
Software Transactional Memory

Madhavan Mukund

Chennai Mathematical Institute

http://www.cmi.ac.in/˜madhavan

Formal Methods Update Meeting
TRDDC, Pune
19 July 2008

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

◮ With multicore architectures, concurrent programming will
become more ubiquitous

◮ Goal

◮ Design a new mechanism for reliable, modular concurrent
programming with shared data

The challenge of concurrent programming

◮ Concurrent programming is difficult

◮ Over the years, semaphores, monitors . . . to lock and unlock
shared data

◮ Thesis

◮ Lock based programming is difficult to design and maintain
◮ Lock based programs do not compose well

◮ With multicore architectures, concurrent programming will
become more ubiquitous

◮ Goal

◮ Design a new mechanism for reliable, modular concurrent
programming with shared data

◮ Software Transactional Memory!

The problem with locks

A bank account class

class Account {

Int balance;

synchronized void withdraw(int n) {

balance = balance - n;

}

synchronized void deposit(int n) {

withdraw(-n);

}

}

◮ Each object has a lock

◮ synchronized methods acquire and release locks

The problem with locks . . .

How do we transfer money from one account to another?

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

The problem with locks . . .

How do we transfer money from one account to another?

void transfer(Account from,

Account to, Int amount) {

from.withdraw(amount);

to.deposit(amount);

}

Is there a problem?

◮ Intermediate state when money has left from and not been
deposited in to should not be visible!

◮ Having withdraw and deposit synchronized does not help

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

The problem with locks . . .

To fix this, we can add more locks

void transfer(Account from,

Account to, Int amount) {

from.lock(); to.lock();

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

◮ Two concurrent transfers in opposite directions between
accounts i and j can deadlock!

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

The problem with locks . . .

Order the locks

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

Is there a problem?

◮ Need to know all possible locks in advance

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if from is a Super Savings Account in which most of
the money is in a medium term fixed deposit fromFD?

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if from is a Super Savings Account in which most of
the money is in a medium term fixed deposit fromFD?

◮ from.withdraw(amt) may require an additional transfer
from fromFD to from

◮ transfer may not know anything about fromFD
◮ Even if it did, it has to acquire a third lock

The problem with locks . . .

void transfer(Account from,

Account to, Int amount) {

if (from < to)

then {from.lock(); to.lock(); }

else {to.lock(); from.lock(); }

from.withdraw(amount);

to.deposit(amount);

from.unlock(); to.unlock();

}

◮ What if transfer can block in case of insufficient funds?

◮ Wait on a condition variable (monitor queue)
◮ Becomes more complex as number of locks increase

The problem with locks . . .

◮ Take too few locks — data integrity is compromised

◮ Take too many locks — deadlocks, lack of concurrency

◮ Take wrong locks, or in wrong order — connection between
lock and data it protects is informal

◮ Error recovery — how to recover from errors without leaving
system in an inconsistent state?

◮ Lost wake-ups, erroneous retries — Easy to forget to signal a
waiting thread, recheck condition after wake-up

The problem with locks . . .

◮ Take too few locks — data integrity is compromised

◮ Take too many locks — deadlocks, lack of concurrency

◮ Take wrong locks, or in wrong order — connection between
lock and data it protects is informal

◮ Error recovery — how to recover from errors without leaving
system in an inconsistent state?

◮ Lost wake-ups, erroneous retries — Easy to forget to signal a
waiting thread, recheck condition after wake-up

Lack of modularity

Cannot easily make use of smaller programs to build larger ones

◮ Combining withdraw and deposit to create transfer

requires exposing locks

Transactions

◮ Import idea of transactions from databases

◮ Hardware support for transactions in memory
[Herlihy,Moss 1993]

◮ Instead, move transaction support to run time software

◮ Software Transactional Memory [Shavit,Touitou 1995]

◮ An implementation in Haskell
[Harris, Marlow, Peyton Jones, Herlihy 2005]

◮ Tutorial presentation
Simon Peyton Jones: Beautiful concurrency,
in Beautiful code, ed. Greg Wilson, OReilly (2007)

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

◮ Maintain a transaction log for each transaction, noting down
values that were written and read

◮ If a value is written in a transaction and read later, look it up
in the log

◮ At the end of the transaction, use log to check consistency

Transactions . . .

◮ A transaction is an indivisible unit

◮ Execute a transaction as though it was running sequentially

◮ Check at the end of the transaction if any shared variables
touched by the transaction have changed (due to external
updates)

◮ Maintain a transaction log for each transaction, noting down
values that were written and read

◮ If a value is written in a transaction and read later, look it up
in the log

◮ At the end of the transaction, use log to check consistency

◮ If no inconsistency was seen, commit the transaction

◮ Otherwise, roll back and retry

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Transactions . . .

Use atomic to indicate scope of transactions

void withdraw(int n) {

atomic{ balance = balance - n; }

}

void deposit(int n) {

atomic{ withdraw(-n); }

}

Now, building a correct version of transfer is not difficult

void transfer(Account from, Account to, Int amount) {

atomic { from.withdraw(amount);

to.deposit(amount); }

}

Transaction interference

Independent transactions updating the same object

atomic{ // Transaction 1

if a.getName().equals("B")

s.setVal(8);

}

atomic{ // Transaction 2

int previous = a.getVal();

a.setVal(previous+1);

}

Transaction interference

Independent transactions updating the same object

atomic{ // Transaction 1

if a.getName().equals("B")

s.setVal(8);

}

atomic{ // Transaction 2

int previous = a.getVal();

a.setVal(previous+1);

}

◮ If Transaction 1 executes between first and second instruction
of Transation 2, transaction log shows that value of previous
is inconsistent

◮ Transaction 2 should roll back and reexecute

Transactions . . .

What else do we need?

Transactions . . .

What else do we need?

◮ Blocking
◮ If amount to be withdrawn is more than current balance, wait

void transfer(Account from, Account to, Int amount) {

atomic {

if (amount < from.balance) retry;

from.withdraw (amount);

to.deposit(amount);

}

}

Transactions . . .

What else do we need?

◮ Blocking
◮ If amount to be withdrawn is more than current balance, wait

void transfer(Account from, Account to, Int amount) {

atomic {

if (amount < from.balance) retry;

from.withdraw (amount);

to.deposit(amount);

}

}

◮ retry suspends transaction without any partial, inconsistent
side-effects

◮ Transaction log indicates possible variables that forced retry

◮ Wait till one of these variables changes before attempting to
rerun transaction from scratch

Transactions . . .

What else do we need?

Transactions . . .

What else do we need?

◮ Nested atomic allows sequential composition

◮ How about choosing between transactions with alternatives

◮ If amount to be withdrawn is more than current balance, move
money from linked fixed deposit

Transactions . . .

What else do we need?

◮ Nested atomic allows sequential composition

◮ How about choosing between transactions with alternatives

◮ If amount to be withdrawn is more than current balance, move
money from linked fixed deposit

void transfer(Account from, Account to, Int amount) {

atomic {

atomic{ from.withdraw (amount); }

orElse

atomic{ LinkedFD[from].withdraw (amount); }

to.deposit(amount);

}

}

What could go wrong?

void b(Account from, Account to, Int amount) {

atomic {

x = a.getVal();

y = b.getVal();

if (x > y){ launchMissiles(); }

...

}

}

What could go wrong?

void b(Account from, Account to, Int amount) {

atomic {

x = a.getVal();

y = b.getVal();

if (x > y){ launchMissiles(); }

...

}

}

◮ If an inconsistency is found later, the transaction should roll
back and retry

◮ How do we recall the missiles that have been launched?

◮ Need a strong type system to ensure that transactions affect
only transactional memory

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

◮ Reasonable to expect that value in a is pushed back into q1.

Dealing with exceptions

atomic{

a = q1.extract();

q2.insert(a);

}

◮ Suppose q2.insert(a) fails because q2 is full

◮ Reasonable to expect that value in a is pushed back into q1.

How about

try { atomic{

a = q1.extract(); q2.insert(a);

}

catch (QueueFullException e) { a = q3.extract() } ;

◮ What is the state of q1?

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

◮ Need to restrict what transactions can encompass —
LaunchMissiles()

STM summary

◮ Mechanism for delimiting transactions (atomic)

◮ Programmer writes “sequential” code
◮ Implementation determines granularity of concurrency — e.g.

using transaction logs

◮ Transactions can be sequentially composed — nesting of
transactions

◮ Transactions can block — retry

◮ Choice between transactions – orElse

◮ Need to restrict what transactions can encompass —
LaunchMissiles()

◮ Exceptions and transactions interact in a complex manner

STMs in Haskell

◮ Haskell clearly separates functions (pure, no side effects) from
actions (with side effects)

STMs in Haskell

◮ Haskell clearly separates functions (pure, no side effects) from
actions (with side effects)

◮ Consider the difference between
(f x) - (g x)

and
(read x) - (read x)

STMs in Haskell

◮ Haskell clearly separates functions (pure, no side effects) from
actions (with side effects)

◮ Consider the difference between
(f x) - (g x)

and
(read x) - (read x)

◮ IO actions can be combined in an imperative style

incRef var = do { val <- readIORef var

; writeIORef var (val+1) }

STMs in Haskell

◮ Haskell clearly separates functions (pure, no side effects) from
actions (with side effects)

◮ Consider the difference between
(f x) - (g x)

and
(read x) - (read x)

◮ IO actions can be combined in an imperative style

incRef var = do { val <- readIORef var

; writeIORef var (val+1) }

◮ STM implementation adds STM actions

withdraw acc amount =

do { bal <- readTVar acc

; writeTVar acc (bal - amount) }

deposit acc amount = withdraw acc (- amount)

STMs in Haskell . . .

◮ Can combine STM actions into transactions

transfer from to amount

= atomically (do { deposit to amount

; withdraw from amount })

STMs in Haskell . . .

◮ Can combine STM actions into transactions

transfer from to amount

= atomically (do { deposit to amount

; withdraw from amount })

◮ Cannot mix IO actions and STM actions

bad acc n = do { putStr "Withdrawing..." -- IO

; withdraw acc n } -- STM

STMs in Haskell . . .

◮ Can combine STM actions into transactions

transfer from to amount

= atomically (do { deposit to amount

; withdraw from amount })

◮ Cannot mix IO actions and STM actions

bad acc n = do { putStr "Withdrawing..." -- IO

; withdraw acc n } -- STM

◮ . . . but atomically promotes STM actions to IO actions

ok acc n = do { putStr "Withdrawing..."

; atomically (withdraw acc n) }

◮ Strong type restriction for transactions

STMs in Haskell . . .

◮ Blocking works as expected — retry

limitedWithdraw acc amount

= do { bal <- readTVar acc

; if amount > 0 && amount > bal

then retry

else writeTVar acc (bal - amount) }

STMs in Haskell . . .

◮ Blocking works as expected — retry

limitedWithdraw acc amount

= do { bal <- readTVar acc

; if amount > 0 && amount > bal

then retry

else writeTVar acc (bal - amount) }

◮ Choice is also implemented as expected — orElse

limitedWithdraw2 acc1 acc2 amt

= orElse (limitedWithdraw acc1 amt)

(limitedWithdraw acc2 amt)

◮ Withdraws amt from acc1, if acc1 has enough money,
otherwise from acc2.

◮ If neither has enough, it retries.

STMs in Haskell . . .

◮ Strong typing avoids some STM pitfalls

atomically (do { x <- readTVar xv

; y <- readTVar yv

; if x>y then launchMissiles

else return () })

STMs in Haskell . . .

◮ Strong typing avoids some STM pitfalls

atomically (do { x <- readTVar xv

; y <- readTVar yv

; if x>y then launchMissiles

else return () })

◮ Unless launchMissiles is an STM action, this sequence of
actions cannot be combined together

STMs in Haskell . . .

◮ Strong typing avoids some STM pitfalls

atomically (do { x <- readTVar xv

; y <- readTVar yv

; if x>y then launchMissiles

else return () })

◮ Unless launchMissiles is an STM action, this sequence of
actions cannot be combined together

◮ STM roll back has been integrated with Haskell’s built in
exception handling mechanism (catch)

A case study

The Santa Claus problem

Santa Claus sleeps at the North pole until awakened by either all of
the nine reindeer, or by a group of three out of ten elves. He
performs one of two indivisible actions:

◮ If awakened by the group of reindeer, Santa harnesses them to
a sleigh, delivers toys, and finally unharnesses the reindeer
who then go on vacation.

◮ If awakened by a group of elves, Santa shows them into his
office, consults with them on toy R&D, and finally shows
them out so they can return to work constructing toys.

A waiting group of reindeer must be served by Santa before a
waiting group of elves. Since Santas time is extremely valuable,
marshalling the reindeer or elves into a group must not be done by
Santa.

The Santa Claus problem

◮ Formulated by John Trono [Trono, SIGCSE Bulletin, 1994]
◮ (Incorrect) solution with ten semaphores and two global

variables
◮ Can be fixed with two more semaphores

◮ Solutions based on semaphores, monitors are prone to race
conditions

◮ Cannot be solved neatly using low level lock based primitives

[Ben-Ari, 1997]

Santa with STMs in Haskell

◮ Create datatypes Group and Gate

◮ Elves and reindeer try to assemble in respective Groups

Santa with STMs in Haskell

◮ Create datatypes Group and Gate

◮ Elves and reindeer try to assemble in respective Groups

◮ Group

◮ Has an in Gate and out Gate
◮ joinGroup atomically increments capacity if not full and

returns current in and out Gate to elf/reindeer
◮ awaitGroup checks if group is full, returns current in and out

Gate to Santa, creates fresh in and out Gate for next group to
assemble

◮ Gate

◮ Has a capacity and counts how many elves/reindeer can go
through before it closes

◮ passGate atomically decrements count
◮ operateGate initializes Gate count to full and waits for it to

become zero

Santa with STMs in Haskell . . .

◮ Elves and reindeer are in infinite loop

◮ joinGroup — returns in_gate, out_gate
◮ passGate in_gate
◮ Do appropriate business with Santa
◮ passGate out_gate

Santa with STMs in Haskell . . .

◮ Elves and reindeer are in infinite loop

◮ joinGroup — returns in_gate, out_gate
◮ passGate in_gate
◮ Do appropriate business with Santa
◮ passGate out_gate

◮ Santa does the following

◮ orElse (awaitGroup rein_gp) (awaitGroup elf_gp)
◮ awaitGroup returns in_gate, out_gate for that group
◮ operateGate in_gate
◮ operateGate out_gate

Santa with STMs in Haskell . . .

◮ Elves and reindeer are in infinite loop

◮ joinGroup — returns in_gate, out_gate
◮ passGate in_gate
◮ Do appropriate business with Santa
◮ passGate out_gate

◮ Santa does the following

◮ orElse (awaitGroup rein_gp) (awaitGroup elf_gp)
◮ awaitGroup returns in_gate, out_gate for that group
◮ operateGate in_gate
◮ operateGate out_gate

◮ Main program calls Santa in an infinite loop

Santa with STMs in Haskell . . .

◮ Elves and reindeer are in infinite loop

◮ joinGroup — returns in_gate, out_gate
◮ passGate in_gate
◮ Do appropriate business with Santa
◮ passGate out_gate

◮ Santa does the following

◮ orElse (awaitGroup rein_gp) (awaitGroup elf_gp)
◮ awaitGroup returns in_gate, out_gate for that group
◮ operateGate in_gate
◮ operateGate out_gate

◮ Main program calls Santa in an infinite loop

◮ About 100 lines of Haskell code

◮ Glasgow Haskell Compiler, ghc, has STM implementation
built in

Summary

◮ Programming concurrent systems is hard

◮ Multicore technology will make concurrent programming more
ubiquitous

◮ Existing lock based techniques do not scale up

◮ STMs provide a modular framework for coordinating shared
data

◮ Not a magic bullet, but moving up from low level locks to
more abstract concepts allow us to focus on coordination
issues at higher level

◮ Implementations in other languages (e.g., Java) are being
developed

