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◮ Abstraction is an important tool in verification

◮ Build a coarse model M from a system description S
◮ Every run of S is also a run of M
◮ If M satisfies a safety property, so does S

◮ Can we use learning to discover the abstraction?

◮ S may have a complicated description . . .
◮ . . . but abstraction M may be “small”
◮ Circumvent complexity of verifying S directly

◮ Other problems in verification can also benefit from this
approach
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Outline

◮ Two verification problems

◮ Compositional verification of P ‖ Q
◮ Deriving interface specification for a module

◮ Learning regular languages

◮ Active learner model [Angluin’86]
◮ A tutorial introduction to the learning algorithm

◮ How to apply learning for the two problems above

◮ Some pointers to other applications
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Compositional verification

◮ Parallel composition P ‖ Q of two modules

◮ Does P ‖ Q satisfy a safety specification ϕ?

◮ Assume guarantee reasoning

◮ Find R such that:

◮ P ‖ R |= ϕ

◮ Behaviours of Q are included in behaviours of R

◮ R may be small compared to P and Q.
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Module P

◮

State variables X

output variables XO ⊆ X ,
disjoint set of input variables X I

X

XO

X I

◮ Assume we are working with boolean abstraction

◮ State : s : (X ⊎ X I ) → {0, 1}

Transition : T ⊆ (S \ S I ) × S I × (S \ S I )

Behaviour : s1s2 . . .

Visible Behaviour : s I∪O
1 s I∪O

2 . . .



Module composition

P ‖ Q : Outputs of P are inputs to Q and vice versa

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

◮ VisBeh(P ‖ Q) = VisBeh(P) ∩ VisBeh(Q)
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Compositional verification of modules

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Assume guarantee reasoning

◮ Find R such that:

◮ P ‖ R |= ϕ

◮ VisBeh(Q) ⊆ VisBeh(R)

◮ Learn a regular language R with small DFA?



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ A run is safe if for each i, s i
R |= ϕ



Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ A run is safe if for each i, s i
R |= ϕ

◮ Want to restrict runs of the class to permit only safe runs
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Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

A run is consistent with an interface if,

◮ for every prefix ρ = (m1, s
1
R), (m2, s

2
R), . . . , (mk , sk

R),
mk+1 ∈ I (ρ)q

An interface I is good if all runs consistent with I satisfy ϕ

I can be thought of as an automaton over (M × VR)

Can we learn a maximal interface?
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Learning Regular Languages

Fix a finite alphabet Σ.

◮ There is a learner and a teacher

◮ Teacher knows a regular language T

◮ Objective of the learner: To learn T by constructing an
automaton for T .

Complexity will be measured on the complexity of the language:
the minimum number of states needed to capture T .
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Active learning [Angluin’86]

◮ Learner asks questions:

◮ Membership: Is w ∈ T?

◮ Yes or No

◮ Equivalence question: Is T = L(C )?

◮ Yes or No+counterexample

◮ Counterexample is in (T \ L(C )) ∪ (L(C ) \ T ).

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani)

Regular languages can be learnt using at most O(kn2 + n log m)
membership and O(n) equivalence queries.

◮ n — size of the minimal DFA accepting target language T

◮ m — size of the largest counterexample

◮ k — size of the alphabet.

Also, in time polynomial in O(kn2 + n log m).



How do we learn T?

Key points

◮ How many states are there?

◮ How do we reach these states from the initial state?

◮ How do we build the transitions correctly?
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When are states different?

Simple observation:

Let u and v be two strings.

If ∃w such that uw ∈ T ⇐⇒ vw 6∈ T ,

then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable

If we find n strings s1, . . . , sn, that are pairwise distinguishable, we
know that automaton for T has (at least) n states.
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Access strings

Access string to a state q

◮ Some string that gets you from q0 to q.

Hence ε is an access string for q0.

If we have n access strings s1, s2, . . . , sn, that are pairwise
distinguishable, then the states reached on these strings must all

be different.
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that:
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An observation pack

Access strings s1 s2 . . . . . . sk
Experiments Es1 Es2 . . . . . . Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

◮ Each Esi consists of a set of pairs of the form (u,+) or (u,−):

◮ (u, +) ∈ Esi
implies si .ui ∈ T

◮ (u,−) ∈ Esi
implies si .ui 6∈ T

◮ For any two access strings si and sj , there is some experiment
that distinguishes them.
i.e., there is some u that figures in Esi and Esj with opposite
polarity.

◮ ε ∈ S, and ε ∈ Esi for each i .

Note: If an observation pack with n access strings exists, then
minimal automaton for T has at least n states.
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Example

Target language T : strings over {0, 1} where #1′s = 2 mod 3

0 0 0

1 1
1

An observation pack:

Access strings ε 010

Experiments (ε,−) (ε,−)
(10,−) (10,+)

ε.ε 6∈ T ; 010.ε 6∈ T

ε.10 6∈ T ; 010.10 ∈ T



Likeness and escape

Let O be an observation pack.

A word w is like an access string s in O, if w agrees with s on all
the experiments in Es .
i.e. ,∀u ∈ Es , wu ∈ T iff su ∈ T .

Note: No two access strings are alike ⇒w can be like at most one

access string in O, since

If w is not like any access string, we say it escapes the pack.



Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)



Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)

The word 001 is like 010 (since 001.ε 6∈ T , 001.10 ∈ T ).



Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)

The word 001 is like 010 (since 001.ε 6∈ T , 001.10 ∈ T ).

The word 11 is not like any access string in O (since 11.ε ∈ T ).
So 11 escapes.
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Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

◮ Add w as a new access string

◮ For every access s string in O, there is some u in Es that
distinguishes w and s.

◮ Add this string to Ew

The new pack is a proper observation pack . . .

. . . and has one more access string.
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Closure

An observation pack O is said to be closed if

◮ For every access string s in O and a ∈ Σ, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

◮ States: The access strings in O: {s1 . . . , sk}

◮ From s on a, go to the state that is like sa.

◮ Mark a state s final iff (ε,+) ∈ Es .
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Automaton construction

Theorem
If the observation pack O has as many states as MT , then the

automaton constructed is isomorphic to MT .

Proof.

◮ The number of states is correct.

◮ Initial state maps to initial state of MT .

◮ On any letter, we move to the right state.

◮ Final states are marked correctly.

So, the whole problem reduces to finding an observation pack with
n access strings!!
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Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase II: If O is closed but has less access strings than |MT |.

◮ Then automaton constructed has too few states.

◮ How do we learn access strings to new states?

Equivalence query:

◮ Build conjecture automaton C .

◮ Ask teacher “L(C ) = T?”

◮ Use counterexample given by teacher to generate new access
string.
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0, 1

Counter-example: 101 ∈ T \ L(C )

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

◮ s0.101 ∈ T

◮ s0.01 6∈ T .

◮ So we cannot go on 1 to s0!
(since 01 distinguishes 1 and s0)

◮ So let’s add 01 as experiment string for s0.
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A learning example

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1

Experiments (ε,−) (ε,−)
(01,−) (01,+)

Check closure:
10 is like 1 (since 10 6∈ T and 10.01 ∈ T )

But 11 is neither like ε nor like 1 (since 11 ∈ T ).

So 11 escapes and forms a new access string.
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T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1 s2 = 11
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A learning example . . .

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1 s2 = 11

Experiments (ε,−) (ε,−) (ε,+)
(01,−) (01,+)

Check closure:
0 is like s0; 10 is like 1;
110 is like 11; 111 is like 0.

s0 s1 s2

0 0 0

1 1
1
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XP
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P

XQ

XO
Q

X I
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X I
P

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Assume guarantee reasoning

◮ Find R such that:
◮ P ‖ R |= ϕ

◮ VisBeh(Q) ⊆ VisBeh(R)

◮ Learn a regular language R with small DFA?
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Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Lower bound for R

Lmin = VisBeh(Q)

Note that both Lmax and Lmin are regular

Want to learn R , Lmin ⊆ R ⊆ Lmax

Target language is unknown!
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Recall that Lmin ⊆ R ⊆ Lmax

Equivalence query, L(C ) = R?

◮ Subset query L(C ) ⊆ Lmax?

◮ Superset query L(C ) ⊇ Lmin?

Membership query, w ∈ R?

◮ If w /∈ Lmax, answer No.

◮ If w ∈ Lmin, answer Yes.

◮ If w ∈ Lmax \ Lmin, ambiguous!

◮ Heuristic: Answer Yes (i.e., answer with respect to Lmax)

◮ May result in larger R than required

Practical note: Use BDDs to deal with large alphabet X I ∪ XO
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◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ Want to restrict runs of the class to permit only safe runs

◮ An interface is a function I : (M × VR)∗ → 2M

◮ An interface I is good if all runs consistent with I satisfy ϕ
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Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Observe that L(I ) is prefix closed. Hence, membership query
w ∈ L(I ) can be converted into subset query Prefixes(w) ⊆ L(I ).

Checking L(C ) = L(I ) is broken up into subset and superset
queries, as before

L(C ) ⊆ L(I ) : Build C ‖ I and ask the CTL question AGϕ

L(C ) ⊇ L(I ) : More difficult, will not go into detail here.


