Applications of learning theory in verification

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update 2007, IIT Kanpur
14 April 2007
(Adapted from material contributed by P Madhusudan)

http://www.cmi.ac.in/~madhavan

Motivation

» Abstraction is an important tool in verification

» Build a coarse model M from a system description S
» Every run of S is also a run of V/
» If M satisfies a safety property, so does S

Motivation

» Abstraction is an important tool in verification

» Build a coarse model M from a system description S
» Every run of S is also a run of V/
» If M satisfies a safety property, so does S

» Can we use learning to discover the abstraction?

» S may have a complicated description ...
» ...but abstraction // may be “small”
» Circumvent complexity of verifying S directly

Motivation

» Abstraction is an important tool in verification

» Build a coarse model M from a system description S
» Every run of S is also a run of V/
» If M satisfies a safety property, so does S

» Can we use learning to discover the abstraction?

» S may have a complicated description ...
» ...but abstraction // may be “small”
» Circumvent complexity of verifying S directly

» Other problems in verification can also benefit from this
approach

Outline

» Two verification problems

» Compositional verification of P || Q
» Deriving interface specification for a module

Outline

» Two verification problems

» Compositional verification of P || Q
» Deriving interface specification for a module

» Learning regular languages

» Active learner model [Angluin'86]
> A tutorial introduction to the learning algorithm

Outline

» Two verification problems

» Compositional verification of P || Q
» Deriving interface specification for a module

» Learning regular languages

» Active learner model [Angluin'86]
> A tutorial introduction to the learning algorithm

» How to apply learning for the two problems above

» Some pointers to other applications

Compositional verification

» Parallel composition P || @ of two modules

Compositional verification

» Parallel composition P || @ of two modules

» Does P || @ satisfy a safety specification ?

Compositional verification

» Parallel composition P || @ of two modules
» Does P || @ satisfy a safety specification 7
» Assume guarantee reasoning

» Find R such that:

> P RE
» Behaviours of @ are included in behaviours of R

» R may be small compared to P and Q.

Compositional verification . . .

Module P

State variables X
» output variables X9 C X,
disjoint set of input variables X'

Compositional verification . . .

Module P

State variables X |
X

» output variables X9 C X,
disjoint set of input variables X'

» Assume we are working with boolean abstraction

Compositional verification . . .

Module P

State variables X X!
» output variables X9 C X,

disjoint set of input variables X’

» Assume we are working with boolean abstraction

> State : s (XwX')—{0,1}
Transition : TC(S\SHxS'x(s\S)
Behaviour S1S...

Visible Behaviour : s//9s)V0

Module composition

P || @ : Outputs of P are inputs to @ and vice versa

Xp

Xq

» VisBeh(P || Q) = VisBeh(P) N VisBeh(Q)

Compositional verification of modules

Safety property ©: boolean formula over X' U X©

> 515 ... |= o if for each i, s/Y9 =

Compositional verification of modules

Safety property ©: boolean formula over X' U X©

> 515 ... = i if for each /, 5/-’“0 =

When does P || Q = ©?
» For each o € VisBeh(P || Q), 0 = ¢

Compositional verification of modules

Safety property ©: boolean formula over X' U X©

> 515 ... = i if for each /, 5/-’“0 =

When does P || Q = ©?
» For each o € VisBeh(P || Q), 0 = ¢

Assume guarantee reasoning
» Find R such that:
» PRI
» VisBeh(Q) C VisBeh(R)

» Learn a regular language R with small DFA?

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmg}

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmg}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmg}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmz}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

» A call to method m nondeterministically transforms s to s’
and returns s,

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmg}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

» A call to method m nondeterministically transforms s to s’
and returns s,

> A run is a sequence (m1,54), (m2.55), ...

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmz}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

» A call to method m nondeterministically transforms s to s’
and returns s,

> A run is a sequence (m1,54), (m2.55), ...

» Safety specification: Boolean formula ¢ on return variables

Interface synthesis

A class C with variables V = {v1, v, ...} and methods
M = {mlmz}
State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

A call to method m nondeterministically transforms s to s’
and returns s,

> A run is a sequence (m1,54), (m2.55), ...

» Safety specification: Boolean formula ¢ on return variables

v

A run is safe if for each i, s, =

Interface synthesis

» A class C with variables V = {vi,v», ...} and methods
M = {mlmg}

» State of an object s : V' — {0, 1}—again we assume a
boolean abstraction

» Vp C V—output variables

» A call to method m nondeterministically transforms s to s’
and returns s,

: 1 2
A run is a sequence (m1,sp). (M2, s5), ...
Safety specification: Boolean formula on return variables

A run is safe if for each i, s, =

vV v v Y

Want to restrict runs of the class to permit only safe runs

Interface

An interface is a function / : (M x Vg)* — 2M

> After a run o = (my,sh), (mo,s3). ..., I(o) specifies which

methods can be invoked

Interface

An interface is a function / : (M x Vg)* — 2M

> After a run o = (my,sh), (mo,s3). ..., I(o) specifies which
methods can be invoked

A run is consistent with an interface if,

» for every prefix p = (mi.,sh), (M2, 55), ..., (MK, s5),
mis1 € 1(p)q

Interface

An interface is a function / : (M x Vg)* — 2M

> After a run o = (my,sh), (mo,s3). ..., I(o) specifies which
methods can be invoked

A run is consistent with an interface if,

» for every prefix p = (m1,s5), (M. 57), ..., (my, sg),
mis1 € 1(p)q

An interface / is good if all runs consistent with / satisfy

Interface

An interface is a function / : (M x Vg)* — 2M

> After a run o = (my,sh), (mo,s3). ..., I(o) specifies which
methods can be invoked

A run is consistent with an interface if,

» for every prefix p = (m1,s5), (M. 57), ..., (my, sg),
mis1 € 1(p)q

An interface / is good if all runs consistent with / satisfy

| can be thought of as an automaton over (M x Vg)

Interface

An interface is a function / : (M x Vg)* — 2M

> After a run o = (my,sh), (mo,s3). ..., I(o) specifies which

methods can be invoked

A run is consistent with an interface if,

» for every prefix p = (m1,s5), (M. 57), ..., (Mg, sK),
mis1 € 1(p)q

An interface / is good if all runs consistent with / satisfy
| can be thought of as an automaton over (M x Vg)

Can we learn a maximal interface?

Learning Regular Languages

Fix a finite alphabet 2.

» There is a learner and a teacher
» Teacher knows a regular language T

» Objective of the learner: To learn T by constructing an
automaton for 7.

Learning Regular Languages

Fix a finite alphabet 2.

» There is a learner and a teacher

» Teacher knows a regular language T

» Objective of the learner: To learn T by constructing an
automaton for 7.

Complexity will be measured on the complexity of the language:
the minimum number of states needed to capture 7.

Active learning [Angluin’86]

» Learner asks questions:

» Membership: Is w € T7
» Yes or No

» Equivalence question: Is 7 = L(C)?
> Yes or No+counterexample

» Counterexample isin (T \ L(C))U(L(C)\ T).

Active learning [Angluin’86]

» Learner asks questions:

» Membership: Is w € T7
» Yes or No

» Equivalence question: Is 7 = L(C)?
> Yes or No+counterexample

» Counterexample isin (T \ L(C))U(L(C)\ T).

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani)

Regular languages can be learnt using at most O(kn” + nlog m)
membership and O(n) equivalence queries.

» n — size of the minimal DFA accepting target language T
» m — size of the largest counterexample
» k — size of the alphabet.

Also, in time polynomial in O(kn® + nlog m).

How do we learn T7?

Key points

» How many states are there?
» How do we reach these states from the initial state?

» How do we build the transitions correctly?

When are states different?

Simple observation:
Let v and v be two strings.

If 9w such that uw € T <—— vw & T,
then u and v must lead to different states.

When are states different?

Simple observation:
Let v and v be two strings.

If 9w such that uw € T <—— vw & T,
then u and v must lead to different states.

If this condition holds, we say v and v are distinguishable

When are states different?

Simple observation:
Let v and v be two strings.

If 9w such that uw € T <—— vw & T,
then u and v must lead to different states.

If this condition holds, we say v and v are distinguishable

If we find n strings s1, ..., sy, that are pairwise distinguishable, we

know that automaton for T has (at least) n states.

Access strings

Access string to a state g

» Some string that gets you from ¢ to g.

Hence ¢ is an access string for qo.

Access strings

Access string to a state g

» Some string that gets you from ¢ to g.

Hence ¢ is an access string for qo.

If we have n access strings s1. 5o, ..., Sn, that are pairwise
distinguishable, then the states reached on these strings must all
be different.

An observation pack

An observation pack for T has 1 access strings S = {s;

Access strings

S1

52

Sk

Experiments

E,

Es,

Es,

Sn},

and each s € S is associated with a set of experiments £, such

that:

An observation pack

Access strings | s1 | S5 | ... | ... | Sk
Experiments Eo | Es, | oo | oo | Es,
An observation pack for T has n access strings S = {s1,..., Snt
and each s € S is associated with a set of experiments £, such
that:
» Each E;, consists of a set of pairs of the form (u.+) or (v, —):
(u,+) € E; implies sj.u; € T

| 4
>

(u,—) € E;, implies s;.u; & T

An observation pack

Access strings

S1

52

Sk

Experiments

E,

Es,

Es,

An observation pack for T has 1 access strings S = {s;

..... Snts

and each s € S is associated with a set of experiments £, such

that:

» Each E;, consists of a set of pairs of the form (u.+) or (v, —):

» (u,+) €
» (u,—) €

E.. implies s;.u; € T
E. implies s;.u; & T

» For any two access strings s; and s;, there is some experiment

that distinguishes them.

i.e., there is some v that figures in £ and E. with opposite

polarity.

An observation pack

Access strings

S1

52

Sk

Experiments

E,

Es,

Es,

An observation pack for T has 1 access strings S = {s;

..... Snts

and each s € S is associated with a set of experiments £, such

that:

» Each E;, consists of a set of pairs of the form (u.+) or (v, —):

(u,+) € E; implies sj.u; € T

> (u.-)

E. implies s;.u; & T

» For any two access strings s; and s;, there is some experiment

that distinguishes them.

i.e., there is some v that figures in £ and E. with opposite

polarity.

» - 5, and ¢ € £ for each /.

An observation pack

Access strings | s1 | 5 | ... | ... | sk
Experiments Eo | Es, | oo | oo | Es,

An observation pack for T has n access strings S = {s1,..., Snt
and each s € S is associated with a set of experiments £, such
that:
» Each E;, consists of a set of pairs of the form (u.+) or (v, —):
» (u,+) € E, implies s;.u; € T
» (u,—) € Es implies s;.u; ¢ T
» For any two access strings s; and s;, there is some experiment

that distinguishes them.
i.e., there is some v that figures in £ and E. with opposite

polarity.
» - 5, and ¢ € £ for each /.

Note: If an observation pack with n access strings exists, then
minimal automaton for T has at least n states.

Example

Target language T: strings over {0, 1} where #1's = 2 mod 3

Example

Target language T: strings over {0, 1} where #1's = 2 mod 3

An observation pack:

Access strings | ¢ 010
Experiments | (¢,—) | (¢, —)
(10,—) | (10,4)

Example

Target language T: strings over {0, 1} where #1's = 2 mod 3

An observation pack:

Access strings | ¢ 010
Experiments | (¢,—) | (¢, —)
(10,—) | (10,4)

e T;010egT
el0¢ T,;01010 e T

Likeness and escape

Let O be an observation pack.

A word w is like an access string s in O, if w agrees with s on all
the experiments in E..
iie. Yue Es, wue T iffsueT.

Note: No two access strings are alike =w can be like at most one
access string in O, since

If w is not like any access string, we say it escapes the pack.

Example

Access strings

Experiments

Example

Access strings | 110
Experiments | (¢, —) | (&, —)
(10,—) | (10,4)

The word 001 is like 010 (since 001.2 ¢ T, 001.10 € T).

Example

Access strings | 110
Experiments | (¢, —) | (&, —)
(10,—) | (10,4)

The word 001 is like 010 (since 001.2 ¢ T, 001.10 € T).

The word 11 is not like any access string in O (since 11.c € T).
So 11 escapes.

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w:
» Add w as a new access string

» For every access s string in O, there is some v in E; that
distinguishes w and s.

» Add this string to £,

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w:
» Add w as a new access string

» For every access s string in O, there is some v in E; that
distinguishes w and s.

» Add this string to £,

The new pack is a proper observation pack ...

Expanding a pack
If O is an observation pack, and w escapes O, then we can expand

O to include w:

» Add w as a new access string

» For every access s string in O, there is some v in E; that
distinguishes w and s.

» Add this string to £,

The new pack is a proper observation pack ...

...and has one more access string.

Closure

An observation pack O is said to be closed if

» For every access string s in O and a € 2, s.a is like some
access string in O.

Closure

An observation pack O is said to be closed if

» For every access string s in O and a € 2, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

» States: The access strings in O: {s;.... s}

Closure

An observation pack O is said to be closed if

» For every access string s in O and a € 2, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

» States: The access strings in O: {s;.... s}

» From s on a, go to the state that is like sa.

Closure

An observation pack O is said to be closed if

» For every access string s in O and a € 2, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

» States: The access strings in O: {s;.... s}
» From s on a, go to the state that is like sa.

» Mark a state s final iff (=, +) € E..

Automaton construction

Theorem
If the observation pack O has as many states as M, then the
automaton constructed is isomorphic to M.

Automaton construction

Theorem
If the observation pack O has as many states as M, then the
automaton constructed is isomorphic to M.

Proof.

» The number of states is correct.
» Initial state maps to initial state of M.
» On any letter, we move to the right state.

» Final states are marked correctly.

Automaton construction

Theorem
If the observation pack O has as many states as M, then the
automaton constructed is isomorphic to M.

Proof.

» The number of states is correct.
» Initial state maps to initial state of M.
» On any letter, we move to the right state.

» Final states are marked correctly.

O

So, the whole problem reduces to finding an observation pack with
n access strings!!

Learning from a false automaton

Let O be an observation pack.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase Il: If O is closed but has less access strings than |V |.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase Il: If O is closed but has less access strings than |M|.

» Then automaton constructed has too few states.

» How do we learn access strings to new states?

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase Il: If O is closed but has less access strings than |M|.

» Then automaton constructed has too few states.

» How do we learn access strings to new states?

Equivalence query:
» Build conjecture automaton C.
» Ask teacher "L(C) = T7"

» Use counterexample given by teacher to generate new access
string.

A learning example. . .

Target language T

A learning example. . .

Target language T

Access strings

Experiments

A learning example. . .

Target language T

Access strings | sp = £
Experiments | (¢, —)

Check closure:
0 is like & (since 0 ¢ T).
1is like = (since 1 & T).

A learning example. . .

Target language T

Access strings | sp = £
Experiments | (¢, —)

Check closure:
0 is like & (since 0 ¢ T).
1is like = (since 1 & T).

[é

0,1

A learning example ...

[é

0,1
Counter-example: 101 € T\ L(C)

1 0 1
Run of 101 on C: sy — sy — sy — S

» Sp = ¢

A learning example ...

[é

0,1
Counter-example: 101 € T\ L(C)

1 0 1
Run of 101 on C: sy — sy — sy — S

» Sp =¢
> 5.0l T

A learning example ...

[é

0,1
Counter-example: 101 € T\ L(C)
Run of 101 on C: s i>so R>50 i>so
» Sp =¢
> 5.0l T
» 50.01 ¢ T.

A learning example ...

[é

0,1
Counter-example: 101 € T\ L(C)

Run of 101 on C: SOLSO&SOLSO
» Sp =¢
> 5101 T
> 50.01 & T.

» So we cannot go on 1 to sp!
(since 01 distinguishes 1 and sp)

A learning example ...

[é

0,1
Counter-example: 101 € T\ L(C)

Run of 101 on C: soisogsoiso
» Sp =¢
> 5101 T
> 50.01 & T.

» So we cannot go on 1 to sp!
(since 01 distinguishes 1 and sp)

> So let’s add 01 as experiment string for sp.

A learning example

T

A learning example

T

Access strings | sp =¢ | 51 =1 ‘
Experiments | (¢,—) | (¢, —)
(01,—) | (01,4)

A learning example

T

Access strings | sp =¢ | 51 =1 ‘
Experiments | (¢,—) | (¢, —)
(01,—) | (01,4)

Check closure:

10 is like 1 (since 10 ¢ T and 10.01 € T)

A learning example

T

Access strings | sp =¢ | 51 =1 ‘
Experiments | (¢,—) | (¢, —)
(01,—) | (01,4)

Check closure:
10 is like 1 (since 10 ¢ T and 10.01 € T)

But 11 is neither like = nor like 1 (since 11 € T).

A learning example

T

Access strings | sp =¢ | 51 =1 ‘
Experiments | (¢,—) | (¢, —)
(01,—) | (01,4)

Check closure:

10 is like 1 (since 10 ¢ T and 10.01 € T)

But 11 is neither like = nor like 1 (since 11 € T).

So 11 escapes and forms a new access string.

A learning example ...

T

A learning example ...

T

Access strings | sp =2 | 51 = s5 =11
Experiments | (¢,—) | (e.—) | (e.+)
(01,—) | (01,+)

A learning example ...

T

Access strings | sp =¢ | s1=1 | s =11
Experiments | (¢,—) | (e.—) | (e.+)
(01,—) | (01,+)

Check closure:
0 is like sp; 10 is like 1;
110 is like 11; 111 is like O.

A learning example ...

T

Access strings

52:11

Experiments

Check closure:
0 is like sp; 10 is like 1;
110 is like 11; 111 is like O.

References

[Angluin
Learning regular sets from queries and counterexamples
Inf. and Comp. '87

[@ Rivest, Schapire
Inference of finite automata using homing sequences
Inf. and Comp. '95

@ Kearns, Vazirani
Introduction to Computational Learning Theory
MIT Press

[l Balcazar, Dfaz, Gavalda, Watanabe
Algorithms for Learning Finite Automata from queries: A
Unified View
Tech report, http://citeseer.ist.psu.edu/67130.html

http://citeseer.ist.psu.edu/67130.html

Compositional verification of modules

@
Xp

Compositional verification of modules

X9
XF’ XQ

(0]
XQ

XE

Safety property : boolean formula over X'y xo
> 5155 ... = if for each /, s/Y0 =

i

Compositional verification of modules

X9
Xp Xo

[0
XQ

XE

Safety property ©: boolean formula over X' U X©
> 515 ... = if for each /, s/uo E e

When does P || Q = ©?
» For each o € VisBeh(P || Q), 0 = ¢

Compositional verification of modules

X/
o) Q
Xp
Xp XQ

XO

/ Q
Xp

Safety property : boolean formula over X!y x©
> 515 ... = ¢ if for each i, s/Y9 =

When does P || Q = ©?
» For each o € VisBeh(P || Q), 0 = ¢

Assume guarantee reasoning
» Find R such that:
» PIIRE
» VisBeh(Q) C VisBeh(R)
» Learn a regular language R with small DFA?

Compositional verification of modules . ..

Most permissive R
Lmax = {0 | 0 € VisBeh(P) = o = ¢

Compositional verification of modules . ..

Most permissive R
Lmax = {(f ‘ o< VISBeh(P) =0 ‘: Tf)}

Lower bound for R
Lmin = VisBeh(Q)

Compositional verification of modules . ..

Most permissive R
Lmax = {(f ‘ o c VISBeh(P) =0 ‘: Y

Lower bound for R
Lmin = VisBeh(Q)

Note that both L., and L., are regular

Compositional verification of modules . ..

Most permissive R
Lmax = {(f ‘ o< VISBeh(P) =0 ‘: Tf)}

Lower bound for R
Lmin = VisBeh(Q)

Note that both L., and L., are regular

Want to learn R, Lin € R € Lax

Compositional verification of modules . ..

Most permissive R
Lmax = {(f ‘ o c VISBeh(P) =0 ‘: Y

Lower bound for R
Lmin = VisBeh(Q)

Note that both L., and L, are regular
Want to learn R, Lin € R € Lax

Target language is unknown!

Compositional verification: Implementing the teacher . ..

Recall that Lin € R € Lax

Compositional verification: Implementing the teacher . ..

Recall that Lin € R € Lax

Equivalence query, L(C) = R?
» Subset query L(C) C L,.7?
» Superset query L(C) O L7

Compositional verification: Implementing the teacher . ..

Recall that Lin € R € Lax

Equivalence query, L(C) = R?
» Subset query L(C) C L,.7?
» Superset query L(C) O L7

Membership query, w € R?

> If w ¢ L., answer No.
» If w e L., answer Yes.
> If w € Lax \ Linin, ambiguous!

» Heuristic: Answer Yes (i.e., answer with respect to L.x)
» May result in larger R than required

Compositional verification: Implementing the teacher . ..

Recall that Lin € R € Lax

Equivalence query, L(C) = R?
» Subset query L(C) C L,.7?
» Superset query L(C) O L7

Membership query, w € R7
> If w ¢ L., answer No.
» If w e L., answer Yes.
> If w € Lax \ Linin, ambiguous!

» Heuristic: Answer Yes (i.e., answer with respect to L.x)
» May result in larger R than required

Practical note: Use BDDs to deal with large alphabet X' 1 X©

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

> A run is a sequence (m1,54), (m2.55), ...

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

> A run is a sequence (m1,54), (m2.55), ...

» Safety specification: Boolean formula ¢ on return variables

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

> A run is a sequence (m1,54), (m2.55), ...
» Safety specification: Boolean formula ¢ on return variables

» Want to restrict runs of the class to permit only safe runs

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

> A run is a sequence (m1,54), (m2.55), ...
» Safety specification: Boolean formula ¢ on return variables
» Want to restrict runs of the class to permit only safe runs

» An interface is a function / : (M x V)" — 2M

Learning interfaces

» A class with variables V and methods M. Each method call
returns values over Vp C V

A run is a sequence (my,sh), (Mo, s5). ...

Safety specification: Boolean formula ¢ on return variables
Want to restrict runs of the class to permit only safe runs
An interface is a function / : (M x V)" — 2M

vV v . v v Y

An interface / is good if all runs consistent with / satisfy

Learning interfaces . ..

Given an class C and an interface /, interaction is a game over
C|/
» Given the history, / chooses a method m to execute

» Given the method m, C fixes the return state
after m executes

Learning interfaces . ..

Given an class C and an interface /, interaction is a game over
C|/
» Given the history, / chooses a method m to execute

» Given the method m, C fixes the return state
after m executes

Observe that L(/) is prefix closed. Hence, membership query
w € L(/) can be converted into subset query Prefixes(w) C L(/).

Learning interfaces . ..

Given an class C and an interface /, interaction is a game over
C|/
» Given the history, / chooses a method m to execute

» Given the method m, C fixes the return state
after m executes

Observe that L(/) is prefix closed. Hence, membership query
w € L(/) can be converted into subset query Prefixes(w) C L(/).

Checking L(C) = L(/) is broken up into subset and superset
queries, as before

Learning interfaces . ..
Given an class C and an interface /, interaction is a game over
C|/

» Given the history, / chooses a method m to execute

» Given the method m, C fixes the return state
after m executes

Observe that L(/) is prefix closed. Hence, membership query
w € L(/) can be converted into subset query Prefixes(w) C L(/).

Checking L(C) = L(/) is broken up into subset and superset
queries, as before

L(C) < L(/): Build C || / and ask the CTL question AGy

Learning interfaces . ..

Given an class C and an interface /, interaction is a game over
C|/

» Given the history, / chooses a method m to execute

» Given the method m, C fixes the return state
after m executes

Observe that L(/) is prefix closed. Hence, membership query
w € L(/) can be converted into subset query Prefixes(w) C L(/).

Checking L(C) = L(/) is broken up into subset and superset
queries, as before

L(C) < L(/): Build C || / and ask the CTL question AGy

L(C) D L(/) : More difficult, will not go into detail here.

