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Relational structures and FOL

� Relational structures A = (A,RA
1
, RA

2
, . . . RA

k )

� A is the domain—assume countable
� Each RA

i is a relation on A, with arity ni
� Example: A = (N, 0, succ, <)

� First order logic over A

� Variables x, y that range over A
� Relation symbol Ri for each underlying relation RA

i

� Propositional connectives ¬, ∨, ∧, ⇒, . . .
� Quantifiers ∀, ∃
� Example: ∀x ∃y x < y, ∀x ∃y y < x
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Monadic Second Order Logic

� Add set quantifiers ∀X , ∃X

� Add atomic formulas x ∈ Y (or Y (x))

� Subsets are monadic predicates

� Example:

� less(x, y) =
∀X [X(x)∧

∀u ∀v (X(u) ∧ succ(u, v)) ⇒ X(v)] ⇒ X(y)

< is expressible using succ in MSO
� ∀X [X(0) ∧ (∀x ∀ y(X(x) ∧ succ(x, y) ⇒ X(y))

⇒ ∀z X(z)]

Principle of mathematical induction
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When is MSO decidable?

� Given a structure A = (A,RA
1
, . . . , RA

k ) and an MSO
sentence ϕ, is ϕ true in A?

� In verification parlance, is the model checking
problem for MSO formulas over A decidable?

� If A is finite, MSO is decidable

� Exhaustively enumerate all possibilities for
quantifiers

� Theorem [Büchi 1960]
MSO over (N, 0, succ) is decidable

� S1S — Second order theory of 1 Successor
� S1S formula ϕ 7→ (Büchi) automaton Mϕ

� ϕ is satisfiable iff L(Mϕ) is nonempty
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When is MSO decidable . . .

� Theorem [Rabin 1969]
MSO over the infinite binary tree is decidable

� T2 = {0, 1}∗ — nodes of infinite binary tree
� Relations S0, S1 — left and right child
� S2S — Second order theory of 2 Successors
� Satisfiability reduces to emptiness for tree automata

� Corollary [Rabin 1969]

� SnS is decidable for all n
� SωS is decidable
� MSO over dense linear orders is decidable
� . . .
� All follow by MSO interpretations in S2S
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MSO interpretations: An example

� S3S, MSO over complete ternary tree T3 is decidable

� Consider vertices T = (10 + 110 + 1110)∗ in T2

� Nodes in T : 1i10 . . . 1im0, with i1, . . . , im ∈ {1, 2, 3}

� Represents the node (i1 − 1) . . . (im − 1) in T3

� In S2S T (x) = ∀Y [Y (x)∧
∀y((Y (y10) ∨ Y (y110)∨

Y (y1110)) ⇒ Y (y))
⇒ Y (ε)]

� Translate S3S formulas over T3 into S2S formulas over
T ⊆ T2
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MSO interpretations: An example . . .

� Successor relations S0,S1,S2 of T3

ψ0(x, y) = ∃z(S1(x, z) ∧ S0(z, y))
ψ1(x, y) = ∃u∃v(S1(x, u) ∧ S1(u, v) ∧ S0(v, y))
ψ2(x, y) = . . .

� Relativize quantifiers

∀xϕ(x) in S3S 7→ ∀x(T (x) ⇒ ϕ̃(x)) in S2S
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MSO interpretations

� In general, an MSO interpretation of structure A in
structure B consists of •

� Mapping the domain of A into a subset of the
domain of B by a domain formula
In the example, T3 was mapped to T ⊆ T2

� Mapping each relation Ri of A into an “isomorphic”
relation over the subset defined by the domain
formula
In the example, each successor relation Si over T3

was mapped to a relation ψi over T ⊆ T2

Proposition If A is MSO-interpretable in B and MSO is
decidable over B then MSO is decidable over A
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MSO interpretations: results

� Theorem [Muller-Schupp 1985]
MSO is decidable over pushdown graphs.

� Theorem [Caucal 1996/2003]
MSO is decidable over prefix-recognizable graphs.

� Both results can be got from MSO interpretations into
MSO over the tree Tm, for appropriate m

� For pushdown graphs, choose m to be number of
states plus size of stack alphabet.

� For prefix-recognizable graphs, choose m to be the
size of the alphabet.
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Unfolding graph structures

� Graphs with edge labels I and vertex labels J

� G = (V, (Ei)i∈I, (Pj)j∈J)

� Unfold G from v0 ∈ V into
G′ = (V ′, (E′

i)i∈I, (P
′
j)j∈J)

� V ′ : all paths v0i1v1 . . . ikvk
� (p, q) ∈ E′

i iff q extends p by edge from Ei
� p ∈ P ′

j iff last vertex in p is in Pj

� Example: G0 = ({v0}, E0 = E1 = {(v0, v0)})

Unfolding of G0 is the binary tree T2
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Unfolding graphs

� Theorem [Courcelle and Walukiewicz, 1998]

If MSO is decidable for a graph, then MSO is also
decidable for its unfolding from any MSO-definable
vertex.

� Decidability of S2S follows from trivial decidability of
MSO over G0!

� Theorem also holds for a different type of unfolding
called tree iteration

Due to [Muchnik (reported by Semenov 1985)] and
[Walukiewicz 2002]
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The Caucal hierarchy [Caucal, 2002]

� T0 = the class of finite trees

� Gn = the class of graphs which are MSO-interpretable
in a tree of Tn

� Tn+1 = the class of unfoldings of graphs in Gn

� MSO is decidable for each structure in the Caucal
hierarchy

� Trivially for finite trees in T0

� For higher levels, follows from what we have seen
so far

� G0 is the class of finite graphs
� T1 is the class of regular trees
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The Caucal hierarchy, by example

A finite graph in G0 . . .

• •

• •

? ?

- �

b c

a
a

. . . its unfolding in T1 . . .
• • • • • •

• • • • • •

? ? ? ? ? ?

- - - - - -

b c c c c c

a a a a a a

· · ·

· · ·

. . . and a pushdown
graph in G1 by MSO-
interpretation in the
unfolding . . .

• • • • • •

• • • • • •

? ? ? ? ? ?

- - - - - -

� � � � �� � � � �

b c c c c c

a a a a a a

d d d d dd d d d d
e e e e e

· · ·

· · ·

ψd(x, y)=
ψe(x, y) = ∃z∃z′(Ea(z, z

′) ∧ Ec(z, y) ∧ Ec(z
′, x))
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The Caucal hierarchy, by example . . .

If we unfold
• • • • • •

• • • • • •

? ? ? ? ? ?

- - - - - -

� � � � �� � � � �

b c c c c c

a a a a a a

d d d d dd d d d d
e e e e e

· · ·

· · ·

we get a tree in T2

• • • • •
- - - - -

· · ·
a a a a a

• • • • •
? ? ? ? ?
b c c c c

• • • • • •
� U 	 R 	 R
d e d e d e

• • • • • • • •
� U � U � U � U
d e d e d e d e

• •

· · ·

� U
d e
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The Caucal hierarchy, by example . . .

� By an MSO-interpretation, we can identify a graph in
G2 at the leaves of this tree

• • • • •
- - - - -

· · ·
a a a a a

• • • • •
? ? ? ? ?
b c c c c

• • • • • •
� U 	 R 	 R
d e d e d e

• • • • • • • •
� U � U � U � U
d e d e d e d e

• •

· · ·

� U
d e

• • • • •
- - - - -

· · ·
a a a a a

• • • • •
-

U

? ? ? ? ?
b c c c c

• • • • • •
-

U

� U 	 R 	 R
d e d e d e

• • • • • • • •
- - -

U

� U � U � U � U
d e d e d e d e

• •

· · ·

-� U
d e

� This is isomorphic to the structure (N, succ, P2), where
P2 is the predicate powers of two

� Original proof of decidability of MSO for (N, succ, P2)
by [Elgot and Rabin, 1966] was “non uniform”!
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� This is isomorphic to the structure (N, succ, P2), where
P2 is the predicate powers of two

� Original proof of decidability of MSO for (N, succ, P2)
by [Elgot and Rabin, 1966] was “non uniform”!
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