮ Identify events with prime traces

◮ Prime trace: Only one maximal element
◮ “Earliest” occurrence of an action

Temporal logics for event structures

◮ Interpret formulas at events of an event structure

◮ Event e denotes the minimal configuration ↓e where it occurs

◮ ↓e can be thought of as the local state of the components
involved in e

◮ Modalities to express causality, conflict, concurrency

◮ ES , e |= A≤ϕ if at every f such that e ≤ f , ES , f |= ϕ

◮ ES , e |= E≤ϕ if there exists f such that e ≤ f and ES , f |= ϕ

◮ ES , e |= A#ϕ if at every f such that e#f , ES , f |= ϕ

◮ ES , e |= E#ϕ if there exists f such that e#f and ES , f |= ϕ

◮ ES , e |= Acoϕ if at every f such that e co f , ES , f |= ϕ

◮ ES , e |= Ecoϕ if there exists f such that e co f and ES , f |= ϕ

⋖ and #µ

The immediate successor relation ⋖ generates ≤

e ⋖ f if e ≤ f and for all g , e ≤ g ≤ f ⇒ e = g or g = f

Corresponding modality

◮ ES , e |= A⋖ϕ if at every f such that e ⋖ f , ES , f |= ϕ

◮ ES , e |= E⋖ϕ if there exists f such that e ⋖ f and ES , f |= ϕ

Minimal conflict relation #µ generates # via ≤

e#µf if e#f and for all e′ ⋖ e, f ′ ⋖ f , it is not the case

that e#f ′ or e′#f

Corresponding modality

◮ ES , e |= A#µ
ϕ if at every f such that e#µf , ES , f |= ϕ

◮ ES , e |= E#µ
ϕ if there exists f such that e#µf and ES , f |= ϕ

The model-checking problem

◮ Start with a finite-state representation of the system, M

◮ Petri net
◮ Product of automata
◮ . . .

◮ Atomic propositions AP describing properties of (local) states

◮ Valuation assigns a subset of AP to each (local) state

◮ In ESM , event structure of M, each configuration ↓e
corresponds to a unique (global) state of M

◮ Formulas for system properties built from AP, boolean
operations, event structure modalities

◮ A≤(b ⇒ E#a)

◮ A⋖((b ⇒ E#µ
a) ∧ (a ⇒ E#µ

b))

◮ Does ESM , e |= ϕ?

The model-checking problem

Apparently only two papers addressing this topic.

◮ Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997

◮ Model-Checking Trace Event Structures
P Madhusudan
LICS 2003

The model-checking problem

Apparently only two papers addressing this topic.

◮ Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997
Today

◮ Model-Checking Trace Event Structures
P Madhusudan
LICS 2003
Tomorrow

Running example

1

3

5

2

4

6

7

8 9

10 11

• • •

a g

b

c

h d

e

f

Trace semantics

Event structure semantics

Penczek’s result

◮ Restrict the modalities

◮ Only A≤/E≤, A⋖/E⋖, A#mu/E#µ

◮ No Aco/Eco

◮ Though # is generated by #µ and ≤, cannot fully express
A#/E#

◮ # = ≤−1 ◦ #µ ◦ ≤

◮ No past modality to capture ≤−1

Quotienting the trace system

First attempt

◮ Two traces are equivalent if they reach the same global state

◮ This is not sufficient,

◮ [], [agbc] and [hdef] all lead to (1, 2, 7)

◮ Causal futures are different

Refine further

◮ Two traces are equivalent if they reach the same global state
and the maximal actions in the traces are the same

Quotienting the trace system . . .

◮ Recall that events are prime traces

◮ Let e, f be two events

◮ Would like the following property

◮ If [e] = [f], then ESM , e |= ϕ iff ESM , f |= ϕ

◮ This does not hold in general

Another example

1

5

2

4

8

3

6 7

• •

•

a

b c

d

Quotienting the trace system . . .

◮ Recall that events are prime traces

◮ Let e, f be two events

◮ Would like the following property

◮ If [e] = [f], then ESM , e |= ϕ iff ESM , f |= ϕ

◮ This does not hold in general

◮ In this example, [bd] and [cd] are prime traces reaching same
global state (1, 7, 8) with same maximal event d

◮ [a] and [ba] are prime traces that reach different global states

◮ [bd]#µ[ba] and [cd]#µ[a], so [bd] and [cd] don’t satisfy the
same E#µ

formulas.

Free-choice property

◮ Restrict systems to have the free-choice property

◮ Intuitively, choices available to one component cannot change
due to actions of another component

◮ Second example is not free-choice — if third process executes
c , second process loses option of performing b (and vice versa)

Formally

◮ If s
a
−→ s ′ involves components Pa and t

b
−→ t ′ involves

components Pb then

◮ Either Pa ∩ Pb = ∅, or,

◮ If s[j] = t[j] for some process j , then Pa = Pb and for all
j ∈ Pa = Pb, s[j] = t[j].

Free-choice property . . .

◮ Free-choice ensure that if e#µf ′ then

◮ There is a common prefix t such that e = ta, f = tb
◮ Actions a and b involve exactly the same set of components

Recall our definition of a quotiented trace system

t ≡ t ′ if t and t ′ reach the same global state and have

the same set of maximal actions

Our desired property

◮ If e ≡ f , then ESM , e |= ϕ iff ESM , f |= ϕ

can be proved by structural induction on ϕ from the following

◮ If e ≡ f and e ⋖ e′, there exists f ′ such that f ⋖ f ′ and
e′ ≡ f ′

◮ If e ≡ f and e#µe′, there exists f ′ such that f #µf ′ and
e′ ≡ f ′

The model-checking algorithm

Naive

◮ Compute the quotiented trace system for the given model

◮ This is a finite object

◮ Identify prime traces as events and constructed corresponding
“quotiented” event structure

◮ Decompose formulas and use CTL-style bottom-up labelling
to identify the formulas true at each event

More efficient

◮ Use partial order techniques to construct a representative
subset of the quotiented trace system

◮ Translate event structure logic to CTL and direcly use CTL
model checking on the quotiented trace system

◮ Use a special proposition to mark prime traces

Beyond Penczek’s result

◮ Can we extend the algorithm to full logic involving Aco/Eco

and A#/E#?

◮ Can the free-choice restriction be relaxed?

