Applications of learning theory in verification

Madhavan Mukund

Chennai Mathematical Institute http://www.cmi.ac.in/~madhavan

Formal Methods Update 2007, IIT Kanpur 14 April 2007 (Adapted from material contributed by P Madhusudan)

Motivation

Abstraction is an important tool in verification

• Build a coarse model M from a system description S

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

- Every run of S is also a run of M
- If M satisfies a safety property, so does S

Motivation

- Abstraction is an important tool in verification
 - Build a coarse model M from a system description S
 - Every run of S is also a run of M
 - If M satisfies a safety property, so does S
- Can we use learning to discover the abstraction?
 - S may have a complicated description ...
 - but abstraction M may be "small"
 - Circumvent complexity of verifying S directly

Motivation

- Abstraction is an important tool in verification
 - ► Build a coarse model *M* from a system description *S*
 - Every run of S is also a run of M
 - If M satisfies a safety property, so does S
- Can we use learning to discover the abstraction?
 - S may have a complicated description ...
 - ... but abstraction M may be "small"
 - Circumvent complexity of verifying S directly
- Other problems in verification can also benefit from this approach

Outline

- Two verification problems
 - Compositional verification of P || Q
 - Deriving interface specification for a module

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Outline

- Two verification problems
 - ► Compositional verification of *P* || *Q*
 - Deriving interface specification for a module
- Learning regular languages
 - Active learner model [Angluin'86]
 - A tutorial introduction to the learning algorithm

Outline

- Two verification problems
 - ► Compositional verification of *P* || *Q*
 - Deriving interface specification for a module
- Learning regular languages
 - Active learner model [Angluin'86]
 - A tutorial introduction to the learning algorithm

▲日▼▲□▼▲□▼▲□▼ □ ののの

- How to apply learning for the two problems above
- Some pointers to other applications

Compositional verification

• Parallel composition $P \parallel Q$ of two modules

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Compositional verification

- ▶ Parallel composition $P \parallel Q$ of two modules
- ▶ Does $P \parallel Q$ satisfy a safety specification φ ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Compositional verification

- Parallel composition P || Q of two modules
- Does $P \parallel Q$ satisfy a safety specification φ ?
- Assume guarantee reasoning
 - Find *R* such that:
 - $\blacktriangleright P \parallel R \models \varphi$
 - Behaviours of Q are included in behaviours of R

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• R may be small compared to P and Q.

Compositional verification ...

Module P

State variables X

► output variables X^O ⊆ X, disjoint set of input variables X^I

Compositional verification ...

Module P

State variables X

► output variables X^O ⊆ X, disjoint set of input variables X^I

Assume we are working with boolean abstraction

Compositional verification ...

Module P

State variables X

► output variables X^O ⊆ X, disjoint set of input variables X^I

▲日▼▲□▼▲□▼▲□▼ □ ののの

- Assume we are working with boolean abstraction
- ► State : $s: (X \uplus X') \to \{0, 1\}$
 - Transition : $T \subseteq (S \setminus S') \times S' \times (S \setminus S')$
 - Behaviour : $s_1 s_2 \dots$

Visible Behaviour : $s_1^{I\cup O} s_2^{I\cup O} \dots$

Module composition

 $P \parallel Q$: Outputs of P are inputs to Q and vice versa

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

• $VisBeh(P \parallel Q) = VisBeh(P) \cap VisBeh(Q)$

Compositional verification of modules

Safety property φ : boolean formula over $X' \cup X^O$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• $s_1 s_2 \ldots \models \varphi$ if for each *i*, $s_i^{I \cup O} \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{I} \cup X^{O}$

• $s_1 s_2 \ldots \models \varphi$ if for each *i*, $s_i^{I \cup O} \models \varphi$

When does $P \parallel Q \models \varphi$?

▶ For each $\sigma \in VisBeh(P \parallel Q)$, $\sigma \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{I} \cup X^{O}$

• $s_1 s_2 \ldots \models \varphi$ if for each *i*, $s_i^{I \cup O} \models \varphi$

When does $P \parallel Q \models \varphi$?

▶ For each $\sigma \in VisBeh(P \parallel Q)$, $\sigma \models \varphi$

Assume guarantee reasoning

- Find R such that:
 - $\blacktriangleright P \parallel R \models \varphi$
 - $VisBeh(Q) \subseteq VisBeh(R)$

Learn a regular language R with small DFA?

• A class C with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction

• $V_R \subseteq V$ —output variables

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction
- $V_R \subseteq V$ —output variables
- A call to method *m* nondeterministically transforms *s* to *s'* and returns *s'_R*

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction
- V_R ⊆ V—output variables
- A call to method *m* nondeterministically transforms *s* to *s'* and returns *s'_R*

• A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$

- ► A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction
- V_R ⊆ V—output variables
- A call to method *m* nondeterministically transforms *s* to *s'* and returns *s'_R*
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction
- V_R ⊆ V—output variables
- A call to method *m* nondeterministically transforms *s* to *s'* and returns *s'_R*
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables

• A run is safe if for each i, $s_R^i \models \varphi$

- A class *C* with variables $V = \{v_1, v_2, ...\}$ and methods $M = \{m_1, m_2, ...\}$
- State of an object s : V → {0,1}—again we assume a boolean abstraction
- V_R ⊆ V—output variables
- A call to method *m* nondeterministically transforms *s* to *s'* and returns *s'_R*
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables
- A run is safe if for each i, $s_R^i \models \varphi$
- Want to restrict runs of the class to permit only safe runs

An interface is a function $I: (M \times V_R)^* \to 2^M$

After a run σ = (m₁, s¹_R), (m₂, s²_R), ..., I(σ) specifies which methods can be invoked

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

An interface is a function $I: (M \times V_R)^* \to 2^M$

After a run σ = (m₁, s¹_R), (m₂, s²_R), ..., I(σ) specifies which methods can be invoked

A run is consistent with an interface if,

► for every prefix $\rho = (m_1, s_R^1), (m_2, s_R^2), \dots, (m_k, s_R^k), m_{k+1} \in I(\rho)q$

An interface is a function $I: (M \times V_R)^* \to 2^M$

After a run σ = (m₁, s¹_R), (m₂, s²_R), ..., I(σ) specifies which methods can be invoked

A run is consistent with an interface if,

► for every prefix $\rho = (m_1, s_R^1), (m_2, s_R^2), \dots, (m_k, s_R^k), m_{k+1} \in I(\rho)q$

An interface / is good if all runs consistent with / satisfy φ

An interface is a function $I: (M \times V_R)^* \to 2^M$

After a run σ = (m₁, s¹_R), (m₂, s²_R), ..., I(σ) specifies which methods can be invoked

A run is consistent with an interface if,

► for every prefix $\rho = (m_1, s_R^1), (m_2, s_R^2), \dots, (m_k, s_R^k), m_{k+1} \in I(\rho)q$

An interface / is good if all runs consistent with / satisfy φ

I can be thought of as an automaton over $(M \times V_R)$

An interface is a function $I: (M \times V_R)^* \to 2^M$

After a run σ = (m₁, s¹_R), (m₂, s²_R), ..., I(σ) specifies which methods can be invoked

A run is consistent with an interface if,

► for every prefix $\rho = (m_1, s_R^1), (m_2, s_R^2), \dots, (m_k, s_R^k), m_{k+1} \in I(\rho)q$

An interface / is good if all runs consistent with / satisfy φ

I can be thought of as an automaton over $(M \times V_R)$

Can we learn a maximal interface?

Learning Regular Languages

Fix a finite alphabet Σ .

- There is a learner and a teacher
- Teacher knows a regular language T
- ► Objective of the learner: To learn T by constructing an automaton for T.

Learning Regular Languages

Fix a finite alphabet Σ .

- There is a learner and a teacher
- Teacher knows a regular language T
- ► Objective of the learner: To learn T by constructing an automaton for T.

Complexity will be measured on the complexity of the language: the minimum number of states needed to capture T.

Active learning [Angluin'86]

- Learner asks questions:
- Membership: Is $w \in T$?
 - Yes or No
- Equivalence question: Is T = L(C)?
 - Yes or No+counterexample
 - Counterexample is in $(T \setminus L(C)) \cup (L(C) \setminus T)$.

Active learning [Angluin'86]

- Learner asks questions:
- Membership: Is $w \in T$?
 - Yes or No
- Equivalence question: Is T = L(C)?
 - Yes or No+counterexample
 - Counterexample is in $(T \setminus L(C)) \cup (L(C) \setminus T)$.

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani) Regular languages can be learnt using at most $O(kn^2 + n \log m)$ membership and O(n) equivalence queries.

- ▶ n size of the minimal DFA accepting target language T
- m size of the largest counterexample
- k size of the alphabet.

Also, in time polynomial in $O(kn^2 + n \log m)$.

How do we learn T?

Key points

- How many states are there?
- How do we reach these states from the initial state?

How do we build the transitions correctly?

When are states different?

Simple observation:

Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$, then u and v must lead to different states.

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ
When are states different?

Simple observation:

Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$, then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

When are states different?

Simple observation:

Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$, then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable

If we find *n* strings s_1, \ldots, s_n , that are pairwise distinguishable, we know that automaton for T has (at least) *n* states.

Access strings

Access string to a state q

Some string that gets you from q_0 to q.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Hence ε is an access string for q_0 .

Access strings

Access string to a state q

Some string that gets you from q_0 to q.

Hence ε is an access string for q_0 .

If we have *n* access strings s_1, s_2, \ldots, s_n , that are pairwise distinguishable, then the states reached on these strings must *all* be different.

Access strings	<i>s</i> ₁	<i>s</i> ₂	 	s _k
Experiments	E_{s_1}	E_{s_2}	 	E_{s_k}

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

Access strings	<i>s</i> ₁	<i>s</i> ₂	 	s _k
Experiments	E_{s_1}	E_{s_2}	 	E_{s_k}

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

▶ Each E_{s_i} consists of a set of pairs of the form (u, +) or (u, -):

- $(u, +) \in E_{s_i}$ implies $s_i . u_i \in T$
- $(u, -) \in E_{s_i}$ implies $s_i . u_i \notin T$

Access strings	<i>s</i> ₁	<i>s</i> ₂	 	s _k
Experiments	E_{s_1}	E_{s_2}	 	E_{s_k}

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- ▶ Each E_{s_i} consists of a set of pairs of the form (u, +) or (u, -):
 - $(u, +) \in E_{s_i}$ implies $s_i . u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i . u_i \notin T$
- For any two access strings s_i and s_j, there is some experiment that distinguishes them.

i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.

Access strings	<i>s</i> ₁	<i>s</i> ₂	 	s _k
Experiments	E_{s_1}	E_{s_2}	 	E_{s_k}

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- Each E_{s_i} consists of a set of pairs of the form (u, +) or (u, -):
 - $(u, +) \in E_{s_i}$ implies $s_i . u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i . u_i \notin T$
- For any two access strings s_i and s_j, there is some experiment that distinguishes them.

i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.

▶ $\varepsilon \in S$, and $\varepsilon \in E_{s_i}$ for each *i*.

Access strings	<i>s</i> ₁	<i>s</i> ₂	 	s _k
Experiments	E_{s_1}	E_{s_2}	 	E_{s_k}

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- ▶ Each E_{s_i} consists of a set of pairs of the form (u, +) or (u, -):
 - $(u, +) \in E_{s_i}$ implies $s_i . u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i . u_i \notin T$
- For any two access strings s_i and s_j, there is some experiment that distinguishes them.

i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.

▶ $\varepsilon \in S$, and $\varepsilon \in E_{s_i}$ for each *i*.

Note: If an observation pack with *n* access strings exists, then minimal automaton for T has at least *n* states $r \in \mathbb{R}$ and $r \in \mathbb{R}$

Target language T: strings over $\{0,1\}$ where $\#1's = 2 \mod 3$

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

Target language T: strings over $\{0, 1\}$ where $\#1's = 2 \mod 3$

An observation pack:

Access strings	ε	010
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$
	(10, -)	(10,+)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Target language T: strings over $\{0, 1\}$ where $\#1's = 2 \mod 3$

An observation pack:

Access strings	ε	010
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$
	(10, -)	(10,+)

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

 $\varepsilon.\varepsilon \notin T$; 010. $\varepsilon \notin T$ $\varepsilon.10 \notin T$; 010.10 $\in T$

Likeness and escape

Let *O* be an observation pack.

A word w is like an access string s in O, if w agrees with s on all the experiments in E_s . i.e. $\forall u \in E_s, wu \in T$ iff $su \in T$.

Note: No two access strings are alike $\Rightarrow w$ can be like *at most one* access string in *O*, since

▲日▼▲□▼▲□▼▲□▼ □ ののの

If w is not like any access string, we say it escapes the pack.

1	1	<u>></u>
Access strings	ε	110
Experiments	(arepsilon,-) (10,-)	$egin{array}{c} (arepsilon,-) \ (10,+) \end{array}$

The word 001 is like 010 (since $001.\varepsilon \notin T$, $001.10 \in T$).

The word 001 is like 010 (since $001.\varepsilon \notin T$, $001.10 \in T$).

The word 11 is not like any access string in O (since $11.\varepsilon \in T$). So 11 *escapes*.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- ► For every access s string in O, there is some u in E_s that distinguishes w and s.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

• Add this string to E_w

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- ▶ For every access s string in O, there is some u in Es that distinguishes w and s.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

• Add this string to E_w

The new pack is a proper observation pack

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- ► For every access s string in O, there is some u in Es that distinguishes w and s.

▲日▼▲□▼▲□▼▲□▼ □ ののの

• Add this string to E_w

The new pack is a proper observation pack

... and has one more access string.

An observation pack *O* is said to be closed if

For every access string s in O and a ∈ Σ, s.a is like some access string in O.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

An observation pack O is said to be closed if

For every access string s in O and a ∈ Σ, s.a is like some access string in O.

- If O is closed, we can build an automaton from it:
 - States: The access strings in $O: \{s_1 \dots, s_k\}$

An observation pack O is said to be closed if

For every access string s in O and a ∈ Σ, s.a is like some access string in O.

- If O is closed, we can build an automaton from it:
 - ▶ States: The access strings in *O*: {*s*₁..., *s*_k}
 - From *s* on *a*, go to the state that is *like sa*.

An observation pack O is said to be closed if

For every access string s in O and a ∈ Σ, s.a is like some access string in O.

- If O is closed, we can build an automaton from it:
 - States: The access strings in $O: \{s_1, \ldots, s_k\}$
 - From *s* on *a*, go to the state that is *like sa*.
 - Mark a state *s* final iff $(\varepsilon, +) \in E_s$.

Theorem

If the observation pack O has as many states as M_T , then the automaton constructed is isomorphic to M_T .

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Theorem

If the observation pack O has as many states as M_T , then the automaton constructed is isomorphic to M_T .

▲日▼▲□▼▲□▼▲□▼ □ ののの

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_T .
- On any letter, we move to the right state.
- Final states are marked correctly.

Theorem

If the observation pack O has as many states as M_T , then the automaton constructed is isomorphic to M_T .

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_T .
- On any letter, we move to the right state.
- Final states are marked correctly.

So, the whole problem reduces to finding an observation pack with *n* access strings!!

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● ● ●

Let *O* be an observation pack.

Let *O* be an observation pack.

Phase I: If *O* is *not* closed, expand pack using some new access string *s.a*.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Let *O* be an observation pack.

Phase I: If *O* is *not* closed, expand pack using some new access string *s.a*.

Phase II: If *O* is closed but has less access strings than $|M_T|$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

Let *O* be an observation pack.

Phase I: If *O* is *not* closed, expand pack using some new access string *s.a*.

Phase II: If O is closed but has less access strings than $|M_T|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?

Let *O* be an observation pack.

Phase I: If *O* is *not* closed, expand pack using some new access string *s.a*.

Phase II: If O is closed but has less access strings than $|M_T|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?

Equivalence query:

- Build conjecture automaton C.
- Ask teacher "L(C) = T?"
- Use counterexample given by teacher to generate new access string.

Target language T:

◆ロ > ◆母 > ◆臣 > ◆臣 > ○日 ○ ○ ○ ○

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Check closure: 0 is like ε (since $0 \notin T$). 1 is like ε (since $1 \notin T$).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Check closure: 0 is like ε (since $0 \notin T$). 1 is like ε (since $1 \notin T$).

Counter-example: $101 \in T \setminus L(C)$

Run of 101 on C: $s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Counter-example: $101 \in T \setminus L(C)$

- $\blacktriangleright s_0 = \varepsilon$
- ▶ *s*₀.101 ∈ *T*

Counter-example: $101 \in T \setminus L(C)$

- ► s₀ = ε
- ▶ *s*₀.101 ∈ *T*
- ► $s_0.01 \notin T$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Counter-example: $101 \in T \setminus L(C)$

- ► s₀ = ε
- ► $s_0.101 \in T$
- ► $s_0.01 \notin T$.
- So we cannot go on 1 to s₀! (since 01 distinguishes 1 and s₀)

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Counter-example: $101 \in T \setminus L(C)$

- ► s₀ = ε
- ► $s_0.101 \in T$
- ► $s_0.01 \notin T$.
- So we cannot go on 1 to s₀! (since 01 distinguishes 1 and s₀)
- ▶ So let's add 01 as experiment string for s₀.

Т

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Т

Access strings	$s_0 = \varepsilon$	$s_1 = 1$
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$
	(01, -)	(01,+)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Т

Image: 1Image: 1Image: 0Image: 1Image: 0Image: 1Image: 0Image: 1Image: 0Image: 1Image: 1

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

Check closure: 10 is like 1 (since $10 \notin T$ and $10.01 \in T$)

Т

 $\frac{1}{0}$ $\frac{1}$

Check closure: 10 is like 1 (since $10 \notin T$ and $10.01 \in T$)

But 11 is neither like ε nor like 1 (since $11 \in T$).

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

Т

Access strings $s_0 = \varepsilon$ $s_1 = 1$ Experiments $(\varepsilon, -)$ $(\varepsilon, -)$ (01, -)(01, +)

Check closure: 10 is like 1 (since $10 \notin T$ and $10.01 \in T$)

But 11 is neither like ε nor like 1 (since $11 \in T$).

So 11 escapes and forms a new access string.

Т

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Т

Access strings	$s_0 = \varepsilon$	$s_1 = 1$	$s_2 = 11$
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$	$(\varepsilon, +)$
	(01, -)	(01, +)	

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Т

Access strings	$s_0 = \varepsilon$	$s_1 = 1$	$s_2 = 11$
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$	$(\varepsilon, +)$
	(01, -)	(01,+)	

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Check closure: 0 is like s_0 ; 10 is like 1; 110 is like 11; 111 is like 0.

Т

Access strings	$s_0 = \varepsilon$	$s_1 = 1$	$s_2 = 11$
Experiments	$(\varepsilon, -)$	$(\varepsilon, -)$	$(\varepsilon, +)$
	(01, -)	(01, +)	

Check closure: 0 is like s_0 ; 10 is like 1; 110 is like 11; 111 is like 0.

ヘロン 人間 と 人 ヨン 人 ヨン

э

References

Angluin

Learning regular sets from queries and counterexamples Inf. and Comp. '87

- Rivest, Schapire Inference of finite automata using homing sequences Inf. and Comp. '95
- Kearns, Vazirani Introduction to Computational Learning Theory MIT Press
- Balcázar, Díaz, Gavalda, Watanabe Algorithms for Learning Finite Automata from queries: A Unified View Tech report, http://citeseer.ist.psu.edu/67130.html

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = つへで

Safety property φ : boolean formula over $X^{l} \cup X^{O}$ $\blacktriangleright s_{1}s_{2} \dots \models \varphi$ if for each *i*, $s_{i}^{l \cup O} \models \varphi$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Safety property φ : boolean formula over $X^{l} \cup X^{O}$ $\blacktriangleright s_{1}s_{2} \dots \models \varphi$ if for each *i*, $s_{i}^{l \cup O} \models \varphi$

When does $P \parallel Q \models \varphi$?

▶ For each $\sigma \in VisBeh(P \parallel Q)$, $\sigma \models \varphi$

Safety property φ : boolean formula over $X^{l} \cup X^{O}$ $\triangleright s_{1}s_{2} \dots \models \varphi$ if for each *i*, $s_{i}^{l \cup O} \models \varphi$

When does $P \parallel Q \models \varphi$?

▶ For each $\sigma \in VisBeh(P \parallel Q)$, $\sigma \models \varphi$

Assume guarantee reasoning

- Find R such that:
 - $\blacktriangleright P \parallel R \models \varphi$
 - $VisBeh(Q) \subseteq VisBeh(R)$

Learn a regular language R with small DFA?

Most permissive R

 $L_{\max} = \{ \sigma \mid \sigma \in VisBeh(P) \Rightarrow \sigma \models \varphi \}$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

Most permissive *R* $L_{\max} = \{ \sigma \mid \sigma \in VisBeh(P) \Rightarrow \sigma \models \varphi \}$

Lower bound for R

 $L_{\min} = VisBeh(Q)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

Most permissive R

 $L_{\max} = \{ \sigma \mid \sigma \in \textit{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$

Lower bound for R

 $L_{\min} = VisBeh(Q)$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Note that both L_{max} and L_{min} are regular

Most permissive R

 $L_{\max} = \{ \sigma \mid \sigma \in \textit{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$

Lower bound for R

 $L_{\min} = VisBeh(Q)$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Note that both L_{max} and L_{min} are regular

Want to learn *R*, $L_{\min} \subseteq R \subseteq L_{\max}$

Most permissive R

 $L_{\max} = \{ \sigma \mid \sigma \in \textit{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$

Lower bound for R

 $L_{\min} = VisBeh(Q)$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Note that both L_{max} and L_{min} are regular

Want to learn R, $L_{\min} \subseteq R \subseteq L_{\max}$

Target language is unknown!

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ のへで

Recall that $L_{\min} \subseteq R \subseteq L_{\max}$

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Recall that $L_{\min} \subseteq R \subseteq L_{\max}$

Equivalence query, L(C) = R?

- Subset query $L(C) \subseteq L_{\max}$?
- Superset query $L(C) \supseteq L_{\min}$?

Recall that $L_{\min} \subseteq R \subseteq L_{\max}$

Equivalence query, L(C) = R?

- Subset query $L(C) \subseteq L_{\max}$?
- Superset query $L(C) \supseteq L_{\min}$?

Membership query, $w \in R$?

- ▶ If $w \notin L_{max}$, answer No.
- If $w \in L_{\min}$, answer Yes.
- If $w \in L_{\max} \setminus L_{\min}$, ambiguous!
 - ▶ Heuristic: Answer Yes (i.e., answer with respect to L_{max})
 - May result in larger R than required

Recall that $L_{\min} \subseteq R \subseteq L_{\max}$

Equivalence query, L(C) = R?

- Subset query $L(C) \subseteq L_{\max}$?
- Superset query $L(C) \supseteq L_{\min}$?

Membership query, $w \in R$?

- ▶ If $w \notin L_{max}$, answer No.
- If $w \in L_{\min}$, answer Yes.
- If $w \in L_{\max} \setminus L_{\min}$, ambiguous!
 - Heuristic: Answer Yes (i.e., answer with respect to L_{max})
 - May result in larger R than required

Practical note: Use BDDs to deal with large alphabet $X^{I} \cup X^{O}$

A class with variables V and methods M. Each method call returns values over V_R ⊆ V

A class with variables V and methods M. Each method call returns values over V_R ⊆ V

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ ● の < @

• A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$

- A class with variables V and methods M. Each method call returns values over V_R ⊆ V
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables

- A class with variables V and methods M. Each method call returns values over V_R ⊆ V
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

- A class with variables V and methods M. Each method call returns values over V_R ⊆ V
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

• An interface is a function $I: (M \times V_R)^* \to 2^M$

- A class with variables V and methods M. Each method call returns values over V_R ⊆ V
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
- An interface is a function $I: (M \times V_R)^* \to 2^M$
- An interface / is good if all runs consistent with / satisfy φ

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 ● のへで

- Given the history, I chooses a method m to execute
- ► Given the method *m*, *C* fixes the return state after *m* executes

Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

- ▶ Given the history, / chooses a method *m* to execute
- ▶ Given the method *m*, *C* fixes the return state after *m* executes

Observe that L(I) is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $Prefixes(w) \subseteq L(I)$.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

- ▶ Given the history, / chooses a method *m* to execute
- Given the method m, C fixes the return state after m executes

Observe that L(I) is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $Prefixes(w) \subseteq L(I)$.

A D M 4 目 M 4 E M 4 E M 4 E M 4 C M

Checking L(C) = L(I) is broken up into subset and superset queries, as before
Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

- ▶ Given the history, / chooses a method *m* to execute
- Given the method m, C fixes the return state after m executes

Observe that L(I) is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $Prefixes(w) \subseteq L(I)$.

Checking L(C) = L(I) is broken up into subset and superset queries, as before

 $L(C) \subseteq L(I)$: Build $C \parallel I$ and ask the CTL question $AG\varphi$

Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

- ▶ Given the history, / chooses a method *m* to execute
- Given the method m, C fixes the return state after m executes

Observe that L(I) is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $Prefixes(w) \subseteq L(I)$.

Checking L(C) = L(I) is broken up into subset and superset queries, as before

 $L(C) \subseteq L(I)$: Build $C \parallel I$ and ask the CTL question $AG\varphi$

 $L(C) \supseteq L(I)$: More difficult, will not go into detail here.