Model-Checking Event Structures

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/"madhavan

Formal Methods Update Meeting
IIT Roorkee
13 July 2009

Logics and verification

Temporal logic

» Used to describe properties to be verified

» Comes in two basic flavours

Logics and verification

Temporal logic

» Used to describe properties to be verified

» Comes in two basic flavours
Linear-time temporal logic

> Intepret separately over each possible run of the system

» To satisfy a property, every run must satisfy it

Logics and verification

Temporal logic

» Used to describe properties to be verified

» Comes in two basic flavours
Linear-time temporal logic

> Intepret separately over each possible run of the system

» To satisfy a property, every run must satisfy it
Branching-time temporal logic

» Collect all runs of the system in a single structure, the

» Interpret formulas over computation tree

» Can quantify over runs, compare runs, ...

The Computation Tree

» We will work finite-state systems
» Start at an initial state and explore all executions

» Unfold the system into a tree

The Computation Tree

» We will work finite-state systems
» Start at an initial state and explore all executions

» Unfold the system into a tree

The Computation Tree

» We will work finite-state systems
» Start at an initial state and explore all executions

» Unfold the system into a tree

(s3,aaac)

Concurrent systems

» Suppose the system is a collection of interacting components
» During a run, some actions can be independent of each other

» Different sequences of actions may represent the same run

Concurrent systems

» Suppose the system is a collection of interacting components
» During a run, some actions can be independent of each other

» Different sequences of actions may represent the same run

Concurrent systems

» Suppose the system is a collection of interacting components
» During a run, some actions can be independent of each other

» Different sequences of actions may represent the same run

€1€2€3€465
€162€4€365
€1€46E0€365
€1€162€365

Runs as partial orders

» Convenient to view each execution as a labelled partial order

» Actions can be related in two ways

>

An occurrence of b causally depends on an occurrence of a if a
must happen before b happens

An occurrence of b is independent of an occurrence of a if
they can occur in any order

€] ——) » €3

N

-

€5

€4

Runs as partial orders

» In many interesting cases, the runs of concurrent systems can
be described as traces [Mazurkiewicz]

» Actions are enriched with specifying
which pairs are independent

» Symmetric, irreflexive
» Typically derived from structure of underlying system

> Actions performed by disjoint sets of components

» In a linearization, adjacent independent actions can be
swapped to yield an equivalent linearization

€1 € €s
€1 €3 €5
€2 €3 €5

€4 €1 € €3 €5

Temporal logics for concurrent systems

» Temporal logic interpreted on linearizations of runs makes too
many distinctions
» A property such as e is immediately followed by e, is true in
some linearizations and not in others
» Modify temporal logic to express causality and concurrency
» What about linear-time vs branching-time?

» How do we represent the computation tree of a concurrent
system?

Computation tree of a concurrent system

» In sequential systems, computation tree glues together all runs
in a single branching structure

» In concurrent systems, each run is a labelled partial order (a
trace)

> Need to glue together traces to form a tree

Event structures

» Each action occurs in a context — what has happened earlier
» Each different occurrence of an action is an

» In a single trace, events are related by or

» Across traces, events are related by

» Choosing between two mutually incompatible events generates
different runs

Event Structures . ..

Formally, an event structure is of the form ES = (E, <, #)

> £ is the set of events

v

< is the causality relation (a partial order)

v

is a binary conflict relation

> lIrreflexive, symmetric

v

Conflict is inherited via causality
» e#f and f < " implies e#f’

» Two events are concurrent if they are not related by < or #
—ecof

Event Structures . ..

Event Structures . ..

> A of an event structure is a set X C E such that

» X is |-closed
» X is conflict free

» A configuration represents a set of events that have happened
so far — a global state of the system

From traces to event structures

» Can extract an event structure from the set of traces

From traces to event structures

» Can extract an event structure from the set of traces

» + < t' if t' extends t with more events

» For instance, [e1exe3] < [e1e4e063]

From traces to event structures

» Can extract an event structure from the set of traces

» + < t’ if t/ extends t with more events

» For instance, [e1exe3] < [e1e4e063]

» t and t' are compatible if there is t” such that + < " and
t < ¢

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

From traces to event structures

Can extract an event structure from the set of traces

v

» + < t’ if t/ extends t with more events

» For instance, [e1exe3] < [e1e4e063]

» t and t' are compatible if there is t” such that + < " and
t < ¢

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

v

t#t"if t and t’ are compatible

From traces to event structures

Can extract an event structure from the set of traces

v

» + < t' if t' extends t with more events
» For instance, [e1exe3] < [e1e4e063]
» t and t' are compatible if there is t” such that + < " and
t/ S t//

» For instance, [e1exe3] and [es] are compatible because both are
dominated by [e;erese4]

v

t#t"if t and t’ are compatible

v

Identify with

: Only one maximal element
» “Earliest” occurrence of an action

Temporal logics for event structures

» Interpret formulas at events of an event structure

» Event e denotes the minimal configuration | e where it occurs

» |e can be thought of as the local state of the components
involved in e

» Modalities to express causality, conflict, concurrency

>

>

ES,
ES,

ES,
ES,

ES,
ES,

el=Acpif atevery f such that e < f, ES,f |= ¢
e = E< if there exists f such that e < f and ES,f = ¢

e = Ay if at every f such that e#f, ES, f |= ¢
e = Exp if there exists f such that e#f and ES.f |= ¢

e = A if at every f such that e co f, ES, f = ¢
e = Eqop if there exists f such that e co f and ES. f |= ¢

< and #,

The immediate successor relation < generates <
e<fife<fandforallg,e<g<f=e=gorg="F
Corresponding modality
> £ES.e = A.pif at every f such that e < f, ES.f = ¢
» E£S.e = E.p if there exists f such that e < f and ES.f |= ¢

Minimal conflict relation #, generates 7 via <
e#,f if e#f and for all €' < e, f" < f, it is not the case
that e/ or ' #f
Corresponding modality
> £S5 e = Ay, pif at every f such that e, f, ES f = ¢
> £S,e = Ey o if there exists f such that e/, f and £S5, = ¢

The model-checking problem

» Start with a finite-state representation of the system, \/

» Petri net

» Product of automata
> ..

» Atomic propositions AP describing properties of (local) states

» Valuation assigns a subset of AP to each (local) state

» In ES;, event structure of M, each configuration |e
corresponds to a unique (global) state of M

» Formulas for system properties built from AP, boolean
operations, event structure modalities

> A<(b= Eya)
» Ac((b= Ex,a) N (a= Ey,b))

» Does ESy. e = p7?

The model-checking problem

Apparently only two papers addressing this topic.

» Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997

» Model-Checking Trace Event Structures
P Madhusudan
LICS 2003

The model-checking problem

Apparently only two papers addressing this topic.

» Model-Checking for a Subclass of Event Structures
W Penczek
TACAS 1997

» Model-Checking Trace Event Structures
P Madhusudan
LICS 2003

Running example

Trace semantics

[ad] (dg] [hd]

[agb] [agd] [hda] [hde]
‘//hbc] {agdb] [hdaeyhdef 1
[agbca] [agbceg] [agbchlagdbc] [hdaefThdefg] [hdefh] [hdefd]

[agbcag][agbcah][agbcad] [agbcdg) [agdbch] [hdaefg][hd aefh][hdaefg][}i?][h defdh)

N

[agbcagb] [agbcagd] [agdbcha] [agdbche] [hdefgab] [hdaefga](hdefdhd] [hdefdhe]

Event structure semantics

[agb]

\

bc] [hdef']

[agbca] [asbcg]-#m-[agbch] [hdefg] #m-[hdet‘h] [hdefd]

VRN VAR

[agbcugb] [agdbche] [hdefgab] [hdefdhe]

Penczek's result

» Restrict the modalities
> Only A</E<' A</E<' A#mU/E#//
» No Ao/Ec

» Though # is generated by 7, and <, cannot fully express
Ay/Ey
> #:Silo#/log

» No past modality to capture < !

Quotienting the trace system

First attempt

» Two traces are equivalent if they reach the same global state
» This is not sufficient,

» [], [agbc| and [hdef] all lead to (1.2,7)

» Causal futures are different

Refine further

» Two traces are equivalent if they reach the same global state
and the maximal actions in the traces are the same

Quotienting the trace system ...

» Recall that events are prime traces
> Let e, f be two events
» Would like the following property
> If [e] = [f], then ESp, e = @ iff ESy. f = ¢

» This does not hold in general

Another example

Quotienting the trace system ...

» Recall that events are prime traces
> Let e, 7 be two events
» Would like the following property
> If [e] = [f], then ESp, e = @ iff ESy. f = ¢
» This does not hold in general

> In this example, [bd] and [cd] are prime traces reaching same
global state (1,7, 8) with same maximal event d

» [a] and [ba] are prime traces that reach different global states

» [bd|#,[ba] and [cd]#,[a], so [bd] and [cd]| don't satisfy the
same £ formulas.

Free-choice property

» Restrict systems to have the free-choice property

» Intuitively, choices available to one component cannot change
due to actions of another component

» Second example is not free-choice — if third process executes
c, loses option of performing b (and vice versa)

Formally

a . b .
» If s — s’ involves components P, and t — t’ involves
components P, then

» Either P, N P, =0, or,

» If s[j] = t[/] for some process j, then P, = P} and for all
J € Pa= Py, s[j] = t[j].

Free-choice property . ..

» Free-choice ensure that if e, 1’ then

» There is a common prefix t such that e = ta, f = tb
» Actions a and b involve exactly the same set of components

Recall our definition of a quotiented trace system

t =t ift and t' reach the same global state and have
the same set of maximal actions

Our desired property
» If e =1f, then ESy, e = ¢ iff ESy, f = ¢
can be proved by structural induction on ¢ from the following

> If e = f and e < €/, there exists ' such that f < f’ and
e =f

> If e = f and e# €, there exists f such that 7# ,f" and
e =f

The model-checking algorithm

Naive
» Compute the quotiented trace system for the given model
» This is a finite object

» Identify prime traces as events and constructed corresponding
“quotiented” event structure

» Decompose formulas and use CTL-style bottom-up labelling
to identify the formulas true at each event
More efficient
» Use partial order techniques to construct a representative
subset of the quotiented trace system

» Translate event structure logic to CTL and direcly use CTL
model checking on the quotiented trace system

» Use a special proposition to mark prime traces

Beyond Penczek's result

» Can we extend the algorithm to full logic involving A.,/E.,
and A#T/E#?

» Can the free-choice restriction be relaxed?

