Infinite graphs with decidable MSO theories

Madhavan Mukund
Chennai Mathematical Institute
92 G N Chetty Rd, Chennai 600 017, India
madhavan@cmi.ac.in
http://www.cmi.ac.in/~madhavan

Relational structures and FOL

- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
$\bullet A$ is the domain-assume countable
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Variables x, y that range over A
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Variables x, y that range over A

Relation symbol R_{i} for each underlying relation R_{i}^{A}

- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Variables x, y that range over A
- Relation symbol R_{i} for each underlying relation R_{i}^{A}
\diamond Propositional connectives $\neg, \vee, \wedge, \Rightarrow, \ldots$
- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Variables x, y that range over A
- Relation symbol R_{i} for each underlying relation R_{i}^{A}
- Propositional connectives $\neg, \vee, \wedge, \Rightarrow, \ldots$
- Quantifiers \forall, \exists

Relational structures and FOL

- Relational structures $\mathcal{A}=\left(A, R_{1}^{A}, R_{2}^{A}, \ldots R_{k}^{A}\right)$
- A is the domain-assume countable
- Each R_{i}^{A} is a relation on A, with arity n_{i}
- Example: $\mathcal{A}=(\mathbb{N}, 0$, succ,$<)$
- First order logic over \mathcal{A}
- Variables x, y that range over A
- Relation symbol R_{i} for each underlying relation R_{i}^{A}
- Propositional connectives $\neg, \vee, \wedge, \Rightarrow, \ldots$
- Quantifiers \forall, \exists
- Example: $\forall x \exists y x<y, \forall x \exists y y<x$

Monadic Second Order Logic

Add set quantifiers $\forall X, \exists X$

Monadic Second Order Logic

Add set quantifiers $\forall X, \exists X$

- Add atomic formulas $x \in Y$ (or $Y(x))$

Monadic Second Order Logic

Add set quantifiers $\forall X, \exists X$

- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates

Monadic Second Order Logic

Add set quantifiers $\forall X, \exists X$

- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates
- Example:

Monadic Second Order Logic

Add set quantifiers $\forall X, \exists X$

- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates
- Example:
- $\operatorname{less}(x, y)=$
$\forall \boldsymbol{X}[\boldsymbol{X}(x) \wedge$
$\forall u \forall v(\boldsymbol{X}(u) \wedge \operatorname{succ}(u, v)) \Rightarrow \boldsymbol{X}(v)] \Rightarrow \boldsymbol{X}(y)$

Monadic Second Order Logic

- Add set quantifiers $\forall X, \exists X$
- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates
- Example:
- less $(x, y)=$
$\forall X[X(x) \wedge$
$\forall u \forall v(X(u) \wedge \operatorname{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$
< is expressible using succ in MSO

Monadic Second Order Logic

- Add set quantifiers $\forall X, \exists X$
- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates
- Example:
- less $(x, y)=$
$\forall X[X(x) \wedge$
$\forall u \forall v(X(u) \wedge \operatorname{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$
$<$ is expressible using succ in MSO
$\diamond \forall X[X(0) \wedge(\forall x \forall y(X(x) \wedge \operatorname{succ}(x, y) \Rightarrow X(y))$

$$
\Rightarrow \forall z X(z)]
$$

Monadic Second Order Logic

- Add set quantifiers $\forall X, \exists X$
- Add atomic formulas $x \in Y$ (or $Y(x))$
- Subsets are monadic predicates
- Example:
- less $(x, y)=$
$\forall X[X(x) \wedge$
$\forall u \forall v(X(u) \wedge \operatorname{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$
$<$ is expressible using succ in MSO
$\diamond \forall X[X(0) \wedge(\forall x \forall y(X(x) \wedge \operatorname{succ}(x, y) \Rightarrow X(y))$
$\Rightarrow \forall z X(z)]$
Principle of mathematical induction

When is MSO decidable?

Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable
- Exhaustively enumerate all possibilities for quantifiers

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable
- Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over ($\mathbb{N}, 0$, succ) is decidable

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable
- Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over ($\mathbb{N}, 0$, succ) is decidable
- S1S - Second order theory of 1 Successor

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable
- Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over ($\mathbb{N}, 0$, succ) is decidable
-S1S - Second order theory of 1 Successor
S1S formula $\varphi \mapsto$ (Büchi) automaton M_{φ}

When is MSO decidable?

- Given a structure $\mathcal{A}=\left(A, R_{1}^{A}, \ldots, R_{k}^{A}\right)$ and an MSO sentence φ, is φ true in A ?
- In verification parlance, is the model checking problem for MSO formulas over \mathcal{A} decidable?
- If A is finite, MSO is decidable
- Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over ($\mathbb{N}, 0$, succ) is decidable
- S1S - Second order theory of 1 Successor

S1S formula $\varphi \mapsto$ (Büchi) automaton M_{φ}
$\diamond \varphi$ is satisfiable iff $L\left(M_{\varphi}\right)$ is nonempty

- Theorem [Rabin 1969]

MSO over the infinite binary tree is decidable

When is MSO decidable . . .

- Theorem [Rabin 1969]

MSO over the infinite binary tree is decidable

- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree

When is MSO decidable . . .

- Theorem [Rabin 1969]

MSO over the infinite binary tree is decidable

- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child

When is MSO decidable . . .

- Theorem [Rabin 1969]

MSO over the infinite binary tree is decidable

- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} - left and right child
- S2S - Second order theory of 2 Successors
- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- $\mathrm{S} n \mathrm{~S}$ is decidable for all n
- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- $\mathrm{S} n \mathrm{~S}$ is decidable for all n
- ω wS is decidable

When is MSO decidable . . .

- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- $\mathrm{S} n \mathrm{~S}$ is decidable for all n
- $\operatorname{S\omega S}$ is decidable
- MSO over dense linear orders is decidable

When is MSO decidable . . .

- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- $\mathrm{S} n \mathrm{~S}$ is decidable for all n
- $\mathrm{S} \omega \mathrm{S}$ is decidable
- MSO over dense linear orders is decidable
\checkmark...
- Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
- $T_{2}=\{0,1\}^{*}$ - nodes of infinite binary tree
- Relations S_{0}, S_{1} — left and right child
- S2S - Second order theory of 2 Successors
- Satisfiability reduces to emptiness for tree automata
- Corollary [Rabin 1969]
- SnS is decidable for all n
- $\mathrm{S} \omega \mathrm{S}$ is decidable
- MSO over dense linear orders is decidable
- All follow by MSO interpretations in S2S

MSO interpretations: An example

\square S3S, MSO over complete ternary tree T_{3} is decidable

MSO interpretations: An example

\square S3S, MSO over complete ternary tree T_{3} is decidable

- Consider vertices $T=(10+110+1110)^{*}$ in T_{2}

MSO interpretations: An example

- S3S, MSO over complete ternary tree T_{3} is decidable
- Consider vertices $T=(10+110+1110)^{*}$ in T_{2}
\square Nodes in $T: 1^{i_{1}} 0 \ldots 1^{i_{m}} 0$, with $i_{1}, \ldots, i_{m} \in\{1,2,3\}$

MSO interpretations: An example

- S3S, MSO over complete ternary tree T_{3} is decidable
- Consider vertices $T=(10+110+1110)^{*}$ in T_{2}
- Nodes in $T: 1^{i_{1}} 0 \ldots 1^{i_{m}} 0$, with $i_{1}, \ldots, i_{m} \in\{1,2,3\}$
- Represents the node $\left(i_{1}-1\right) \ldots\left(i_{m}-1\right)$ in T_{3}

MSO interpretations: An example

- S3S, MSO over complete ternary tree T_{3} is decidable
\square Consider vertices $T=(10+110+1110)^{*}$ in T_{2}
- Nodes in $T: 1^{i_{1}} 0 \ldots 1^{i_{m}} 0$, with $i_{1}, \ldots, i_{m} \in\{1,2,3\}$
\square Represents the node $\left(i_{1}-1\right) \ldots\left(i_{m}-1\right)$ in T_{3}
- In S2S $T(x)=\forall Y[Y(x) \wedge$

$$
\begin{gathered}
\forall y((Y(y 10) \vee Y(y 110) \vee \\
Y(y 1110)) \Rightarrow Y(y)) \\
\Rightarrow Y(\epsilon)]
\end{gathered}
$$

MSO interpretations: An example

- S3S, MSO over complete ternary tree T_{3} is decidable
\square Consider vertices $T=(10+110+1110)^{*}$ in T_{2}
- Nodes in $T: 1^{i_{1}} 0 \ldots 1^{i_{m}} 0$, with $i_{1}, \ldots, i_{m} \in\{1,2,3\}$
- Represents the node $\left(i_{1}-1\right) \ldots\left(i_{m}-1\right)$ in T_{3}
- In S2S $T(x)=\forall Y[Y(x) \wedge$

$$
\begin{gathered}
\forall y((Y(y 10) \vee Y(y 110) \vee \\
Y(y 1110)) \Rightarrow Y(y)) \\
\Rightarrow Y(\epsilon)]
\end{gathered}
$$

- Translate S3S formulas over T_{3} into S2S formulas over $T \subseteq T_{2}$

MSO interpretations: An example . . .

\square Successor relations S_{0}, S_{1}, S_{2} of T_{3}

MSO interpretations: An example . . .

\square Successor relations S_{0}, S_{1}, S_{2} of T_{3}

```
\psi ( }x,y)=\existsz(\mp@subsup{S}{1}{}(x,z)\wedge\mp@subsup{S}{0}{}(z,y)
\psi
\psi
```


MSO interpretations: An example . . .

\square Successor relations S_{0}, S_{1}, S_{2} of T_{3}
$\psi_{0}(x, y)=\exists z\left(S_{1}(x, z) \wedge S_{0}(z, y)\right)$
$\psi_{1}(x, y)=\exists u \exists v\left(S_{1}(x, u) \wedge S_{1}(u, v) \wedge S_{0}(v, y)\right)$
$\psi_{2}(x, y)=\ldots$

- Relativize quantifiers

MSO interpretations: An example . . .

- Successor relations S_{0}, S_{1}, S_{2} of T_{3}

$$
\begin{aligned}
& \psi_{0}(x, y)=\exists z\left(S_{1}(x, z) \wedge S_{0}(z, y)\right) \\
& \psi_{1}(x, y)=\exists u \exists v\left(S_{1}(x, u) \wedge S_{1}(u, v) \wedge S_{0}(v, y)\right) \\
& \psi_{2}(x, y)=\ldots
\end{aligned}
$$

- Relativize quantifiers

$$
\forall x \varphi(x) \text { in S3S } \mapsto \forall x(T(x) \Rightarrow \tilde{\varphi}(x)) \text { in S2S }
$$

MSO interpretations: An example . . .

- Successor relations S_{0}, S_{1}, S_{2} of T_{3}

$$
\begin{aligned}
& \psi_{0}(x, y)=\exists z\left(S_{1}(x, z) \wedge S_{0}(z, y)\right) \\
& \psi_{1}(x, y)=\exists u \exists v\left(S_{1}(x, u) \wedge S_{1}(u, v) \wedge S_{0}(v, y)\right) \\
& \psi_{2}(x, y)=\ldots
\end{aligned}
$$

- Relativize quantifiers
$\forall x \varphi(x)$ in S3S $\mapsto \forall x(T(x) \Rightarrow \tilde{\varphi}(x))$ in S2S
$\exists X \varphi(X)$ in S3S $\mapsto \exists X(X \subseteq T \wedge \tilde{\varphi}(X))$ in S2S

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure \mathcal{B} consists of

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure $1 B$ consists of
- Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure $1 B$ consists of
- Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula In the example, T_{3} was mapped to $T \subseteq T_{2}$

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure \mathcal{B} consists of -
- Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula In the example, T_{3} was mapped to $T \subseteq T_{2}$
\diamond Mapping each relation R_{i} of \mathcal{A} into an "isomorphic" relation over the subset defined by the domain formula

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure \mathcal{B} consists of
- Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula
In the example, T_{3} was mapped to $T \subseteq T_{2}$
- Mapping each relation R_{i} of \mathcal{A} into an "isomorphic" relation over the subset defined by the domain formula
In the example, each successor relation S_{i} over T_{3} was mapped to a relation ψ_{i} over $T \subseteq T_{2}$

MSO interpretations

- In general, an MSO interpretation of structure \mathcal{A} in structure \mathcal{B} consists of .
- Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula
In the example, T_{3} was mapped to $T \subseteq T_{2}$
- Mapping each relation R_{i} of \mathcal{A} into an "isomorphic" relation over the subset defined by the domain formula
In the example, each successor relation S_{i} over T_{3} was mapped to a relation ψ_{i} over $T \subseteq T_{2}$
Proposition If \mathcal{A} is MSO-interpretable in \mathcal{B} and MSO is decidable over \mathcal{B} then MSO is decidable over \mathcal{A}

MSO interpretations: results

- Theorem [Muller-Schupp 1985]

MSO is decidable over pushdown graphs.

MSO interpretations: results

- Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
- Theorem [Caucal 1996/2003]

MSO is decidable over prefix-recognizable graphs.

MSO interpretations: results

- Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
- Theorem [Caucal 1996/2003]

MSO is decidable over prefix-recognizable graphs.

- Both results can be got from MSO interpretations into MSO over the tree T_{m}, for appropriate m

MSO interpretations: results

- Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
- Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs.
- Both results can be got from MSO interpretations into MSO over the tree T_{m}, for appropriate m
- For pushdown graphs, choose m to be number of states plus size of stack alphabet.

MSO interpretations: results

- Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
- Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs.
- Both results can be got from MSO interpretations into MSO over the tree T_{m}, for appropriate m
- For pushdown graphs, choose m to be number of states plus size of stack alphabet.
- For prefix-recognizable graphs, choose m to be the size of the alphabet.

Unfolding graph structures
Graphs with edge labels I and vertex labels J

Unfolding graph structures
Graphs with edge labels I and vertex labels J

- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$

Unfolding graph structures
Graphs with edge labels I and vertex labels J

- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$

Unfolding graph structures
Graphs with edge labels I and vertex labels J

- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$
$\diamond V^{\prime}$: all paths $v_{0} i_{1} v_{1} \ldots i_{k} v_{k}$

Unfolding graph structures

- Graphs with edge labels I and vertex labels J
- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$
- V^{\prime} : all paths $v_{0} i_{1} v_{1} \ldots i_{k} v_{k}$
- $(p, q) \in E_{i}^{\prime}$ iff q extends p by edge from E_{i}

Unfolding graph structures

- Graphs with edge labels I and vertex labels J
- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$
- V^{\prime} : all paths $v_{0} i_{1} v_{1} \ldots i_{k} v_{k}$
- $(p, q) \in E_{i}^{\prime}$ iff q extends p by edge from E_{i}

จ $p \in P_{j}^{\prime}$ iff last vertex in p is in P_{j}

Unfolding graph structures

Graphs with edge labels I and vertex labels J

- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$
- V^{\prime} : all paths $v_{0} i_{1} v_{1} \ldots i_{k} v_{k}$
- $(p, q) \in E_{i}^{\prime}$ iff q extends p by edge from E_{i}
- $p \in P_{j}^{\prime}$ iff last vertex in p is in P_{j}
- Example: $G_{0}=\left(\left\{v_{0}\right\}, E_{0}=E_{1}=\left\{\left(v_{0}, v_{0}\right)\right\}\right)$

Unfolding graph structures

- Graphs with edge labels I and vertex labels J
- $G=\left(V,\left(E_{i}\right)_{i \in I},\left(P_{j}\right)_{j \in J}\right)$
- Unfold G from $v_{0} \in V$ into $G^{\prime}=\left(V^{\prime},\left(E_{i}^{\prime}\right)_{i \in I},\left(P_{j}^{\prime}\right)_{j \in J}\right)$
- V^{\prime} : all paths $v_{0} i_{1} v_{1} \ldots i_{k} v_{k}$
$\diamond(p, q) \in E_{i}^{\prime}$ iff q extends p by edge from E_{i}
จ $p \in P_{j}^{\prime}$ iff last vertex in p is in P_{j}
- Example: $G_{0}=\left(\left\{v_{0}\right\}, E_{0}=E_{1}=\left\{\left(v_{0}, v_{0}\right)\right\}\right)$

Unfolding of G_{0} is the binary tree T_{2}

Unfolding graphs

- Theorem [Courcelle and Walukiewicz, 1998]

If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.

Unfolding graphs

- Theorem [Courcelle and Walukiewicz, 1998] If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.
- Decidability of S2S follows from trivial decidability of MSO over G_{0} !

Unfolding graphs

- Theorem [Courcelle and Walukiewicz, 1998] If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.
- Decidability of S2S follows from trivial decidability of MSO over G_{0} !
- Theorem also holds for a different type of unfolding called tree iteration
Due to [Muchnik (reported by Semenov 1985)] and [Walukiewicz 2002]

The Caucal hierarchy [Caucal, 2002]

$\mathcal{I}_{0}=$ the class of finite trees

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}
- MSO is decidable for each structure in the Caucal hierarchy

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}
- MSO is decidable for each structure in the Caucal hierarchy
- Trivially for finite trees in \mathcal{T}_{0}

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}
- MSO is decidable for each structure in the Caucal hierarchy
- Trivially for finite trees in \mathcal{T}_{0}
- For higher levels, follows from what we have seen so far

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}
- MSO is decidable for each structure in the Caucal hierarchy
- Trivially for finite trees in \mathcal{T}_{0}
- For higher levels, follows from what we have seen so far
$\square \mathcal{G}_{0}$ is the class of finite graphs

The Caucal hierarchy [Caucal, 2002]

$\square \mathcal{I}_{0}=$ the class of finite trees

- $\mathcal{G}_{n}=$ the class of graphs which are MSO-interpretable in a tree of \mathcal{T}_{n}
- $\mathcal{I}_{n+1}=$ the class of unfoldings of graphs in \mathcal{G}_{n}
- MSO is decidable for each structure in the Caucal hierarchy
- Trivially for finite trees in \mathcal{I}_{0}
- For higher levels, follows from what we have seen so far
$\square \mathcal{G}_{0}$ is the class of finite graphs
$\square \mathcal{I}_{1}$ is the class of regular trees

The Caucal hierarchy, by example

A finite graph in $\mathcal{G}_{0} \ldots$

The Caucal hierarchy, by example

A finite graph in $\mathcal{G}_{0} \ldots$
. . . its unfolding in $\mathcal{T}_{1} \ldots$

The Caucal hierarchy, by example

A finite graph in $\mathcal{G}_{0} \ldots$
... its unfolding in $\mathcal{T}_{1} \ldots$

...and a pushdown graph in \mathcal{G}_{1} by MSOinterpretation in the unfolding ...

The Caucal hierarchy, by example

A finite graph in $\mathcal{G}_{0} \ldots$
. . . its unfolding in $\mathcal{T}_{1} \ldots$

...and a pushdown graph in \mathcal{G}_{1} by MSOinterpretation in the unfolding ...

$$
\begin{aligned}
& \psi_{d}(x, y)= \\
& \psi_{e}(x, y)=\exists z \exists z^{\prime}\left(E_{a}\left(z, z^{\prime}\right) \wedge E_{c}(z, y) \wedge E_{c}\left(z^{\prime}, x\right)\right)
\end{aligned}
$$

The Caucal hierarchy, by example ...

If we unfold

The Caucal hierarchy, by example ...

If we unfold

we get a tree in \mathcal{T}_{2}

The Caucal hierarchy, by example ...

- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

The Caucal hierarchy, by example ...

- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

The Caucal hierarchy, by example ...

- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

The Caucal hierarchy, by example ...

- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

The Caucal hierarchy, by example . . .

- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

\square This is isomorphic to the structure $\left(\mathbb{N}\right.$, succ, $\left.P_{2}\right)$, where P_{2} is the predicate powers of two
- By an MSO-interpretation, we can identify a graph in \mathcal{G}_{2} at the leaves of this tree

\square This is isomorphic to the structure $\left(\mathbb{N}\right.$, succ, $\left.P_{2}\right)$, where P_{2} is the predicate powers of two
- Original proof of decidability of MSO for (\mathbb{N}, succ, P_{2}) by [Elgot and Rabin, 1966] was "non uniform"!neman wean

Reference

Constructing Infinite Graphs with a Decidable MSO-Theory
 Wolfgang Thomas
 Invited talk, MFCS 2003

The paper is available from Wolfgang Thomas's webpage.

