
Verification of Message Sequence Charts

Madhavan Mukund

Chennai Mathematical Institute

92 G N Chetty Rd, Chennai 600 017, India

http://www.cmi.ac.in/˜madhavan

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.1



Scenarios

A scenario describes a pattern of interaction

Attractive visual formalism

Telecommunications

Message sequence charts (MSC)
Messages sent between communicating agents

UML

Sequence diagrams
Interaction between objects
e.g., method invocations etc

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.2



An ATM

Customer ATM Bank

-passwd

-authen

� wrong

� reject

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.3



An ATM

Customer ATM Bank

-passwd

-authen

� correct

� OK

-amount

-funds?

� no

� sorry

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.3



An ATM

Customer ATM Bank

-passwd

-authen

� correct

� OK

-amount

-funds?

� yes

� cash

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.3



Message sequence charts

Two clients and a server

c1 s c2r1 - r2�
g2 -
x2�g1

�

r1

j

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.4



Message sequence charts

Two clients and a server, and a partial order
representation

c1 s c2r1 - r2�
g2 -
x2�g1

�

r1

j

!r1
-?r1

?
!r2

�?r2
? ?

!g2
-?g2

? ?
!x2

�?x2
?

!g1

� ?
?g1

!r1

? j
?r1

?

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.4



Message sequence charts

Two clients and a server, and a partial order
representation

c1 s c2r1 - r2�
g2 -
x2�g1

�

r1

j

!r1
-?r1

?
!r2

�?r2
? ?

!g2
-?g2

? ?
!x2

�?x2
?

!g1

� ?
?g1

!r1

? j
?r1

?

Assume, in general, that channels are fifo

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.4



Message sequence charts

Two clients and a server, and a partial order
representation

c1 s c2r1 - r2�
g2 -
x2�g1

�

r1

j

• i1

•i2

!r1
-?r1

?
!r2

�?r2
? ?

!g2
-?g2

? ?
!x2

�?x2
?

!g1

� ?
?g1

!r1

? j
?r1

?
i1

?
?

i2

Assume, in general, that channels are fifo

Can add internal events, local to processes

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.4



Collections of MSCs

Often need to specify a collection of scenarios

Finite collection can be exhaustively enumerated

Infinite collection needs a generating mechanism

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.5



High level MSCs (HMSCs)

A finite state automaton

Each state is labelled by an MSC

Each (legal) path in the automaton generates an MSC

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.6



High level MSCs (HMSCs)

A finite state automaton

Each state is labelled by an MSC

Each (legal) path in the automaton generates an MSC

-
�

m

m′

-m �m
′

⇓

� U

- �

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.6



High level MSCs (HMSCs)

A finite state automaton

Each state is labelled by an MSC

Each (legal) path in the automaton generates an MSC

-
�

m

m′

-m �m
′

⇓

� U

- �

m -
m′

�
m -
m -
m′

�
m′

�
m -
m′

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.6



High level MSCs (HMSCs)

A finite state automaton

Each state is labelled by an MSC

Each (legal) path in the automaton generates an MSC

-
�

m

m′

-m �m
′

⇓

� U

- �

m -
m′

�
m -
m -
m′

�
m′

�
m -
m′

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.6



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �
-

-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • ••

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • •

•

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • •

•

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • ••
-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • •

•

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• • •

•

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

•

•

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

••

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

•

•
-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

•

•

-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

• •

-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC

-

-

-

-

-

⇓

	 R

? ?

- �• •

•

•

-

-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

“Executing” HMSC may require unbounded history

-

-

-

-

-

⇓

	 R

? ?

- �• •

•

•

-

-

-

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.7



Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.8



Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive

Check if an implementation (e.g., set of
communicating FSMs) satisfies the specification

Can use scenarios to filter out (un)interesting
executions

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.8



Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive

Check if an implementation (e.g., set of
communicating FSMs) satisfies the specification

Can use scenarios to filter out (un)interesting
executions

Set of scenarios specify both the system and its
desired properties

Checking positive specifications:
Inclusion of MSC languages

Checking negative specifications:
Is the intersection of MSC languages empty

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.8



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels

U �

p!q(m)

s

p

q?p(m)

t

q

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels

U �

p!q(m)

s

p

q?p(m)

t

q

p q
-
-
-

m
m
m...

-m

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels

U �

p!q(m)

s

p

q?p(m)

t

q

p q
-
-
-

m
m
m...

-m

!m

!m

!m

?

?
...

!m

?m

?m

?m

?

?
...

?m

-

-

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels

U �

p!q(m)

s

p

q?p(m)

t

q

p q
-
-
-

m
m
m...

-m

!m

!m

!m

?

?
...

!m

?m

?m

?m

?

?
...

?m

-

-

-

No bound on number of messages in channel

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels
Globally finite state ⇒ channels are bounded

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels
Globally finite state ⇒ channels are bounded

⇒ s1

s2

s3

?

6
?

p!q(m)

p?q(m′) p!q(m)

⇒ t1

t2 t3
?
6

R
q!p(m′)

q?p(m)

q?p(m)

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels
Globally finite state ⇒ channels are bounded

⇒ s1

s2

s3

?

6
?

p!q(m)

p?q(m′) p!q(m)

⇒ t1

t2 t3
?
6

R
q!p(m′)

q?p(m)

q?p(m)
p q

j

j

j

m

m

m
	

	

m′

m′

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.9



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Regular collection of MSCs
4
=

linearizations form a regular language

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Regular collection of MSCs
4
=

linearizations form a regular language

Communicating finite-state machines with bounded
channels generate only regular MSC languages

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Regular collection of MSCs
4
=

linearizations form a regular language

Communicating finite-state machines with bounded
channels generate only regular MSC languages

Converse is also true [MNS, CONCUR ’00]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Regular collection of MSCs
4
=

linearizations form a regular language

Communicating finite-state machines with bounded
channels generate only regular MSC languages

Converse is also true [MNS, CONCUR ’00]

Regular MSC languages have a nice theory
[HMNST, I&C ’0?]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.10



HMSCs and regularity

HMSC specifications may not be regular

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

-

- �

⇓

� U

- �

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

Problem 2 Global synchronization yields context-free
behaviours

-
�

-
�⇒

-
�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

Problem 2 Global synchronization yields context-free
behaviours

Sufficient structural conditions on HMSCs to
guarantee regularity . . . [AY99,MP99]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

Problem 2 Global synchronization yields context-free
behaviours

Sufficient structural conditions on HMSCs to
guarantee regularity . . . [AY99,MP99]

. . . but checking if an HMSC specification is regular is
undecidable [HMNT00]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

In each loop, every message is “acknowledged”

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

In each loop, every message is “acknowledged”

-
�

- �

⇓

	 R

- �

p q-�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

In each loop, every message is “acknowledged”

-

- �

⇓

	 R

- �

p q-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

In each loop, every message is “acknowledged”

-� -�

⇓

-�

p q-�

r s-�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.12



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Normal temporal logic verification asks if Lsys ⊆ Lϕ

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Normal temporal logic verification asks if Lsys ⊆ Lϕ

L1 ⊆ L2 ⇔ L1 ∩ L2 = ∅

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Normal temporal logic verification asks if Lsys ⊆ Lϕ

L1 ⊆ L2 ⇔ L1 ∩ L2 = ∅

For scenarios, we have to complement Lsys, not
Lspec

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.13



Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.14



Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]

Existentially bounded channels

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.14



Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]

Existentially bounded channels
For every MSC in L, there is an ordering of events
which bounds the channels

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.14



Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]

Existentially bounded channels
For every MSC in L, there is an ordering of events
which bounds the channels

Construct a regular set of representative linearizations
that cover the MSC language

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.14



Interpreting MSCs

The visual notation of MSCs is appealing

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.15



Interpreting MSCs

The visual notation of MSCs is appealing . . .

. . . but can also be misleading

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.15



Interpreting MSCs

The visual notation of MSCs is appealing . . .

. . . but can also be misleading
p q r

� m1

-m2

� m3

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.15



Interpreting MSCs

The visual notation of MSCs is appealing . . .

. . . but can also be misleading
p q r

� m1

-m2

� m3

Is it reasonable to insist that m1 arrives before m3?

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.15



Race Conditions [AHP, TACAS ’96]

Independent receive events
can be interchanged -

�

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.16



Race Conditions [AHP, TACAS ’96]

Independent receive events
can be interchanged

-
�
/

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.16



Race Conditions [AHP, TACAS ’96]

Independent receive events
can be interchanged

-
�
/

Send event before a receive
event can be swapped (but
not vice versa!)

-

-

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.16



Race Conditions [AHP, TACAS ’96]

Independent receive events
can be interchanged

-
�
/

Send event before a receive
event can be swapped (but
not vice versa!)

-

-

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.16



Verification for MSCs . . .

Implementation may add additional messages

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Verification for MSCs . . .

Implementation may add additional messages

MSC M matches MSC M ′ if events of M can be
embedded injectively in M ′

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Verification for MSCs . . .

Implementation may add additional messages

MSC M matches MSC M ′ if events of M can be
embedded injectively in M ′

Scenario matching with embedding

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Verification for MSCs . . .

Implementation may add additional messages

MSC M matches MSC M ′ if events of M can be
embedded injectively in M ′

Scenario matching with embedding

Greedy algorithm works with closure under race
conditions [MPS, FOSSACS ’98]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Verification for MSCs . . .

Implementation may add additional messages

MSC M matches MSC M ′ if events of M can be
embedded injectively in M ′

Scenario matching with embedding

Greedy algorithm works with closure under race
conditions [MPS, FOSSACS ’98]
Without race condition closure, backtracking
appears unavoidable [DM, SPIN ’03]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Implied scenarios [AEY, ICSE ’00]

p q r s

M1

-m

-m

p q r s

M2

-m

-m

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.18



Implied scenarios [AEY, ICSE ’00]

p q r s

M1

-m

-m

p q r s

M2

-m

-m

p q r s

M

-m -m

-m

p and q believe M is M1

r and s believe M is M2

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.18



Implied scenarios [AEY, ICSE ’00]

p q r s

M1

-m

-m

p q r s

M2

-m

-m

p q r s

M

-m -m

-m

p and q believe M is M1

r and s believe M is M2

MSC M is implied by L if for each process p, the
p-projection of M matches the p-projection of some
MSC in L

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.18



Implied scenarios [AEY, ICSE ’00]

p q r s

M1

-m

-m

p q r s

M2

-m

-m

p q r s

M

-m -m

-m

p and q believe M is M1

r and s believe M is M2

MSC M is implied by L if for each process p, the
p-projection of M matches the p-projection of some
MSC in L

An MSC language is weakly realizable if it is closed
with respect to implied MSCs

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.18



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Even if the original language has bounded channels,
its weak closure may not

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Even if the original language has bounded channels,
its weak closure may not

p q r s

M

�
-

�
�

p q r s

M ′

�
-

���

M M ′⇒ ⇐-�
U �

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Even if the original language has bounded channels,
its weak closure may not

p q r s

M

�
-

�
�

p q r s

M ′

�
-

���

M M ′⇒ ⇐-�
U �

p q r s

�
-

�
-

�
-

�
-

�
-

�
-

�

�

�

=

	
=

�
�

�

�

�
�

�

�

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Even if the original language has bounded channels,
its weak closure may not

p q r s

M

�
-

�
�

•

•

• •

p q r s

M ′

�
-

���

•

•

• •

•

•

M M ′⇒ ⇐-�
U �

p q r s

�
-•

�
-•

�
-•

�
-•

�
-•

�
-•

� ••

�
•

•

�
•

•

=

•

•

	

•

•=

•

•

�
•

•�
••

�•

�•

�•
�•

�
•

�•

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]

Even if the original language has bounded channels,
its weak closure may not

p q r s

M

�
-

�
�

•

•

• •

p q r s

M ′

�
-

���

•

•

• •

•

•

Confusing M2kM ′k and M ′kM2k

generates upto k messages in p → s

channel

p q r s

�
-•

�
-•

�
-•

�
-•

�
-•

�
-•

� ••

�
•

•

�
•

•

=

•

•

	

•

•=

•

•

�
•

•�
••

�•

�•

�•
�•

�
•

�•

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.19



Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.20



Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history

p q r s

M1

m

-m

-

p q r s

M2

-m

-m

p q r s

M

-m -m

-m

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.20



Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history

p q r s

M1

(m,1)

-m

-

p q r s

M2

-m

-(m,2)

p q r s

M

-m -m

-m

By tagging auxiliary information to m, p informs s
whether it has sent a message to q

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.20



Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history

p q r s

M1

(m,1)

-m

-

p q r s

M2

-m

-(m,2)

p q r s

M

-m -m

-m

By tagging auxiliary information to m, p informs s
whether it has sent a message to q

This rules out the implied scenario M

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.20



Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.21



Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events

For a process p and an MSC M , p’s causal view of M
is the set of all events in M that lie below some event
of p

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.21



Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events

For a process p and an MSC M , p’s causal view of M
is the set of all events in M that lie below some event
of p

M is causally implied by L if each process p’s causal
view of M matches its causal view of some MSC in L

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.21



Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events

For a process p and an MSC M , p’s causal view of M
is the set of all events in M that lie below some event
of p

M is causally implied by L if each process p’s causal
view of M matches its causal view of some MSC in L

An MSC language is causally realizable if it is closed
with respect to causal implication

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.21



Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.22



Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information

Processes can use this auxiliary information to obtain
information about the state of the rest of the system

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.22



Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information

Processes can use this auxiliary information to obtain
information about the state of the rest of the system

The causal closure of a regular MSC language L is
always regular

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.22



Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information

Processes can use this auxiliary information to obtain
information about the state of the rest of the system

The causal closure of a regular MSC language L is
always regular

We can effectively construct a bounded
message-passing automaton recognizing the causal
closure

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.22



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Finite set A = {A1, . . . , Ak} of (atomic) MSCs

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Finite set A = {A1, . . . , Ak} of (atomic) MSCs
Every MSC in L is a concatenation of MSCs from A

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Finite set A = {A1, . . . , Ak} of (atomic) MSCs
Every MSC in L is a concatenation of MSCs from A

In general, regular MSC languages may not be
finitely generated

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Finite set A = {A1, . . . , Ak} of (atomic) MSCs
Every MSC in L is a concatenation of MSCs from A

In general, regular MSC languages may not be
finitely generated

Causal closure of a regular HMSC language may
contain an infinite collection of atoms

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.23



HMSCs and causal closure

Causal closure of an HMSC language may not be finitely
generated

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.24



HMSCs and causal closure

Causal closure of an HMSC language may not be finitely
generated

⇓

p q r s

U
� -

⇓

p q r s

�

?
p q r s

-�

?

I

p q r s

-

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.24



HMSCs and causal closure

Causal closure of an HMSC language may not be finitely
generated

⇓

p q r s

U
� -

⇓

p q r s

�

?
p q r s

-�

?

I

p q r s

-

p q r s

+

W R

-�
...
-�

n
copies

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.24



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Verifying positive scenarios P against system
behaviours S:

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Verifying positive scenarios P against system
behaviours S:

Both P and S should be causally closed to avoid
missing out some scenarios when checking P ⊆ S.

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Verifying positive scenarios P against system
behaviours S:

Both P and S should be causally closed to avoid
missing out some scenarios when checking P ⊆ S.

Verifying that a negative property N is not present in
S:

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Verifying positive scenarios P against system
behaviours S:

Both P and S should be causally closed to avoid
missing out some scenarios when checking P ⊆ S.

Verifying that a negative property N is not present in
S:

N should be causally closed so no forbidden
scenario goes undetected.

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.25



Summary

Scenario based specifications are intuitively easy to
use

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Semantics of MSCs is not completely straightforward

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Semantics of MSCs is not completely straightforward

Race conditions

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Semantics of MSCs is not completely straightforward

Race conditions
Implied scenarios

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Semantics of MSCs is not completely straightforward

Race conditions
Implied scenarios

To what extent can verification be done with enriched
semantics for MSCs?

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.26



Related approaches

Related approaches not covered in this talk

Live sequence charts by Harel et al

Verification of Lamport diagrams by Meenakshi and
Ramanujam

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.27



References

B Adsul, M Mukund, K Narayan Kumar and Vasumathi Narayanan
Causal closure for MSC languages
Internal Report, Chennai Mathematical Institute (2005)
R Alur, K Etessami and M Yannakakis
Realizability and Verification of MSC Graphs
Theoretical Computer Science, 331(1), (2005) 97–114.
R Alur, G Holzmann and D Peled
An analyzer for message sequence charts
Software Concepts and Tools, 17(2) (1996) 70–77.
R Alur and M Yannakakis
Model checking of message sequence charts
CONCUR 1999, Springer LNCS 1664 (1999) 114–129.
B Genest, A Muscholl and D Kuske
A Kleene Theorem for a Class of Communicating Automata with Effective Algorithms
Proc DLT 2004, Springer LNCS 3340 (2004) 30–48.
B Genest, A Muscholl, H Seidl and M Zeitoun
Infinite-State High-Level MSCs: Model-Checking and Realizability
ICALP 2002, Springer LNCS 2380 (2002) 657–668.
J G Henriksen, M Mukund, K Narayan Kumar, M Sohoni and P S Thiagarajan
A Theory of Regular MSC Languages
Information and Computation (to appear).
A Muscholl and D Peled
Message sequence graphs and decision problems on Mazurkiewicz traces
MFCS 1999, Springer LNCS 1672 (1999) 81–91.
A Muscholl, D Peled and Z Su
Deciding properties for message sequence charts
FOSSACS’98, Springer LNCS 1378 (1998) 226–242.

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.28


	Grey {	extbf {Scenarios}}
	Grey {	extbf {An ATM}}
	Grey {	extbf {An ATM}}
	Grey {	extbf {An ATM}}

	Grey {	extbf {Message sequence charts}}
	Grey {	extbf {Message sequence charts}}
	Grey {	extbf {Message sequence charts}}
	Grey {	extbf {Message sequence charts}}

	Grey {	extbf {Collections of MSCs}}
	Grey {	extbf {High level MSCs (HMSCs)}}
	Grey {	extbf {High level MSCs (HMSCs)}}
	Grey {	extbf {High level MSCs (HMSCs)}}
	Grey {	extbf {High level MSCs (HMSCs)}}

	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}
	Grey {	extbf {Concatenation of MSCs}}

	Grey {	extbf {Verification using scenarios}}
	Grey {	extbf {Verification using scenarios}}
	Grey {	extbf {Verification using scenarios}}

	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}

	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}
	Grey {	extbf {Regular MSC languages}}

	Grey {	extbf {HMSCs and regularity}}
	Grey {	extbf {HMSCs and regularity}}
	Grey {	extbf {HMSCs and regularity}}
	Grey {	extbf {HMSCs and regularity}}
	Grey {	extbf {HMSCs and regularity}}

	Grey {	extbf {Locally synchronized HMSCs}}
	Grey {	extbf {Locally synchronized HMSCs}}
	Grey {	extbf {Locally synchronized HMSCs}}
	Grey {	extbf {Locally synchronized HMSCs}}
	Grey {	extbf {Locally synchronized HMSCs}}
	Grey {	extbf {Locally synchronized HMSCs}}

	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}
	Grey {	extbf {Verification for MSCs}}

	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}

	Grey {	extbf {Interpreting MSCs}}
	Grey {	extbf {Interpreting MSCs}}
	Grey {	extbf {Interpreting MSCs}}
	Grey {	extbf {Interpreting MSCs}}

	Grey {	extbf {Race Conditions Cite {[AHP, TACAS '96]}}}
	Grey {	extbf {Race Conditions Cite {[AHP, TACAS '96]}}}
	Grey {	extbf {Race Conditions Cite {[AHP, TACAS '96]}}}
	Grey {	extbf {Race Conditions Cite {[AHP, TACAS '96]}}}

	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}
	Grey {	extbf {Verification for MSCs ldots }}

	Grey {	extbf {Implied scenarios Cite {[AEY, ICSE '00]}}}
	Grey {	extbf {Implied scenarios Cite {[AEY, ICSE '00]}}}
	Grey {	extbf {Implied scenarios Cite {[AEY, ICSE '00]}}}
	Grey {	extbf {Implied scenarios Cite {[AEY, ICSE '00]}}}

	Grey {	extbf {Implied scenarios ldots }}
	Grey {	extbf {Implied scenarios ldots }}
	Grey {	extbf {Implied scenarios ldots }}
	Grey {	extbf {Implied scenarios ldots }}
	Grey {	extbf {Implied scenarios ldots }}
	Grey {	extbf {Implied scenarios ldots }}

	Grey {	extbf {Beyond weak realizability}}
	Grey {	extbf {Beyond weak realizability}}
	Grey {	extbf {Beyond weak realizability}}
	Grey {	extbf {Beyond weak realizability}}

	Grey {	extbf {Causal closure Cite {[AMNN, CMI-TR 05]}}}
	Grey {	extbf {Causal closure Cite {[AMNN, CMI-TR 05]}}}
	Grey {	extbf {Causal closure Cite {[AMNN, CMI-TR 05]}}}
	Grey {	extbf {Causal closure Cite {[AMNN, CMI-TR 05]}}}

	Grey {	extbf {Causal closure ldots }}
	Grey {	extbf {Causal closure ldots }}
	Grey {	extbf {Causal closure ldots }}
	Grey {	extbf {Causal closure ldots }}

	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}

	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}
	Grey {	extbf {HMSCs and causal closure}}

	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}
	Grey {	extbf {Verification using scenarios ldots }}

	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}
	Grey {	extbf {Summary}}

	Grey {	extbf {Related approaches}}
	Grey {	extbf {References}}

