
Applications of learning theory in verification

Madhavan Mukund

Chennai Mathematical Institute

http://www.cmi.ac.in/~madhavan

Formal Methods Update 2007, IIT Kanpur
14 April 2007

(Adapted from material contributed by P Madhusudan)

http://www.cmi.ac.in/~madhavan

Motivation

◮ Abstraction is an important tool in verification

◮ Build a coarse model M from a system description S
◮ Every run of S is also a run of M
◮ If M satisfies a safety property, so does S

Motivation

◮ Abstraction is an important tool in verification

◮ Build a coarse model M from a system description S
◮ Every run of S is also a run of M
◮ If M satisfies a safety property, so does S

◮ Can we use learning to discover the abstraction?

◮ S may have a complicated description . . .
◮ . . . but abstraction M may be “small”
◮ Circumvent complexity of verifying S directly

Motivation

◮ Abstraction is an important tool in verification

◮ Build a coarse model M from a system description S
◮ Every run of S is also a run of M
◮ If M satisfies a safety property, so does S

◮ Can we use learning to discover the abstraction?

◮ S may have a complicated description . . .
◮ . . . but abstraction M may be “small”
◮ Circumvent complexity of verifying S directly

◮ Other problems in verification can also benefit from this
approach

Outline

◮ Two verification problems

◮ Compositional verification of P ‖ Q
◮ Deriving interface specification for a module

Outline

◮ Two verification problems

◮ Compositional verification of P ‖ Q
◮ Deriving interface specification for a module

◮ Learning regular languages

◮ Active learner model [Angluin’86]
◮ A tutorial introduction to the learning algorithm

Outline

◮ Two verification problems

◮ Compositional verification of P ‖ Q
◮ Deriving interface specification for a module

◮ Learning regular languages

◮ Active learner model [Angluin’86]
◮ A tutorial introduction to the learning algorithm

◮ How to apply learning for the two problems above

◮ Some pointers to other applications

Compositional verification

◮ Parallel composition P ‖ Q of two modules

Compositional verification

◮ Parallel composition P ‖ Q of two modules

◮ Does P ‖ Q satisfy a safety specification ϕ?

Compositional verification

◮ Parallel composition P ‖ Q of two modules

◮ Does P ‖ Q satisfy a safety specification ϕ?

◮ Assume guarantee reasoning

◮ Find R such that:

◮ P ‖ R |= ϕ

◮ Behaviours of Q are included in behaviours of R

◮ R may be small compared to P and Q.

Compositional verification . . .

Module P

◮

State variables X

output variables XO ⊆ X ,
disjoint set of input variables X I

X

XO

X I

Compositional verification . . .

Module P

◮

State variables X

output variables XO ⊆ X ,
disjoint set of input variables X I

X

XO

X I

◮ Assume we are working with boolean abstraction

Compositional verification . . .

Module P

◮

State variables X

output variables XO ⊆ X ,
disjoint set of input variables X I

X

XO

X I

◮ Assume we are working with boolean abstraction

◮ State : s : (X ⊎ X I) → {0, 1}

Transition : T ⊆ (S \ S I) × S I × (S \ S I)

Behaviour : s1s2 . . .

Visible Behaviour : s I∪O
1 s I∪O

2 . . .

Module composition

P ‖ Q : Outputs of P are inputs to Q and vice versa

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

◮ VisBeh(P ‖ Q) = VisBeh(P) ∩ VisBeh(Q)

Compositional verification of modules

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

Compositional verification of modules

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Compositional verification of modules

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Assume guarantee reasoning

◮ Find R such that:

◮ P ‖ R |= ϕ

◮ VisBeh(Q) ⊆ VisBeh(R)

◮ Learn a regular language R with small DFA?

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ A run is safe if for each i, s i
R |= ϕ

Interface synthesis

◮ A class C with variables V = {v1, v2, . . .} and methods
M = {m1,m2, . . .}

◮ State of an object s : V → {0, 1}—again we assume a
boolean abstraction

◮ VR ⊆ V—output variables

◮ A call to method m nondeterministically transforms s to s ′

and returns s ′R
◮ A run is a sequence (m1, s

1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ A run is safe if for each i, s i
R |= ϕ

◮ Want to restrict runs of the class to permit only safe runs

Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

A run is consistent with an interface if,

◮ for every prefix ρ = (m1, s
1
R), (m2, s

2
R), . . . , (mk , sk

R),
mk+1 ∈ I (ρ)q

Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

A run is consistent with an interface if,

◮ for every prefix ρ = (m1, s
1
R), (m2, s

2
R), . . . , (mk , sk

R),
mk+1 ∈ I (ρ)q

An interface I is good if all runs consistent with I satisfy ϕ

Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

A run is consistent with an interface if,

◮ for every prefix ρ = (m1, s
1
R), (m2, s

2
R), . . . , (mk , sk

R),
mk+1 ∈ I (ρ)q

An interface I is good if all runs consistent with I satisfy ϕ

I can be thought of as an automaton over (M × VR)

Interface

An interface is a function I : (M × VR)∗ → 2M

◮ After a run σ = (m1, s
1
R), (m2, s

2
R), . . ., I (σ) specifies which

methods can be invoked

A run is consistent with an interface if,

◮ for every prefix ρ = (m1, s
1
R), (m2, s

2
R), . . . , (mk , sk

R),
mk+1 ∈ I (ρ)q

An interface I is good if all runs consistent with I satisfy ϕ

I can be thought of as an automaton over (M × VR)

Can we learn a maximal interface?

Learning Regular Languages

Fix a finite alphabet Σ.

◮ There is a learner and a teacher

◮ Teacher knows a regular language T

◮ Objective of the learner: To learn T by constructing an
automaton for T .

Learning Regular Languages

Fix a finite alphabet Σ.

◮ There is a learner and a teacher

◮ Teacher knows a regular language T

◮ Objective of the learner: To learn T by constructing an
automaton for T .

Complexity will be measured on the complexity of the language:
the minimum number of states needed to capture T .

Active learning [Angluin’86]

◮ Learner asks questions:

◮ Membership: Is w ∈ T?

◮ Yes or No

◮ Equivalence question: Is T = L(C)?

◮ Yes or No+counterexample

◮ Counterexample is in (T \ L(C)) ∪ (L(C) \ T).

Active learning [Angluin’86]

◮ Learner asks questions:

◮ Membership: Is w ∈ T?

◮ Yes or No

◮ Equivalence question: Is T = L(C)?

◮ Yes or No+counterexample

◮ Counterexample is in (T \ L(C)) ∪ (L(C) \ T).

Theorem (Angluin, Rivest-Schapire, Kearns-Vazirani)

Regular languages can be learnt using at most O(kn2 + n log m)
membership and O(n) equivalence queries.

◮ n — size of the minimal DFA accepting target language T

◮ m — size of the largest counterexample

◮ k — size of the alphabet.

Also, in time polynomial in O(kn2 + n log m).

How do we learn T?

Key points

◮ How many states are there?

◮ How do we reach these states from the initial state?

◮ How do we build the transitions correctly?

When are states different?

Simple observation:

Let u and v be two strings.

If ∃w such that uw ∈ T ⇐⇒ vw 6∈ T ,

then u and v must lead to different states.

When are states different?

Simple observation:

Let u and v be two strings.

If ∃w such that uw ∈ T ⇐⇒ vw 6∈ T ,

then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable

When are states different?

Simple observation:

Let u and v be two strings.

If ∃w such that uw ∈ T ⇐⇒ vw 6∈ T ,

then u and v must lead to different states.

If this condition holds, we say u and v are distinguishable

If we find n strings s1, . . . , sn, that are pairwise distinguishable, we
know that automaton for T has (at least) n states.

Access strings

Access string to a state q

◮ Some string that gets you from q0 to q.

Hence ε is an access string for q0.

Access strings

Access string to a state q

◮ Some string that gets you from q0 to q.

Hence ε is an access string for q0.

If we have n access strings s1, s2, . . . , sn, that are pairwise
distinguishable, then the states reached on these strings must all

be different.

An observation pack

Access strings s1 s2 sk
Experiments Es1 Es2 Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

An observation pack

Access strings s1 s2 sk
Experiments Es1 Es2 Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

◮ Each Esi consists of a set of pairs of the form (u,+) or (u,−):

◮ (u, +) ∈ Esi
implies si .ui ∈ T

◮ (u,−) ∈ Esi
implies si .ui 6∈ T

An observation pack

Access strings s1 s2 sk
Experiments Es1 Es2 Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

◮ Each Esi consists of a set of pairs of the form (u,+) or (u,−):

◮ (u, +) ∈ Esi
implies si .ui ∈ T

◮ (u,−) ∈ Esi
implies si .ui 6∈ T

◮ For any two access strings si and sj , there is some experiment
that distinguishes them.
i.e., there is some u that figures in Esi and Esj with opposite
polarity.

An observation pack

Access strings s1 s2 sk
Experiments Es1 Es2 Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

◮ Each Esi consists of a set of pairs of the form (u,+) or (u,−):

◮ (u, +) ∈ Esi
implies si .ui ∈ T

◮ (u,−) ∈ Esi
implies si .ui 6∈ T

◮ For any two access strings si and sj , there is some experiment
that distinguishes them.
i.e., there is some u that figures in Esi and Esj with opposite
polarity.

◮ ε ∈ S, and ε ∈ Esi for each i .

An observation pack

Access strings s1 s2 sk
Experiments Es1 Es2 Esk

An observation pack for T has n access strings S = {s1, . . . , sn},
and each s ∈ S is associated with a set of experiments Es such
that:

◮ Each Esi consists of a set of pairs of the form (u,+) or (u,−):

◮ (u, +) ∈ Esi
implies si .ui ∈ T

◮ (u,−) ∈ Esi
implies si .ui 6∈ T

◮ For any two access strings si and sj , there is some experiment
that distinguishes them.
i.e., there is some u that figures in Esi and Esj with opposite
polarity.

◮ ε ∈ S, and ε ∈ Esi for each i .

Note: If an observation pack with n access strings exists, then
minimal automaton for T has at least n states.

Example

Target language T : strings over {0, 1} where #1′s = 2 mod 3

0 0 0

1 1
1

Example

Target language T : strings over {0, 1} where #1′s = 2 mod 3

0 0 0

1 1
1

An observation pack:

Access strings ε 010

Experiments (ε,−) (ε,−)
(10,−) (10,+)

Example

Target language T : strings over {0, 1} where #1′s = 2 mod 3

0 0 0

1 1
1

An observation pack:

Access strings ε 010

Experiments (ε,−) (ε,−)
(10,−) (10,+)

ε.ε 6∈ T ; 010.ε 6∈ T

ε.10 6∈ T ; 010.10 ∈ T

Likeness and escape

Let O be an observation pack.

A word w is like an access string s in O, if w agrees with s on all
the experiments in Es .
i.e. ,∀u ∈ Es , wu ∈ T iff su ∈ T .

Note: No two access strings are alike ⇒w can be like at most one

access string in O, since

If w is not like any access string, we say it escapes the pack.

Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)

Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)

The word 001 is like 010 (since 001.ε 6∈ T , 001.10 ∈ T).

Example

0 0 0

1 1
1

Access strings ε 110

Experiments (ε,−) (ε,−)
(10,−) (10,+)

The word 001 is like 010 (since 001.ε 6∈ T , 001.10 ∈ T).

The word 11 is not like any access string in O (since 11.ε ∈ T).
So 11 escapes.

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

◮ Add w as a new access string

◮ For every access s string in O, there is some u in Es that
distinguishes w and s.

◮ Add this string to Ew

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

◮ Add w as a new access string

◮ For every access s string in O, there is some u in Es that
distinguishes w and s.

◮ Add this string to Ew

The new pack is a proper observation pack . . .

Expanding a pack

If O is an observation pack, and w escapes O, then we can expand
O to include w :

◮ Add w as a new access string

◮ For every access s string in O, there is some u in Es that
distinguishes w and s.

◮ Add this string to Ew

The new pack is a proper observation pack . . .

. . . and has one more access string.

Closure

An observation pack O is said to be closed if

◮ For every access string s in O and a ∈ Σ, s.a is like some
access string in O.

Closure

An observation pack O is said to be closed if

◮ For every access string s in O and a ∈ Σ, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

◮ States: The access strings in O: {s1 . . . , sk}

Closure

An observation pack O is said to be closed if

◮ For every access string s in O and a ∈ Σ, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

◮ States: The access strings in O: {s1 . . . , sk}

◮ From s on a, go to the state that is like sa.

Closure

An observation pack O is said to be closed if

◮ For every access string s in O and a ∈ Σ, s.a is like some
access string in O.

If O is closed, we can build an automaton from it:

◮ States: The access strings in O: {s1 . . . , sk}

◮ From s on a, go to the state that is like sa.

◮ Mark a state s final iff (ε,+) ∈ Es .

Automaton construction

Theorem
If the observation pack O has as many states as MT , then the

automaton constructed is isomorphic to MT .

Automaton construction

Theorem
If the observation pack O has as many states as MT , then the

automaton constructed is isomorphic to MT .

Proof.

◮ The number of states is correct.

◮ Initial state maps to initial state of MT .

◮ On any letter, we move to the right state.

◮ Final states are marked correctly.

Automaton construction

Theorem
If the observation pack O has as many states as MT , then the

automaton constructed is isomorphic to MT .

Proof.

◮ The number of states is correct.

◮ Initial state maps to initial state of MT .

◮ On any letter, we move to the right state.

◮ Final states are marked correctly.

So, the whole problem reduces to finding an observation pack with
n access strings!!

Learning from a false automaton

Let O be an observation pack.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase II: If O is closed but has less access strings than |MT |.

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase II: If O is closed but has less access strings than |MT |.

◮ Then automaton constructed has too few states.

◮ How do we learn access strings to new states?

Learning from a false automaton

Let O be an observation pack.

Phase I: If O is not closed, expand pack using some new access
string s.a.

Phase II: If O is closed but has less access strings than |MT |.

◮ Then automaton constructed has too few states.

◮ How do we learn access strings to new states?

Equivalence query:

◮ Build conjecture automaton C .

◮ Ask teacher “L(C) = T?”

◮ Use counterexample given by teacher to generate new access
string.

A learning example. . .

Target language T :

0 0 0

1 1
1

A learning example. . .

Target language T :

0 0 0

1 1
1

Access strings s0 = ε

Experiments (ε,−)

A learning example. . .

Target language T :

0 0 0

1 1
1

Access strings s0 = ε

Experiments (ε,−)

Check closure:
0 is like ε (since 0 6∈ T).
1 is like ε (since 1 6∈ T).

A learning example. . .

Target language T :

0 0 0

1 1
1

Access strings s0 = ε

Experiments (ε,−)

Check closure:
0 is like ε (since 0 6∈ T).
1 is like ε (since 1 6∈ T).

0, 1

A learning example . . .

0, 1

Counter-example: 101 ∈ T \ L(C)

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

A learning example . . .

0, 1

Counter-example: 101 ∈ T \ L(C)

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

◮ s0.101 ∈ T

A learning example . . .

0, 1

Counter-example: 101 ∈ T \ L(C)

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

◮ s0.101 ∈ T

◮ s0.01 6∈ T .

A learning example . . .

0, 1

Counter-example: 101 ∈ T \ L(C)

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

◮ s0.101 ∈ T

◮ s0.01 6∈ T .

◮ So we cannot go on 1 to s0!
(since 01 distinguishes 1 and s0)

A learning example . . .

0, 1

Counter-example: 101 ∈ T \ L(C)

Run of 101 on C : s0
1
−→ s0

0
−→ s0

1
−→ s0

◮ s0 = ε

◮ s0.101 ∈ T

◮ s0.01 6∈ T .

◮ So we cannot go on 1 to s0!
(since 01 distinguishes 1 and s0)

◮ So let’s add 01 as experiment string for s0.

A learning example

T

0 0 0

1 1
1

A learning example

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1

Experiments (ε,−) (ε,−)
(01,−) (01,+)

A learning example

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1

Experiments (ε,−) (ε,−)
(01,−) (01,+)

Check closure:
10 is like 1 (since 10 6∈ T and 10.01 ∈ T)

A learning example

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1

Experiments (ε,−) (ε,−)
(01,−) (01,+)

Check closure:
10 is like 1 (since 10 6∈ T and 10.01 ∈ T)

But 11 is neither like ε nor like 1 (since 11 ∈ T).

A learning example

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1

Experiments (ε,−) (ε,−)
(01,−) (01,+)

Check closure:
10 is like 1 (since 10 6∈ T and 10.01 ∈ T)

But 11 is neither like ε nor like 1 (since 11 ∈ T).

So 11 escapes and forms a new access string.

A learning example . . .

T

0 0 0

1 1
1

A learning example . . .

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1 s2 = 11

Experiments (ε,−) (ε,−) (ε,+)
(01,−) (01,+)

A learning example . . .

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1 s2 = 11

Experiments (ε,−) (ε,−) (ε,+)
(01,−) (01,+)

Check closure:
0 is like s0; 10 is like 1;
110 is like 11; 111 is like 0.

A learning example . . .

T

0 0 0

1 1
1

Access strings s0 = ε s1 = 1 s2 = 11

Experiments (ε,−) (ε,−) (ε,+)
(01,−) (01,+)

Check closure:
0 is like s0; 10 is like 1;
110 is like 11; 111 is like 0.

s0 s1 s2

0 0 0

1 1
1

References

Angluin
Learning regular sets from queries and counterexamples
Inf. and Comp. ’87

Rivest, Schapire
Inference of finite automata using homing sequences
Inf. and Comp. ’95

Kearns, Vazirani
Introduction to Computational Learning Theory
MIT Press

Balcázar, D́ıaz, Gavalda, Watanabe
Algorithms for Learning Finite Automata from queries: A
Unified View
Tech report, http://citeseer.ist.psu.edu/67130.html

http://citeseer.ist.psu.edu/67130.html

Compositional verification of modules

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

Compositional verification of modules

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

Compositional verification of modules

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Compositional verification of modules

XP

XO
P

XQ

XO
Q

X I
Q

X I
P

Safety property ϕ: boolean formula over X I ∪ XO

◮ s1s2 . . . |= ϕ if for each i , s I∪O
i |= ϕ

When does P ‖ Q |= ϕ?

◮ For each σ ∈ VisBeh(P ‖ Q), σ |= ϕ

Assume guarantee reasoning

◮ Find R such that:
◮ P ‖ R |= ϕ

◮ VisBeh(Q) ⊆ VisBeh(R)

◮ Learn a regular language R with small DFA?

Compositional verification of modules . . .

Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Compositional verification of modules . . .

Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Lower bound for R

Lmin = VisBeh(Q)

Compositional verification of modules . . .

Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Lower bound for R

Lmin = VisBeh(Q)

Note that both Lmax and Lmin are regular

Compositional verification of modules . . .

Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Lower bound for R

Lmin = VisBeh(Q)

Note that both Lmax and Lmin are regular

Want to learn R , Lmin ⊆ R ⊆ Lmax

Compositional verification of modules . . .

Most permissive R

Lmax = {σ | σ ∈ VisBeh(P) ⇒ σ |= ϕ}

Lower bound for R

Lmin = VisBeh(Q)

Note that both Lmax and Lmin are regular

Want to learn R , Lmin ⊆ R ⊆ Lmax

Target language is unknown!

Compositional verification: Implementing the teacher . . .

Recall that Lmin ⊆ R ⊆ Lmax

Compositional verification: Implementing the teacher . . .

Recall that Lmin ⊆ R ⊆ Lmax

Equivalence query, L(C) = R?

◮ Subset query L(C) ⊆ Lmax?

◮ Superset query L(C) ⊇ Lmin?

Compositional verification: Implementing the teacher . . .

Recall that Lmin ⊆ R ⊆ Lmax

Equivalence query, L(C) = R?

◮ Subset query L(C) ⊆ Lmax?

◮ Superset query L(C) ⊇ Lmin?

Membership query, w ∈ R?

◮ If w /∈ Lmax, answer No.

◮ If w ∈ Lmin, answer Yes.

◮ If w ∈ Lmax \ Lmin, ambiguous!

◮ Heuristic: Answer Yes (i.e., answer with respect to Lmax)

◮ May result in larger R than required

Compositional verification: Implementing the teacher . . .

Recall that Lmin ⊆ R ⊆ Lmax

Equivalence query, L(C) = R?

◮ Subset query L(C) ⊆ Lmax?

◮ Superset query L(C) ⊇ Lmin?

Membership query, w ∈ R?

◮ If w /∈ Lmax, answer No.

◮ If w ∈ Lmin, answer Yes.

◮ If w ∈ Lmax \ Lmin, ambiguous!

◮ Heuristic: Answer Yes (i.e., answer with respect to Lmax)

◮ May result in larger R than required

Practical note: Use BDDs to deal with large alphabet X I ∪ XO

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ Want to restrict runs of the class to permit only safe runs

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ Want to restrict runs of the class to permit only safe runs

◮ An interface is a function I : (M × VR)∗ → 2M

Learning interfaces

◮ A class with variables V and methods M. Each method call
returns values over VR ⊆ V

◮ A run is a sequence (m1, s
1
R), (m2, s

2
R), . . .

◮ Safety specification: Boolean formula ϕ on return variables

◮ Want to restrict runs of the class to permit only safe runs

◮ An interface is a function I : (M × VR)∗ → 2M

◮ An interface I is good if all runs consistent with I satisfy ϕ

Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Observe that L(I) is prefix closed. Hence, membership query
w ∈ L(I) can be converted into subset query Prefixes(w) ⊆ L(I).

Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Observe that L(I) is prefix closed. Hence, membership query
w ∈ L(I) can be converted into subset query Prefixes(w) ⊆ L(I).

Checking L(C) = L(I) is broken up into subset and superset
queries, as before

Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Observe that L(I) is prefix closed. Hence, membership query
w ∈ L(I) can be converted into subset query Prefixes(w) ⊆ L(I).

Checking L(C) = L(I) is broken up into subset and superset
queries, as before

L(C) ⊆ L(I) : Build C ‖ I and ask the CTL question AGϕ

Learning interfaces . . .

Given an class C and an interface I , interaction is a game over
C ‖ I

◮ Given the history, I chooses a method m to execute

◮ Given the method m, C fixes the return state
after m executes

Observe that L(I) is prefix closed. Hence, membership query
w ∈ L(I) can be converted into subset query Prefixes(w) ⊆ L(I).

Checking L(C) = L(I) is broken up into subset and superset
queries, as before

L(C) ⊆ L(I) : Build C ‖ I and ask the CTL question AGϕ

L(C) ⊇ L(I) : More difficult, will not go into detail here.

