Applications of learning theory in verification

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update 2007, IIT Kanpur
14 April 2007

(Adapted from material contributed by P Madhusudan)
Motivation

- Abstraction is an important tool in verification
 - Build a coarse model M from a system description S
 - Every run of S is also a run of M
 - If M satisfies a safety property, so does S
Motivation

- Abstraction is an important tool in verification
 - Build a coarse model M from a system description S
 - Every run of S is also a run of M
 - If M satisfies a safety property, so does S

- Can we use learning to discover the abstraction?
 - S may have a complicated description . . .
 - . . . but abstraction M may be “small”
 - Circumvent complexity of verifying S directly
Motivation

- Abstraction is an important tool in verification
 - Build a coarse model M from a system description S
 - Every run of S is also a run of M
 - If M satisfies a safety property, so does S

- Can we use learning to discover the abstraction?
 - S may have a complicated description . . .
 - . . . but abstraction M may be “small”
 - Circumvent complexity of verifying S directly

- Other problems in verification can also benefit from this approach
Two verification problems

- Compositional verification of $P \parallel Q$
- Deriving interface specification for a module
Outline

- Two verification problems
 - Compositional verification of $P \parallel Q$
 - Deriving interface specification for a module

- Learning regular languages
 - Active learner model [Angluin’86]
 - A tutorial introduction to the learning algorithm
Outline

- Two verification problems
 - Compositional verification of \(P \parallel Q \)
 - Deriving interface specification for a module

- Learning regular languages
 - Active learner model [Angluin’86]
 - A tutorial introduction to the learning algorithm

- How to apply learning for the two problems above

- Some pointers to other applications
Compositional verification

- Parallel composition $P \parallel Q$ of two modules
Compositional verification

- Parallel composition $P \parallel Q$ of two modules
- Does $P \parallel Q$ satisfy a safety specification ϕ?
Compositional verification

- Parallel composition $P \parallel Q$ of two modules
- Does $P \parallel Q$ satisfy a safety specification φ?
- Assume guarantee reasoning
 - Find R such that:
 - $P \parallel R \models \varphi$
 - Behaviours of Q are included in behaviours of R
 - R may be small compared to P and Q.
Compositional verification . . .

Module P

State variables X

- output variables $X^O \subseteq X$, disjoint set of input variables X^I
Compositional verification . . .

Module P

- State variables X
 - output variables $X^O \subseteq X$, disjoint set of input variables X^I
 - Assume we are working with boolean abstraction
Compositional verification . . .

Module \(P \)

State variables \(X \)

- output variables \(X^O \subseteq X \), disjoint set of input variables \(X^I \)

- Assume we are working with boolean abstraction

- State : \(s : (X \sqcup X^I) \rightarrow \{0, 1\} \)

- Transition : \(T \subseteq (S \setminus S') \times S' \times (S \setminus S') \)

- Behaviour : \(s_1 s_2 \ldots \)

- Visible Behaviour : \(s_1^I \cup O s_2^I \cup O \ldots \)
Module composition

$P \parallel Q$: Outputs of P are inputs to Q and vice versa

$\triangleright VisBeh(P \parallel Q) = VisBeh(P) \cap VisBeh(Q)$
Compositional verification of modules

Safety property φ: boolean formula over $X^I \cup X^O$

- $s_1 s_2 \ldots \models \varphi$ if for each i, $s_i^{I \cup O} \models \varphi$
Compositional verification of modules

Safety property φ: boolean formula over $X^I \cup X^O$

- $s_1s_2 \ldots \models \varphi$ if for each i, $s_i^I \cup s_i^O \models \varphi$

When does $P \parallel Q \models \varphi$?

- For each $\sigma \in \text{VisBeh}(P \parallel Q)$, $\sigma \models \varphi$
Compositional verification of modules

Safety property φ: boolean formula over $X^I \cup X^O$

- $s_1 s_2 \ldots \models \varphi$ if for each i, $s_i^I \cup s_i^O \models \varphi$

When does $P \parallel Q \models \varphi$?

- For each $\sigma \in \text{VisBeh}(P \parallel Q)$, $\sigma \models \varphi$

Assume guarantee reasoning

- Find R such that:
 - $P \parallel R \models \varphi$
 - $\text{VisBeh}(Q) \subseteq \text{VisBeh}(R)$
- Learn a regular language R with small DFA?
A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$
A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$

State of an object $s : V \rightarrow \{0, 1\}$—again we assume a boolean abstraction
Interface synthesis

- A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$
- State of an object $s : V \to \{0, 1\}$—again we assume a boolean abstraction
- $V_R \subseteq V$—output variables
Interface synthesis

- A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$

- State of an object $s : V \rightarrow \{0, 1\}$—again we assume a boolean abstraction

- $V_R \subseteq V$—output variables

- A call to method m nondeterministically transforms s to s' and returns s'_R
A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$

State of an object $s : V \rightarrow \{0, 1\}$—again we assume a boolean abstraction

$V_R \subseteq V$—output variables

A call to method m nondeterministically transforms s to s' and returns s'_R

A run is a sequence $(m_1, s^1_R), (m_2, s^2_R), \ldots$
A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$

State of an object $s : V \rightarrow \{0, 1\}$—again we assume a boolean abstraction

$V_R \subseteq V$—output variables

A call to method m nondeterministically transforms s to s' and returns s'_R

A run is a sequence $(m_1, s'_R), (m_2, s'_R), \ldots$

Safety specification: Boolean formula φ on return variables
Interface synthesis

- A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$
- State of an object $s : V \to \{0, 1\}$—again we assume a boolean abstraction
- $V_R \subseteq V$—output variables
- A call to method m nondeterministically transforms s to s' and returns s'_R
- A run is a sequence $(m_1, s^{1}_R), (m_2, s^{2}_R), \ldots$
- Safety specification: Boolean formula φ on return variables
- A run is safe if for each i, $s^{i}_R \models \varphi$
A class C with variables $V = \{v_1, v_2, \ldots\}$ and methods $M = \{m_1, m_2, \ldots\}$

State of an object $s : V \rightarrow \{0, 1\}$—again we assume a boolean abstraction

$V_R \subseteq V$—output variables

A call to method m nondeterministically transforms s to s' and returns s'_R

A run is a sequence $(m_1, s^1_R), (m_2, s^2_R), \ldots$

Safety specification: Boolean formula φ on return variables

A run is safe if for each i, $s'_R \models \varphi$

Want to restrict runs of the class to permit only safe runs
An **interface** is a function $I : (M \times V_R)^* \rightarrow 2^M$

- After a run $\sigma = (m_1, s^1_R), (m_2, s^2_R), \ldots$, $I(\sigma)$ specifies which methods can be invoked
Interface

An interface is a function $I : (M \times V_R)^* \rightarrow 2^M$

- After a run $\sigma = (m_1, s_{R}^1), (m_2, s_{R}^2), \ldots$, $I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho = (m_1, s_{R}^1), (m_2, s_{R}^2), \ldots, (m_k, s_{R}^k)$, $m_{k+1} \in I(\rho)q$
An **interface** is a function $I : (M \times V_R)^* \rightarrow 2^M$

- After a run $\sigma = (m_1, s^1_R), (m_2, s^2_R), \ldots$, $I(\sigma)$ specifies which methods can be invoked

A run is **consistent** with an interface if,

- for every prefix $\rho = (m_1, s^1_R), (m_2, s^2_R), \ldots, (m_k, s^k_R)$, $m_{k+1} \in I(\rho)$

An interface I is good if all runs consistent with I satisfy φ
An interface is a function $I : (M \times V_R)^* \rightarrow 2^M$.

- After a run $\sigma = (m_1, s^1_R), (m_2, s^2_R), \ldots$, $I(\sigma)$ specifies which methods can be invoked.

A run is consistent with an interface if,

- for every prefix $\rho = (m_1, s^1_R), (m_2, s^2_R), \ldots, (m_k, s^k_R)$, $m_{k+1} \in I(\rho)q$.

An interface I is good if all runs consistent with I satisfy φ.

I can be thought of as an automaton over $(M \times V_R)$.
An interface is a function $I : (M \times V_R)^* \rightarrow 2^M$

- After a run $\sigma = (m_1, s^1_R), (m_2, s^2_R), \ldots$, $I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho = (m_1, s^1_R), (m_2, s^2_R), \ldots, (m_k, s^k_R)$,
 $m_{k+1} \in I(\rho)q$

An interface I is good if all runs consistent with I satisfy φ

I can be thought of as an automaton over $(M \times V_R)$

Can we learn a maximal interface?
Fix a finite alphabet Σ.

- There is a learner and a teacher
- Teacher knows a regular language T
- **Objective of the learner**: To learn T by constructing an automaton for T.
Learning Regular Languages

Fix a finite alphabet \(\Sigma \).

- There is a learner and a teacher
- Teacher knows a regular language \(T \)
- **Objective of the learner:** To learn \(T \) by constructing an automaton for \(T \).

Complexity will be measured on the complexity of the language: the minimum number of states needed to capture \(T \).
Active learning [Angluin’86]

- Learner asks questions:
 - Membership: Is \(w \in T \)?
 - Yes or No
 - Equivalence question: Is \(T = L(C) \)?
 - Yes or No + counterexample
 - Counterexample is in \((T \setminus L(C)) \cup (L(C) \setminus T)\).
Active learning [Angluin’86]

- Learner asks questions:
 - Membership: Is \(w \in T \)?
 - Yes or No
 - Equivalence question: Is \(T = L(C) \)?
 - Yes or No+counterexample
 - Counterexample is in \((T \setminus L(C)) \cup (L(C) \setminus T) \).

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani)

Regular languages can be learnt using at most \(O(kn^2 + n \log m) \) membership and \(O(n) \) equivalence queries.

- \(n \) — size of the minimal DFA accepting target language \(T \)
- \(m \) — size of the largest counterexample
- \(k \) — size of the alphabet.

Also, in time polynomial in \(O(kn^2 + n \log m) \).
How do we learn T?

Key points

- How many states are there?
- How do we reach these states from the initial state?
- How do we build the transitions correctly?
Simple observation:
Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$, then u and v must lead to different states.
When are states different?

Simple observation:
Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$,
then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable.
Simple observation:
Let u and v be two strings.

If $\exists w$ such that $uw \in T \iff vw \notin T$,
then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable.

If we find n strings s_1, \ldots, s_n, that are pairwise distinguishable, we know that automaton for T has (at least) n states.
Access strings

Access string to a state q

▶ Some string that gets you from q_0 to q.

Hence ε is an access string for q_0.
Access strings

Access string to a state q

- Some string that gets you from q_0 to q.

Hence ε is an access string for q_0.

If we have n access strings s_1, s_2, \ldots, s_n, that are pairwise distinguishable, then the states reached on these strings must all be different.
An observation pack

<table>
<thead>
<tr>
<th>Access strings</th>
<th>s_1</th>
<th>s_2</th>
<th>...</th>
<th>...</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>E_{s_1}</td>
<td>E_{s_2}</td>
<td>...</td>
<td>...</td>
<td>E_{s_k}</td>
</tr>
</tbody>
</table>

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:
An observation pack

<table>
<thead>
<tr>
<th>Access strings</th>
<th>s_1</th>
<th>s_2</th>
<th>\ldots</th>
<th>\ldots</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>E_{s_1}</td>
<td>E_{s_2}</td>
<td>\ldots</td>
<td>\ldots</td>
<td>E_{s_k}</td>
</tr>
</tbody>
</table>

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- Each E_{s_i} consists of a set of pairs of the form $(u, +)$ or $(u, -)$:
 - $(u, +) \in E_{s_i}$ implies $s_i.u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i.u_i \not\in T$
An observation pack

<table>
<thead>
<tr>
<th>Access strings</th>
<th>s_1</th>
<th>s_2</th>
<th>\ldots</th>
<th>\ldots</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>E_{s_1}</td>
<td>E_{s_2}</td>
<td>\ldots</td>
<td>\ldots</td>
<td>E_{s_k}</td>
</tr>
</tbody>
</table>

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- Each E_{s_i} consists of a set of pairs of the form $(u, +)$ or $(u, -)$:
 - $(u, +) \in E_{s_i}$ implies $s_i.u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i.u_i \not\in T$

- For any two access strings s_i and s_j, there is some experiment that distinguishes them.
 i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.
An observation pack

<table>
<thead>
<tr>
<th>Access strings</th>
<th>s_1</th>
<th>s_2</th>
<th>...</th>
<th>...</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>E_{s_1}</td>
<td>E_{s_2}</td>
<td>...</td>
<td>...</td>
<td>E_{s_k}</td>
</tr>
</tbody>
</table>

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- Each E_{s_i} consists of a set of pairs of the form $(u, +)$ or $(u, -)$:
 - $(u, +) \in E_{s_i}$ implies $s_i.u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i.u_i \notin T$

- For any two access strings s_i and s_j, there is some experiment that distinguishes them. i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.

- $\varepsilon \in S$, and $\varepsilon \in E_{s_i}$ for each i.
An observation pack

<table>
<thead>
<tr>
<th>Access strings</th>
<th>s_1</th>
<th>s_2</th>
<th>\ldots</th>
<th>\ldots</th>
<th>s_k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>E_{s_1}</td>
<td>E_{s_2}</td>
<td>\ldots</td>
<td>\ldots</td>
<td>E_{s_k}</td>
</tr>
</tbody>
</table>

An observation pack for T has n access strings $S = \{s_1, \ldots, s_n\}$, and each $s \in S$ is associated with a set of experiments E_s such that:

- Each E_{s_i} consists of a set of pairs of the form $(u, +)$ or $(u, -)$:
 - $(u, +) \in E_{s_i}$ implies $s_i.u_i \in T$
 - $(u, -) \in E_{s_i}$ implies $s_i.u_i \not\in T$

- For any two access strings s_i and s_j, there is some experiment that distinguishes them.
 - i.e., there is some u that figures in E_{s_i} and E_{s_j} with opposite polarity.
- $\varepsilon \in S$, and $\varepsilon \in E_{s_i}$ for each i.

Note: If an observation pack with n access strings exists, then minimal automaton for T has at least n states.
Example

Target language T: strings over $\{0, 1\}$ where $\#1's = 2 \ mod \ 3$
Target language T: strings over \{0, 1\} where \#1’s = 2 mod 3

An observation pack:

<table>
<thead>
<tr>
<th>Access strings</th>
<th>ϵ</th>
<th>010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\epsilon, -)$</td>
<td>$(\epsilon, -)$</td>
</tr>
<tr>
<td></td>
<td>$(10, -)$</td>
<td>$(10, +)$</td>
</tr>
</tbody>
</table>
Example

Target language T: strings over $\{0, 1\}$ where $\#1's = 2 \mod 3$

An observation pack:

<table>
<thead>
<tr>
<th>Access strings</th>
<th>ϵ</th>
<th>010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\epsilon, -)$</td>
<td>$(\epsilon, -)$</td>
</tr>
<tr>
<td></td>
<td>$(10, -)$</td>
<td>$(10, +)$</td>
</tr>
</tbody>
</table>

$\epsilon.\epsilon \notin T$; $010.\epsilon \notin T$
$\epsilon.10 \notin T$; $010.10 \in T$
Likeness and escape

Let O be an observation pack.

A word w is like an access string s in O, if w agrees with s on all the experiments in E_s.

i.e. $\forall u \in E_s, \; wu \in T \iff su \in T$.

Note: No two access strings are alike $\Rightarrow w$ can be like *at most one* access string in O, since

If w is not like any access string, we say it escapes the pack.
Example

<table>
<thead>
<tr>
<th>Access strings</th>
<th>ε</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>(ε, −)</td>
<td>(ε, −)</td>
</tr>
<tr>
<td></td>
<td>(10, −)</td>
<td>(10, +)</td>
</tr>
</tbody>
</table>
The word 001 is like 010 (since $001\varepsilon \not\in T$, $001.10 \in T$).
The word 001 is like 010 (since $001.\varepsilon \notin T$, $001.10 \in T$).

The word 11 is not like any access string in O (since $11.\varepsilon \in T$). So 11 escapes.
Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- For every access s string in O, there is some u in E_s that distinguishes w and s.
- Add this string to E_w
Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- For every access s string in O, there is some u in E_s that distinguishes w and s.
- Add this string to E_w

The new pack is a proper observation pack . . .
Expanding a pack

If O is an observation pack, and w escapes O, then we can expand O to include w:

- Add w as a new access string
- For every access s string in O, there is some u in E_s that distinguishes w and s.
- Add this string to E_w

The new pack is a proper observation pack . . .

. . . and has one more access string.
Closure

An observation pack \(O \) is said to be **closed** if

- For every access string \(s \) in \(O \) and \(a \in \Sigma \), \(s.a \) is like some access string in \(O \).
An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, $s.a$ is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in O: $\{s_1 \ldots, s_k\}$
Closure

An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, $s.a$ is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in O: $\{s_1 \ldots, s_k\}$
- From s on a, go to the state that is like sa.
An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, $s.a$ is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in O: \{s_1 \ldots, s_k\}
- From s on a, go to the state that is like sa.
- Mark a state s final iff $(\varepsilon, +) \in E_s$.
Automaton construction

Theorem

If the observation pack O has as many states as M_T, then the automaton constructed is isomorphic to M_T.
Automaton construction

Theorem

If the observation pack O has as many states as M_T, then the automaton constructed is isomorphic to M_T.

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_T.
- On any letter, we move to the right state.
- Final states are marked correctly.
Theorem

If the observation pack O has as many states as M_T, then the automaton constructed is isomorphic to M_T.

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_T.
- On any letter, we move to the right state.
- Final states are marked correctly.

So, the whole problem reduces to finding an observation pack with n access strings!!
Learning from a false automaton

Let O be an observation pack.
Learning from a false automaton

Let O be an observation pack.

Phase I: If O is *not* closed, expand pack using some new access string $s.a.$
Learning from a false automaton

Let O be an observation pack.

Phase I: If O is *not* closed, expand pack using some new access string $s.a.$

Phase II: If O is closed but has less access strings than $|M_T|$.
Learning from a false automaton

Let O be an observation pack.

Phase I: If O is *not* closed, expand pack using some new access string $s.a.$

Phase II: If O is closed but has less access strings than $|M_T|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?
Learning from a false automaton

Let O be an observation pack.

Phase I: If O is *not* closed, expand pack using some new access string $s.a.$

Phase II: If O is closed but has less access strings than $|M_T|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?

Equivalence query:
- Build conjecture automaton C.
- Ask teacher "$L(C) = T?$"
- Use counterexample given by teacher to generate new access string.
A learning example...

Target language T:

![Diagram showing a learning example with states labeled 0 and 1 and transitions labeled 1 and 0.](image-url)
A learning example...

Target language T:

![Diagram]

<table>
<thead>
<tr>
<th>Access strings</th>
<th>$s_0 = \varepsilon$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\varepsilon, -)$</td>
</tr>
</tbody>
</table>
A learning example...

Target language T:

Check closure:
0 is like ε (since $0 \notin T$).
1 is like ε (since $1 \notin T$).
A learning example...

Target language T:

Access strings $s_0 = \varepsilon$

Experiments $(\varepsilon, -)$

Check closure:
0 is like ε (since $0 \notin T$).
1 is like ε (since $1 \notin T$).
A learning example . . .

Counter-example: \(101 \in T \setminus L(C)\)

Run of 101 on \(C\):
\[
s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0
\]

\(\blacktriangleright \ s_0 = \varepsilon\)
A learning example . . .

Counter-example: $101 \in T \setminus L(C)$

Run of 101 on C: $s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0$

$\triangleright s_0 = \varepsilon$

$\triangleright s_0.101 \in T$
A learning example . . .

Counter-example: \(101 \in T \setminus L(C)\)

Run of \(101\) on \(C\): \(s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0\)

- \(s_0 = \varepsilon\)
- \(s_0.101 \in T\)
- \(s_0.01 \notin T\).
A learning example . . .

Counter-example: $101 \in T \setminus L(C)$

Run of 101 on C: $s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0$

- $s_0 = \varepsilon$
- $s_0.101 \in T$
- $s_0.01 \notin T$
- So we cannot go on 1 to s_0!
 (since 01 distinguishes 1 and s_0)
A learning example . . .

Counter-example: \(101 \in T \setminus L(C)\)

Run of 101 on \(C\): \(s_0 \xrightarrow{1} s_0 \xrightarrow{0} s_0 \xrightarrow{1} s_0\)

- \(s_0 = \varepsilon\)
- \(s_0.101 \in T\)
- \(s_0.01 \notin T\).
- So we cannot go on 1 to \(s_0\)!
 (since 01 distinguishes 1 and \(s_0\))
- So let’s add 01 as experiment string for \(s_0\).
A learning example

\[T \]

\[
\begin{array}{c}
\bigcirc & 1 & \bigcirc & 1 & \bigcirc \\
0 & \bigcirc & 0 & \bigcirc & 0
\end{array}
\]
A learning example

T

<table>
<thead>
<tr>
<th>Access strings</th>
<th>$s_0 = \varepsilon$</th>
<th>$s_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\varepsilon, -)$</td>
<td>$(\varepsilon, -)$</td>
</tr>
<tr>
<td></td>
<td>$(01, -)$</td>
<td>$(01, +)$</td>
</tr>
</tbody>
</table>
A learning example

Access strings

<table>
<thead>
<tr>
<th>Experiments</th>
<th>$s_0 = \varepsilon$</th>
<th>$s_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\varepsilon, -$</td>
<td>$(\varepsilon, -$)</td>
<td>$(\varepsilon, -$)</td>
</tr>
<tr>
<td>$01, -$</td>
<td>$(01, -$)</td>
<td>$(01, +)$</td>
</tr>
</tbody>
</table>

Check closure:

10 is like 1 (since $10 \notin T$ and $10.01 \in T$)
A learning example

Access strings

<table>
<thead>
<tr>
<th>Access strings</th>
<th>$s_0 = \varepsilon$</th>
<th>$s_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\varepsilon, -)$</td>
<td>$(\varepsilon, -)$</td>
</tr>
<tr>
<td></td>
<td>$(01, -)$</td>
<td>$(01, +)$</td>
</tr>
</tbody>
</table>

Check closure:
10 is like 1 (since 10 $\not\in T$ and 10.01 $\in T$)

But 11 is neither like ε nor like 1 (since 11 $\in T$).
A learning example

Access strings

<table>
<thead>
<tr>
<th>Access strings</th>
<th>$s_0 = \varepsilon$</th>
<th>$s_1 = 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>$(\varepsilon, -)$</td>
<td>$(\varepsilon, -)$</td>
</tr>
<tr>
<td></td>
<td>$(01, -)$</td>
<td>$(01, +)$</td>
</tr>
</tbody>
</table>

Check closure:

10 is like 1 (since $10 \notin T$ and $10.01 \in T$)

But 11 is neither like ε nor like 1 (since $11 \in T$).

So 11 escapes and forms a new access string.
A learning example...
A learning example . . .

\[T \]

<table>
<thead>
<tr>
<th>Access strings</th>
<th>(s_0 = \varepsilon)</th>
<th>(s_1 = 1)</th>
<th>(s_2 = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, +))</td>
</tr>
<tr>
<td></td>
<td>((01, -))</td>
<td>((01, +))</td>
<td></td>
</tr>
</tbody>
</table>
A learning example . . .

\[T \]

Access strings

<table>
<thead>
<tr>
<th>Experiments</th>
<th>(s_0 = \varepsilon)</th>
<th>(s_1 = 1)</th>
<th>(s_2 = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, +))</td>
<td></td>
</tr>
<tr>
<td>((01, -))</td>
<td>((01, +))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Check closure:

0 is like \(s_0 \); 10 is like 1; 110 is like 11; 111 is like 0.
A learning example . . .

\[T \]

Access strings

<table>
<thead>
<tr>
<th>Access strings</th>
<th>(s_0 = \varepsilon)</th>
<th>(s_1 = 1)</th>
<th>(s_2 = 11)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiments</td>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, -))</td>
<td>((\varepsilon, +))</td>
</tr>
<tr>
<td></td>
<td>((01, -))</td>
<td>((01, +))</td>
<td></td>
</tr>
</tbody>
</table>

Check closure:
0 is like \(s_0 \); 10 is like 1; 110 is like 11; 111 is like 0.
References

Angluin
Learning regular sets from queries and counterexamples
Inf. and Comp. ’87

Rivest, Schapire
Inference of finite automata using homing sequences
Inf. and Comp. ’95

Kearns, Vazirani
Introduction to Computational Learning Theory
MIT Press

Balcázar, Díaz, Gavalda, Watanabe
Algorithms for Learning Finite Automata from queries: A
Unified View
Tech report, http://citeseer.ist.psu.edu/67130.html
Compositional verification of modules

\[
\begin{align*}
X_P & \xrightarrow{X_P^O} X_Q^I \\
X_Q & \xrightarrow{X_Q^O} X_P^I
\end{align*}
\]
Compositional verification of modules

Safety property φ: boolean formula over $X_I \cup X_O$

- $s_1 s_2 \ldots \models \varphi$ if for each i, $s_i^{I \cup O} \models \varphi$
Compositional verification of modules

Safety property ϕ: boolean formula over $X^I \cup X^O$

$s_1 s_2 \ldots \models \varphi$ if for each i, $s_i^I \cup s_i^O \models \varphi$

When does $P \parallel Q \models \varphi$?

For each $\sigma \in VisBeh(P \parallel Q)$, $\sigma \models \varphi$
Compositional verification of modules

Safety property \(\varphi \): boolean formula over \(X^I \cup X^O \)

\(s_1 s_2 \ldots \models \varphi \) if for each \(i, s_i^{I \cup O} \models \varphi \)

When does \(P \parallel Q \models \varphi \)?

For each \(\sigma \in VisBeh(P \parallel Q) \), \(\sigma \models \varphi \)

Assume guarantee reasoning

Find \(R \) such that:

\(P \parallel R \models \varphi \)

\(VisBeh(Q) \subseteq VisBeh(R) \)

Learn a regular language \(R \) with small DFA?
Most permissive R

$$L_{\text{max}} = \{ \sigma \mid \sigma \in \text{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$$
Most permissive R

$$L_{\text{max}} = \{ \sigma \mid \sigma \in \text{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$$

Lower bound for R

$$L_{\text{min}} = \text{VisBeh}(Q)$$
Compositional verification of modules . . .

Most permissive R

\[L_{\text{max}} = \{ \sigma \mid \sigma \in VisBeh(P) \Rightarrow \sigma \models \varphi \} \]

Lower bound for R

\[L_{\text{min}} = VisBeh(Q) \]

Note that both L_{max} and L_{min} are regular
Most permissive R

\[L_{\text{max}} = \{ \sigma \mid \sigma \in \text{VisBeh}(P) \Rightarrow \sigma \models \varphi \} \]

Lower bound for R

\[L_{\text{min}} = \text{VisBeh}(Q) \]

Note that both L_{max} and L_{min} are regular

Want to learn R, $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$
Compositional verification of modules . . .

Most permissive R

$$L_{\text{max}} = \{ \sigma \mid \sigma \in \text{VisBeh}(P) \Rightarrow \sigma \models \varphi \}$$

Lower bound for R

$$L_{\text{min}} = \text{VisBeh}(Q)$$

Note that both L_{max} and L_{min} are regular

Want to learn R, $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$

Target language is unknown!
Recall that $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$
Recall that $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$

Equivalence query, $L(C) = R$?
- Subset query $L(C) \subseteq L_{\text{max}}$?
- Superset query $L(C) \supseteq L_{\text{min}}$?
Recall that $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$

Equivalence query, $L(C) = R$?

- Subset query $L(C) \subseteq L_{\text{max}}$?
- Superset query $L(C) \supseteq L_{\text{min}}$?

Membership query, $w \in R$?

- If $w \notin L_{\text{max}}$, answer No.
- If $w \in L_{\text{min}}$, answer Yes.
- If $w \in L_{\text{max}} \setminus L_{\text{min}}$, ambiguous!
 - Heuristic: Answer Yes (i.e., answer with respect to L_{max})
 - May result in larger R than required
Recall that $L_{\text{min}} \subseteq R \subseteq L_{\text{max}}$

Equivalence query, $L(C) = R$?
 - Subset query $L(C) \subseteq L_{\text{max}}$?
 - Superset query $L(C) \supseteq L_{\text{min}}$?

Membership query, $w \in R$?
 - If $w \notin L_{\text{max}}$, answer No.
 - If $w \in L_{\text{min}}$, answer Yes.
 - If $w \in L_{\text{max}} \setminus L_{\text{min}}$, ambiguous!
 - Heuristic: Answer Yes (i.e., answer with respect to L_{max})
 - May result in larger R than required

Practical note: Use BDDs to deal with large alphabet $X^I \cup X^O$
A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$.
Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$
- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$
- A run is a sequence $(m_1, s^1_R), (m_2, s^2_R), \ldots$
- Safety specification: Boolean formula φ on return variables
Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$
- A run is a sequence $(m_1, s^1_R), (m_2, s^2_R), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$

- A run is a sequence $(m_1, s_R^1), (m_2, s_R^2), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
- An interface is a function $I : (M \times V_R)^* \rightarrow 2^M$
Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_R \subseteq V$
- A run is a sequence $(m_1, s^1_R), (m_2, s^2_R), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
- An interface is a function $I : (M \times V_R)^* \rightarrow 2^M$
- An interface I is good if all runs consistent with I satisfy φ
Given an class C and an interface I, interaction is a game over $C \parallel I$

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes
Learning interfaces ...

Given an class C and an interface I, interaction is a game over $C \parallel I$

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\text{Prefixes}(w) \subseteq L(I)$.
Given an class C and an interface I, interaction is a game over $C \parallel I$

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\text{Prefixes}(w) \subseteq L(I)$.

Checking $L(C) = L(I)$ is broken up into subset and superset queries, as before
Learning interfaces . . .

Given an class C and an interface I, interaction is a game over $C \parallel I$

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\text{Prefixes}(w) \subseteq L(I)$.

Checking $L(C) = L(I)$ is broken up into subset and superset queries, as before

$L(C) \subseteq L(I)$: Build $C \parallel I$ and ask the CTL question $AG\varphi$
Learning interfaces ...

Given an class C and an interface I, interaction is a game over $C \parallel I$

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\text{Prefixes}(w) \subseteq L(I)$.

Checking $L(C) = L(I)$ is broken up into subset and superset queries, as before

$L(C) \subseteq L(I)$: Build $C \parallel I$ and ask the CTL question $AG\varphi$

$L(C) \supseteq L(I)$: More difficult, will not go into detail here.