Applications of learning theory in verification

Madhavan Mukund

Chennai Mathematical Institute
http://www.cmi.ac.in/~madhavan

Formal Methods Update 2007, IIT Kanpur 14 April 2007
(Adapted from material contributed by P Madhusudan)

Motivation

- Abstraction is an important tool in verification
- Build a coarse model M from a system description S
- Every run of S is also a run of M
- If M satisfies a safety property, so does S

Motivation

- Abstraction is an important tool in verification
- Build a coarse model M from a system description S
- Every run of S is also a run of M
- If M satisfies a safety property, so does S
- Can we use learning to discover the abstraction?
- S may have a complicated description...
- ...but abstraction M may be "small"
- Circumvent complexity of verifying S directly

Motivation

- Abstraction is an important tool in verification
- Build a coarse model M from a system description S
- Every run of S is also a run of M
- If M satisfies a safety property, so does S
- Can we use learning to discover the abstraction?
- S may have a complicated description...
- ...but abstraction M may be "small"
- Circumvent complexity of verifying S directly
- Other problems in verification can also benefit from this approach

Outline

- Two verification problems
- Compositional verification of $P \| Q$
- Deriving interface specification for a module

Outline

- Two verification problems
- Compositional verification of $P \| Q$
- Deriving interface specification for a module
- Learning regular languages
- Active learner model [Angluin'86]
- A tutorial introduction to the learning algorithm

Outline

- Two verification problems
- Compositional verification of $P \| Q$
- Deriving interface specification for a module
- Learning regular languages
- Active learner model [Angluin'86]
- A tutorial introduction to the learning algorithm
- How to apply learning for the two problems above
- Some pointers to other applications

Compositional verification

- Parallel composition $P \| Q$ of two modules

Compositional verification

- Parallel composition $P \| Q$ of two modules
- Does $P \| Q$ satisfy a safety specification φ ?

Compositional verification

- Parallel composition $P \| Q$ of two modules
- Does $P \| Q$ satisfy a safety specification φ ?
- Assume guarantee reasoning
- Find R such that:
- $P \| R \models \varphi$
- Behaviours of Q are included in behaviours of R
- R may be small compared to P and Q.

Compositional verification ...

Module P
State variables X
output variables $X^{0} \subseteq X$,
disjoint set of input variables X^{\prime}

Compositional verification

Module P

State variables X

- output variables $X^{0} \subseteq X$, disjoint set of input variables X^{\prime}
- Assume we are working with boolean abstraction

Compositional verification

Module P

State variables X

- output variables $X^{0} \subseteq X$, disjoint set of input variables X^{\prime}

- Assume we are working with boolean abstraction
- State : $s:\left(X \uplus X^{\prime}\right) \rightarrow\{0,1\}$

Transition: $T \subseteq\left(S \backslash S^{\prime}\right) \times S^{\prime} \times\left(S \backslash S^{\prime}\right)$
Behaviour : $s_{1} s_{2} \ldots$
Visible Behaviour : $s_{1}^{\prime \cup O} s_{2}^{\prime \cup O} \ldots$

Module composition

$P \| Q$: Outputs of P are inputs to Q and vice versa

- $\operatorname{VisBeh}(P \| Q)=\operatorname{VisBeh}(P) \cap \operatorname{VisBeh}(Q)$

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{O}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{O}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

When does $P \| Q \models \varphi$?

- For each $\sigma \in \operatorname{VisBeh}(P \| Q), \sigma \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{O}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

When does $P \| Q \models \varphi$?

- For each $\sigma \in \operatorname{VisBeh}(P \| Q), \sigma \models \varphi$

Assume guarantee reasoning

- Find R such that:
- $P \| R \models \varphi$
- $\operatorname{VisBeh}(Q) \subseteq \operatorname{VisBeh}(R)$
- Learn a regular language R with small DFA?

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables
- A call to method m nondeterministically transforms s to s^{\prime} and returns s_{R}^{\prime}

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables
- A call to method m nondeterministically transforms s to s^{\prime} and returns s_{R}^{\prime}
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables
- A call to method m nondeterministically transforms s to s^{\prime} and returns s_{R}^{\prime}
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables
- A call to method m nondeterministically transforms s to s^{\prime} and returns s_{R}^{\prime}
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables
- A run is safe if for each $\mathrm{i}, s_{R}^{i} \models \varphi$

Interface synthesis

- A class C with variables $V=\left\{v_{1}, v_{2}, \ldots\right\}$ and methods $M=\left\{m_{1}, m_{2}, \ldots\right\}$
- State of an object $s: V \rightarrow\{0,1\}$-again we assume a boolean abstraction
- $V_{R} \subseteq V$ —output variables
- A call to method m nondeterministically transforms s to s^{\prime} and returns s_{R}^{\prime}
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables
- A run is safe if for each $\mathrm{i}, s_{R}^{i} \models \varphi$
- Want to restrict runs of the class to permit only safe runs

Interface

An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

- After a run $\sigma=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots, I(\sigma)$ specifies which methods can be invoked

Interface

An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

- After a run $\sigma=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots, I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots,\left(m_{k}, s_{R}^{k}\right)$, $m_{k+1} \in I(\rho) q$

Interface

An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

- After a run $\sigma=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots, I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots,\left(m_{k}, s_{R}^{k}\right)$, $m_{k+1} \in I(\rho) q$

An interface / is good if all runs consistent with / satisfy φ

Interface

An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

- After a run $\sigma=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots, I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots,\left(m_{k}, s_{R}^{k}\right)$,

$$
m_{k+1} \in I(\rho) q
$$

An interface / is good if all runs consistent with / satisfy φ
I can be thought of as an automaton over $\left(M \times V_{R}\right)$

Interface

An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

- After a run $\sigma=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots, I(\sigma)$ specifies which methods can be invoked

A run is consistent with an interface if,

- for every prefix $\rho=\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots,\left(m_{k}, s_{R}^{k}\right)$,

$$
m_{k+1} \in I(\rho) q
$$

An interface / is good if all runs consistent with / satisfy φ
I can be thought of as an automaton over $\left(M \times V_{R}\right)$
Can we learn a maximal interface?

Learning Regular Languages

Fix a finite alphabet Σ.

- There is a learner and a teacher
- Teacher knows a regular language T
- Objective of the learner: To learn T by constructing an automaton for T.

Learning Regular Languages

Fix a finite alphabet Σ.

- There is a learner and a teacher
- Teacher knows a regular language T
- Objective of the learner: To learn T by constructing an automaton for T.

Complexity will be measured on the complexity of the language: the minimum number of states needed to capture T.

Active learning [Angluin'86]

- Learner asks questions:
- Membership: Is $w \in T$?
- Yes or No
- Equivalence question: Is $T=L(C)$?
- Yes or No+counterexample
- Counterexample is in $(T \backslash L(C)) \cup(L(C) \backslash T)$.

Active learning [Angluin'86]

- Learner asks questions:
- Membership: Is $w \in T$?
- Yes or No
- Equivalence question: Is $T=L(C)$?
- Yes or No+counterexample
- Counterexample is in $(T \backslash L(C)) \cup(L(C) \backslash T)$.

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani)
Regular languages can be learnt using at most $O\left(k n^{2}+n \log m\right)$ membership and $O(n)$ equivalence queries.

- n - size of the minimal DFA accepting target language T
- m - size of the largest counterexample
- k - size of the alphabet.

Also, in time polynomial in $O\left(k n^{2}+n \log m\right)$.

How do we learn T ?

Key points

- How many states are there?
- How do we reach these states from the initial state?
- How do we build the transitions correctly?

When are states different?

Simple observation:
Let u and v be two strings.
If $\exists w$ such that $u w \in T \Longleftrightarrow v w \notin T$, then u and v must lead to different states.

When are states different?

Simple observation:
Let u and v be two strings.

$$
\begin{aligned}
& \text { If } \exists w \text { such that } u w \in T \Longleftrightarrow v w \notin T \text {, } \\
& \text { then } u \text { and } v \text { must lead to different states. }
\end{aligned}
$$

If this condition holds, we say u and v are distinguishable

When are states different?

Simple observation:
Let u and v be two strings.

$$
\begin{aligned}
& \text { If } \exists w \text { such that } u w \in T \Longleftrightarrow v w \notin T \text {, } \\
& \text { then } u \text { and } v \text { must lead to different states. }
\end{aligned}
$$

If this condition holds, we say u and v are distinguishable
If we find n strings s_{1}, \ldots, s_{n}, that are pairwise distinguishable, we know that automaton for T has (at least) n states.

Access strings

Access string to a state q

- Some string that gets you from q_{0} to q.

Hence ε is an access string for q_{0}.

Access strings

Access string to a state q

- Some string that gets you from q_{0} to q.

Hence ε is an access string for q_{0}.
If we have n access strings $s_{1}, s_{2}, \ldots, s_{n}$, that are pairwise distinguishable, then the states reached on these strings must all be different.

An observation pack

Access strings	s_{1}	s_{2}	\ldots	\ldots	s_{k}
Experiments	$E_{s_{1}}$	$E_{s_{2}}$	\ldots	\ldots	$E_{s_{k}}$

An observation pack for T has n access strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and each $s \in S$ is associated with a set of experiments E_{s} such that:

An observation pack

Access strings	s_{1}	s_{2}	\ldots	\ldots	s_{k}
Experiments	$E_{s_{1}}$	$E_{s_{2}}$	\ldots	\ldots	$E_{s_{k}}$

An observation pack for T has n access strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and each $s \in S$ is associated with a set of experiments E_{s} such that:

- Each $E_{s_{i}}$ consists of a set of pairs of the form $(u,+)$ or $(u,-)$:
- $(u,+) \in E_{s_{i}}$ implies $s_{i} . u_{i} \in T$
- $(u,-) \in E_{s_{i}}$ implies $s_{i} . u_{i} \notin T$

An observation pack

Access strings	s_{1}	s_{2}	\ldots	\ldots	s_{k}
Experiments	$E_{s_{1}}$	$E_{s_{2}}$	\ldots	\ldots	$E_{s_{k}}$

An observation pack for T has n access strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and each $s \in S$ is associated with a set of experiments E_{s} such that:

- Each $E_{s_{i}}$ consists of a set of pairs of the form $(u,+)$ or $(u,-)$:
- $(u,+) \in E_{s_{i}}$ implies $s_{i} . u_{i} \in T$
- $(u,-) \in E_{s_{i}}$ implies $s_{i} . u_{i} \notin T$
- For any two access strings s_{i} and s_{j}, there is some experiment that distinguishes them.
i.e., there is some u that figures in $E_{s_{i}}$ and $E_{S_{j}}$ with opposite polarity.

An observation pack

Access strings	s_{1}	s_{2}	\ldots	\ldots	s_{k}
Experiments	$E_{s_{1}}$	$E_{s_{2}}$	\ldots	\ldots	$E_{s_{k}}$

An observation pack for T has n access strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and each $s \in S$ is associated with a set of experiments E_{s} such that:

- Each $E_{s_{i}}$ consists of a set of pairs of the form $(u,+)$ or $(u,-)$:
- $(u,+) \in E_{s_{i}}$ implies $s_{i} . u_{i} \in T$
- $(u,-) \in E_{s_{i}}$ implies $s_{i} . u_{i} \notin T$
- For any two access strings s_{i} and s_{j}, there is some experiment that distinguishes them.
i.e., there is some u that figures in $E_{s_{i}}$ and $E_{S_{j}}$ with opposite polarity.
- $\varepsilon \in S$, and $\varepsilon \in E_{S_{i}}$ for each i.

An observation pack

Access strings	s_{1}	s_{2}	\ldots	\ldots	s_{k}
Experiments	$E_{s_{1}}$	$E_{s_{2}}$	\ldots	\ldots	$E_{s_{k}}$

An observation pack for T has n access strings $S=\left\{s_{1}, \ldots, s_{n}\right\}$, and each $s \in S$ is associated with a set of experiments E_{s} such that:

- Each $E_{s_{i}}$ consists of a set of pairs of the form $(u,+)$ or $(u,-)$:
- $(u,+) \in E_{s_{i}}$ implies $s_{i} . u_{i} \in T$
- $(u,-) \in E_{s_{i}}$ implies $s_{i} . u_{i} \notin T$
- For any two access strings s_{i} and s_{j}, there is some experiment that distinguishes them.
i.e., there is some u that figures in $E_{s_{i}}$ and $E_{S_{j}}$ with opposite polarity.
- $\varepsilon \in S$, and $\varepsilon \in E_{S_{i}}$ for each i.

Note: If an observation pack with n access strings exists, then minimal automaton for T has at least n states.

Example

Target language T : strings over $\{0,1\}$ where $\# 1^{\prime} s=2 \bmod 3$

Example

Target language T : strings over $\{0,1\}$ where $\# 1 ' s=2 \bmod 3$

An observation pack:

Access strings	ε	010
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(10,-)$	$(10,+)$

Example

Target language T : strings over $\{0,1\}$ where $\# 1^{\prime} s=2 \bmod 3$

An observation pack:

Access strings	ε	010
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(10,-)$	$(10,+)$

$$
\begin{aligned}
& \varepsilon . \varepsilon \notin T ; 010 . \varepsilon \notin T \\
& \varepsilon .10 \notin T ; 010.10 \in T
\end{aligned}
$$

Likeness and escape

Let O be an observation pack.
A word w is like an access string s in O, if w agrees with s on all the experiments in E_{s}.
i.e. , $\forall u \in E_{s}$, wu $\in T$ iff $s u \in T$.

Note: No two access strings are alike $\Rightarrow w$ can be like at most one access string in O, since

If w is not like any access string, we say it escapes the pack.

Example

Example

The word 001 is like 010 (since $001 . \varepsilon \notin T, 001.10 \in T$).

Example

The word 001 is like 010 (since $001 . \varepsilon \notin T, 001.10 \in T$).
The word 11 is not like any access string in O (since $11 . \varepsilon \in T$). So 11 escapes.

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

- Add w as a new access string
- For every access s string in O, there is some u in E_{s} that distinguishes w and s.
- Add this string to E_{w}

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

- Add w as a new access string
- For every access s string in O, there is some u in E_{s} that distinguishes w and s.
- Add this string to E_{w}

The new pack is a proper observation pack ...

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

- Add w as a new access string
- For every access s string in O, there is some u in E_{s} that distinguishes w and s.
- Add this string to E_{w}

The new pack is a proper observation pack...
... and has one more access string.

Closure

An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, s.a is like some access string in O.

Closure

An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, s.a is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in $O:\left\{s_{1} \ldots, s_{k}\right\}$

Closure

An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, s.a is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in $O:\left\{s_{1} \ldots, s_{k}\right\}$
- From s on a, go to the state that is like sa.

Closure

An observation pack O is said to be closed if

- For every access string s in O and $a \in \Sigma$, s.a is like some access string in O.

If O is closed, we can build an automaton from it:

- States: The access strings in $O:\left\{s_{1} \ldots, s_{k}\right\}$
- From s on a, go to the state that is like sa.
- Mark a state s final iff $(\varepsilon,+) \in E_{s}$.

Automaton construction

Theorem
If the observation pack O has as many states as M_{T}, then the automaton constructed is isomorphic to M_{T}.

Automaton construction

Theorem
If the observation pack O has as many states as M_{T}, then the automaton constructed is isomorphic to M_{T}.

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_{T}.
- On any letter, we move to the right state.
- Final states are marked correctly.

Automaton construction

Theorem
If the observation pack O has as many states as M_{T}, then the automaton constructed is isomorphic to M_{T}.

Proof.

- The number of states is correct.
- Initial state maps to initial state of M_{T}.
- On any letter, we move to the right state.
- Final states are marked correctly.

So, the whole problem reduces to finding an observation pack with n access strings!!

Learning from a false automaton

Let O be an observation pack.

Learning from a false automaton

Let O be an observation pack.
Phase I: If O is not closed, expand pack using some new access string s.a.

Learning from a false automaton

Let O be an observation pack.
Phase I: If O is not closed, expand pack using some new access string s.a.

Phase II: If O is closed but has less access strings than $\left|M_{T}\right|$.

Learning from a false automaton

Let O be an observation pack.
Phase I: If O is not closed, expand pack using some new access string s.a.

Phase II: If O is closed but has less access strings than $\left|M_{T}\right|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?

Learning from a false automaton

Let O be an observation pack.
Phase I: If O is not closed, expand pack using some new access string s.a.

Phase II: If O is closed but has less access strings than $\left|M_{T}\right|$.

- Then automaton constructed has too few states.
- How do we learn access strings to new states?

Equivalence query:

- Build conjecture automaton C.
- Ask teacher " $L(C)=T$?"
- Use counterexample given by teacher to generate new access string.

A learning example...

A learning example...

Target language T :

Access strings	$S_{0}=\varepsilon$
Experiments	$(\varepsilon,-)$

A learning example...

Target language T :

Access strings	$s_{0}=\varepsilon$
Experiments	$(\varepsilon,-)$

Check closure:
0 is like ε (since $0 \notin T$).
1 is like ε (since $1 \notin T$).

A learning example...

Target language T :

Access strings	$s_{0}=\varepsilon$
Experiments	$(\varepsilon,-)$

Check closure:
0 is like ε (since $0 \notin T$).
1 is like ε (since $1 \notin T$).

A learning example ...

A learning example ...

$$
\begin{aligned}
& \text { Counter-example: } 101 \in T \backslash L(C) \\
& \text { Run of } 101 \text { on } C: s_{0} \xrightarrow{1} s_{0} \xrightarrow{0} s_{0} \xrightarrow{1} s_{0} \\
& \text { - } s_{0}=\varepsilon \\
& \text { - } s_{0} .101 \in T
\end{aligned}
$$

A learning example ...

$$
\begin{aligned}
& \text { Counter-example: } 101 \in T \backslash L(C) \\
& \text { Run of } 101 \text { on } C: s_{0} \xrightarrow{1} s_{0} \xrightarrow{0} s_{0} \xrightarrow{1} s_{0} \\
& \text { - } s_{0}=\varepsilon \\
& \text { - } s_{0} .101 \in T \\
& \text { - } s_{0} .01 \notin T \text {. }
\end{aligned}
$$

A learning example ...

- So we cannot go on 1 to s_{0} ! (since 01 distinguishes 1 and s_{0})

A learning example ...

- So we cannot go on 1 to s_{0} ! (since 01 distinguishes 1 and s_{0})
- So let's add 01 as experiment string for s_{0}.

A learning example
T

A learning example

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(01,-)$	$(01,+)$

A learning example

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(01,-)$	$(01,+)$

Check closure:
10 is like 1 (since $10 \notin T$ and $10.01 \in T$)

A learning example

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(01,-)$	$(01,+)$

Check closure:
10 is like 1 (since $10 \notin T$ and $10.01 \in T$)
But 11 is neither like ε nor like 1 (since $11 \in T$).

A learning example

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$
	$(01,-)$	$(01,+)$

Check closure:
10 is like 1 (since $10 \notin T$ and $10.01 \in T$)
But 11 is neither like ε nor like 1 (since $11 \in T$).
So 11 escapes and forms a new access string.

A learning example ...

T

A learning example ...

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$	$s_{2}=11$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$	$(\varepsilon,+)$
	$(01,-)$	$(01,+)$	

A learning example ...

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$	$s_{2}=11$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$	$(\varepsilon,+)$
	$(01,-)$	$(01,+)$	

Check closure:
0 is like $s_{0} ; 10$ is like 1 ;
110 is like $11 ; 111$ is like 0 .

A learning example ...

T

Access strings	$s_{0}=\varepsilon$	$s_{1}=1$	$s_{2}=11$
Experiments	$(\varepsilon,-)$	$(\varepsilon,-)$	$(\varepsilon,+)$
	$(01,-)$	$(01,+)$	

Check closure:
0 is like $s_{0} ; 10$ is like 1 ; 110 is like $11 ; 111$ is like 0 .

References

圊 Angluin
Learning regular sets from queries and counterexamples Inf．and Comp．＇87

围 Rivest，Schapire
Inference of finite automata using homing sequences
Inf．and Comp．＇95
圊 Kearns，Vazirani
Introduction to Computational Learning Theory
MIT Press
击 Balcázar，Díaz，Gavalda，Watanabe
Algorithms for Learning Finite Automata from queries：A Unified View
Tech report，http：／／citeseer．ist．psu．edu／67130．html

Compositional verification of modules

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{O}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{O}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

When does $P \| Q \models \varphi$?

- For each $\sigma \in \operatorname{VisBeh}(P \| Q), \sigma \models \varphi$

Compositional verification of modules

Safety property φ : boolean formula over $X^{\prime} \cup X^{0}$

- $s_{1} s_{2} \ldots \models \varphi$ if for each $i, s_{i}^{\prime \cup O} \models \varphi$

When does $P \| Q \models \varphi$?

- For each $\sigma \in \operatorname{VisBeh}(P \| Q), \sigma \models \varphi$

Assume guarantee reasoning

- Find R such that:
- $P \| R \models \varphi$
- $\operatorname{VisBeh}(Q) \subseteq \operatorname{VisBeh}(R)$
- Learn a regular language R with small DFA?

Compositional verification of modules

Most permissive R

$$
L_{\max }=\{\sigma \mid \sigma \in \operatorname{VisBeh}(P) \Rightarrow \sigma \models \varphi\}
$$

Compositional verification of modules

Most permissive R

$$
L_{\max }=\{\sigma \mid \sigma \in \operatorname{VisBeh}(P) \Rightarrow \sigma \models \varphi\}
$$

Lower bound for R

$$
L_{\min }=\operatorname{VisBeh}(Q)
$$

Compositional verification of modules

Most permissive R

$$
L_{\max }=\{\sigma \mid \sigma \in \operatorname{VisBeh}(P) \Rightarrow \sigma \models \varphi\}
$$

Lower bound for R

$$
L_{\min }=\operatorname{VisBeh}(Q)
$$

Note that both $L_{\text {max }}$ and $L_{\text {min }}$ are regular

Compositional verification of modules

Most permissive R

$$
L_{\max }=\{\sigma \mid \sigma \in \operatorname{VisBeh}(P) \Rightarrow \sigma \models \varphi\}
$$

Lower bound for R

$$
L_{\min }=\operatorname{VisBeh}(Q)
$$

Note that both $L_{\text {max }}$ and $L_{\text {min }}$ are regular
Want to learn $R, L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$

Compositional verification of modules

Most permissive R

$$
L_{\max }=\{\sigma \mid \sigma \in \operatorname{VisBeh}(P) \Rightarrow \sigma \models \varphi\}
$$

Lower bound for R

$$
L_{\min }=\operatorname{VisBeh}(Q)
$$

Note that both $L_{\text {max }}$ and $L_{\text {min }}$ are regular
Want to learn $R, L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$
Target language is unknown!

Compositional verification: Implementing the teacher

Recall that $L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$

Compositional verification: Implementing the teacher

Recall that $L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$
Equivalence query, $L(C)=R$?

- Subset query $L(C) \subseteq L_{\text {max }}$?
- Superset query $L(C) \supseteq L_{\text {min }}$?

Compositional verification: Implementing the teacher

Recall that $L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$
Equivalence query, $L(C)=R$?

- Subset query $L(C) \subseteq L_{\text {max }}$?
- Superset query $L(C) \supseteq L_{\text {min }}$?

Membership query, $w \in R$?

- If $w \notin L_{\text {max }}$, answer No.
- If $w \in L_{\text {min }}$, answer Yes.
- If $w \in L_{\text {max }} \backslash L_{\text {min }}$, ambiguous!
- Heuristic: Answer Yes (i.e., answer with respect to $L_{\max }$)
- May result in larger R than required

Compositional verification: Implementing the teacher

Recall that $L_{\text {min }} \subseteq R \subseteq L_{\text {max }}$
Equivalence query, $L(C)=R$?

- Subset query $L(C) \subseteq L_{\text {max }}$?
- Superset query $L(C) \supseteq L_{\text {min }}$?

Membership query, $w \in R$?

- If $w \notin L_{\text {max }}$, answer No.
- If $w \in L_{\text {min }}$, answer Yes.
- If $w \in L_{\text {max }} \backslash L_{\text {min }}$, ambiguous!
- Heuristic: Answer Yes (i.e., answer with respect to $L_{\text {max }}$)
- May result in larger R than required

Practical note: Use BDDs to deal with large alphabet $X^{\prime} \cup X^{0}$

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
- An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$

Learning interfaces

- A class with variables V and methods M. Each method call returns values over $V_{R} \subseteq V$
- A run is a sequence $\left(m_{1}, s_{R}^{1}\right),\left(m_{2}, s_{R}^{2}\right), \ldots$
- Safety specification: Boolean formula φ on return variables
- Want to restrict runs of the class to permit only safe runs
- An interface is a function $1:\left(M \times V_{R}\right)^{*} \rightarrow 2^{M}$
- An interface / is good if all runs consistent with / satisfy φ

Learning interfaces

Given an class C and an interface $/$, interaction is a game over C \| I

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Learning interfaces

Given an class C and an interface $/$, interaction is a game over C \| I

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\operatorname{Prefixes}(w) \subseteq L(I)$.

Learning interfaces

Given an class C and an interface $/$, interaction is a game over C \| I

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\operatorname{Prefixes}(w) \subseteq L(I)$.

Checking $L(C)=L(I)$ is broken up into subset and superset queries, as before

Learning interfaces

Given an class C and an interface $/$, interaction is a game over C \| I

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\operatorname{Prefixes}(w) \subseteq L(I)$.

Checking $L(C)=L(I)$ is broken up into subset and superset queries, as before
$L(C) \subseteq L(I)$: Build $C \| I$ and ask the CTL question $A G \varphi$

Learning interfaces

Given an class C and an interface /, interaction is a game over C \| I

- Given the history, I chooses a method m to execute
- Given the method m, C fixes the return state after m executes

Observe that $L(I)$ is prefix closed. Hence, membership query $w \in L(I)$ can be converted into subset query $\operatorname{Prefixes}(w) \subseteq L(I)$.

Checking $L(C)=L(I)$ is broken up into subset and superset queries, as before
$L(C) \subseteq L(I)$: Build $C \| I$ and ask the CTL question $A G \varphi$
$L(C) \supseteq L(I)$: More difficult, will not go into detail here.

