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Scenarios

A scenario describes a pattern of interaction

Attractive visual formalism

Telecommunications

Message sequence charts (MSC)
Messages sent between communicating agents

UML

Sequence diagrams
Interaction between objects
e.g., method invocations etc
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An ATM

Customer ATM Bank

-passwd

-authen

� wrong

� reject
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An ATM
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An ATM

Customer ATM Bank

-passwd
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Message sequence charts

Two clients and a server

c1 s c2r1 - r2�
g2 -
x2�g1
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Message sequence charts

Two clients and a server, and a partial order
representation
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Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.4



Message sequence charts

Two clients and a server, and a partial order
representation
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Assume, in general, that channels are fifo

Can add internal events, local to processes
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Collections of MSCs

Often need to specify a collection of scenarios

Finite collection can be exhaustively enumerated

Infinite collection needs a generating mechanism
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High level MSCs (HMSCs)

A finite state automaton

Each state is labelled by an MSC

Each (legal) path in the automaton generates an MSC
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Concatenation of MSCs

First MSC finishes before second starts : synchronous
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First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

Some processes may proceed to second MSC
before others complete actions of first MSC
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Concatenation of MSCs

First MSC finishes before second starts : synchronous

Join MSCs along each process line : asynchronous

“Executing” HMSC may require unbounded history
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Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive
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Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive

Check if an implementation (e.g., set of
communicating FSMs) satisfies the specification

Can use scenarios to filter out (un)interesting
executions

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.8



Verification using scenarios

A set of scenarios is a behavioural specification

May be negative or positive

Check if an implementation (e.g., set of
communicating FSMs) satisfies the specification

Can use scenarios to filter out (un)interesting
executions

Set of scenarios specify both the system and its
desired properties

Checking positive specifications:
Inclusion of MSC languages

Checking negative specifications:
Is the intersection of MSC languages empty

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.8



Verification using scenarios . . .

Simplest way is to convert scenarios into executable
form — set of communicating finite state-machines

Execution model

Each component is finite state
Communication is via (fifo) channels
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Verification using scenarios . . .

Simplest way is to convert scenarios into executable
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Regular MSC languages

An MSC is (uniquely) determined by its linearizations
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word language over send/receive actions

Regular collection of MSCs
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=

linearizations form a regular language

Communicating finite-state machines with bounded
channels generate only regular MSC languages

Converse is also true [MNS, CONCUR ’00]
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Regular MSC languages

An MSC is (uniquely) determined by its linearizations

Set of strings over send actions p!q(m) and receive
actions p?q(m)

Collection of MSCs ⇔
word language over send/receive actions

Regular collection of MSCs
4
=

linearizations form a regular language

Communicating finite-state machines with bounded
channels generate only regular MSC languages

Converse is also true [MNS, CONCUR ’00]

Regular MSC languages have a nice theory
[HMNST, I&C ’0?]
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HMSCs and regularity

HMSC specifications may not be regular
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HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

Problem 2 Global synchronization yields context-free
behaviours

Sufficient structural conditions on HMSCs to
guarantee regularity . . . [AY99,MP99]
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HMSCs and regularity

HMSC specifications may not be regular

Problem 1 Unbounded buffers

Problem 2 Global synchronization yields context-free
behaviours

Sufficient structural conditions on HMSCs to
guarantee regularity . . . [AY99,MP99]

. . . but checking if an HMSC specification is regular is
undecidable [HMNT00]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.11



Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q
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Locally synchronized HMSCs

Construct communication graph for an MSC
p → q iff p sends a message to q

For each loop, communication graph is one strongly
connected component plus isolated vertices

In each loop, every message is “acknowledged”
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Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages
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message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Normal temporal logic verification asks if Lsys ⊆ Lϕ

L1 ⊆ L2 ⇔ L1 ∩ L2 = ∅
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Verification for MSCs

Locally synchronized HMSCs define regular MSC
languages

Regular MSC languages can be translated into
message-passing automata with bounded channels

Use standard automata-theoretic techniques to check
Lpos ⊆ Lsys and Lneg ∩ Lsys = ∅

Note that for positive scenarios, we want to check
Lpos ⊆ Lsys

Normal temporal logic verification asks if Lsys ⊆ Lϕ

L1 ⊆ L2 ⇔ L1 ∩ L2 = ∅

For scenarios, we have to complement Lsys, not
Lspec
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Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]
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Verification for MSCs . . .

Model checking possible for larger classes than
regular HMSC languages [GMSZ, ICALP ’02

GMK, DLT ’04]

Existentially bounded channels
For every MSC in L, there is an ordering of events
which bounds the channels

Construct a regular set of representative linearizations
that cover the MSC language
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Interpreting MSCs

The visual notation of MSCs is appealing
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Interpreting MSCs

The visual notation of MSCs is appealing . . .

. . . but can also be misleading
p q r

� m1

-m2

� m3

Is it reasonable to insist that m1 arrives before m3?
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Race Conditions [AHP, TACAS ’96]

Independent receive events
can be interchanged -

�
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Verification for MSCs . . .

Implementation may add additional messages

MSC M matches MSC M ′ if events of M can be
embedded injectively in M ′

Scenario matching with embedding

Greedy algorithm works with closure under race
conditions [MPS, FOSSACS ’98]
Without race condition closure, backtracking
appears unavoidable [DM, SPIN ’03]

Formal Methods Update Meeting ’05, IIT Bombay, 20 July 2005 – p.17



Implied scenarios [AEY, ICSE ’00]
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p q r s

M2
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-m

p q r s

M

-m -m

-m

p and q believe M is M1

r and s believe M is M2

MSC M is implied by L if for each process p, the
p-projection of M matches the p-projection of some
MSC in L

An MSC language is weakly realizable if it is closed
with respect to implied MSCs
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Implied scenarios . . .

Even for regular MSC languages, checking weak
realizability is undecidable! [AEY, ICALP ’01]
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Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history
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Beyond weak realizability

Assumption underlying weak realizability
The only information that a process can maintain
locally is its own action history

p q r s

M1

(m,1)

-m

-

p q r s

M2

-m

-(m,2)

p q r s

M

-m -m

-m

By tagging auxiliary information to m, p informs s
whether it has sent a message to q

This rules out the implied scenario M
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Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events
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Causal closure [AMNN, CMI-TR 05]

Recall that an MSC is a partially ordered set of events

For a process p and an MSC M , p’s causal view of M
is the set of all events in M that lie below some event
of p

M is causally implied by L if each process p’s causal
view of M matches its causal view of some MSC in L

An MSC language is causally realizable if it is closed
with respect to causal implication
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Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information
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Causal closure . . .

Given an automaton for L, we may tag each message
with auxiliary information

Processes can use this auxiliary information to obtain
information about the state of the rest of the system

The causal closure of a regular MSC language L is
always regular

We can effectively construct a bounded
message-passing automaton recognizing the causal
closure
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HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable
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HMSCs and causal closure

The causal closure of a regular HMSC language is not
always HMSC definable

Every HMSC language L is finitely generated

Finite set A = {A1, . . . , Ak} of (atomic) MSCs
Every MSC in L is a concatenation of MSCs from A

In general, regular MSC languages may not be
finitely generated

Causal closure of a regular HMSC language may
contain an infinite collection of atoms
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HMSCs and causal closure

Causal closure of an HMSC language may not be finitely
generated
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Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive
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Verification using scenarios . . .

Semantics in terms of causal closure makes HMSCs
notation more expressive

“Reasonable” implementations will be causally closed

Verifying positive scenarios P against system
behaviours S:

Both P and S should be causally closed to avoid
missing out some scenarios when checking P ⊆ S.

Verifying that a negative property N is not present in
S:

N should be causally closed so no forbidden
scenario goes undetected.
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Summary

Scenario based specifications are intuitively easy to
use
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Summary

Scenario based specifications are intuitively easy to
use

Verification requires computing Lpos ⊆ Lsys and
Lneg ∩ Lsys 6= ∅

Can be solved for regular MSC languages
Extended to existentially bounded MSC languages

Semantics of MSCs is not completely straightforward

Race conditions
Implied scenarios

To what extent can verification be done with enriched
semantics for MSCs?
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Related approaches

Related approaches not covered in this talk

Live sequence charts by Harel et al

Verification of Lamport diagrams by Meenakshi and
Ramanujam
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