Infinite graphs with decidable MSO theories

Madhavan Mukund Chennai Mathematical Institute 92 G N Chetty Rd, Chennai 600 017, India madhavan@cmi.ac.in http://www.cmi.ac.in/~madhavan

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$

A is the domain—assume countable

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$

A is the domain—assume countable
Each R^A_i is a relation on A, with arity n_i

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$

A is the domain—assume countable
Each *R^A_i* is a relation on *A*, with arity *n_i*Example: *A* = (N, 0, succ, <)

Relational structures \$\mathcal{A} = (\mathbf{A}, \mathbf{R}_1^\mathbf{A}, \mathbf{R}_2^\mathbf{A}, \ldots \mathbf{R}_k^\mathbf{A})\$
\$\mathcal{A}\$ is the domain—assume countable
\$\mathcal{E}\$ Each \$\mathbf{R}_i^\mathbf{A}\$ is a relation on \$\mathcal{A}\$, with arity \$\mathbf{n}_i\$
\$\mathcal{E}\$ Example: \$\mathcal{A} = (\bar{N}, \mathbf{0}, \succ. <)\$
First order logic over \$\mathcal{A}\$

Relational structures \$\mathcal{A} = (\mathbf{A}, \mathbf{R}_1^\mathbf{A}, \mathbf{R}_2^\mathbf{A}, \ldots \mathbf{R}_k^\mathbf{A})\$
\$\mathcal{A}\$ is the domain—assume countable
\$\mathcal{E}\$ acch \$\mathbf{R}_i^\mathbf{A}\$ is a relation on \$\mathcal{A}\$, with arity \$\mathbf{n}_i\$
\$\mathcal{E}\$ Each \$\mathbf{R}_i^\mathbf{A}\$ is a relation on \$\mathcal{A}\$, with arity \$\mathbf{n}_i\$
\$\mathcal{E}\$ Each \$\mathcal{R}_i^\mathbf{A}\$ is a relation on \$\mathcal{A}\$, with arity \$\mathbf{n}_i\$
\$\mathcal{E}\$ Example: \$\mathcal{A} = (\bar{N}, 0, \succ., <)\$
\$\mathcal{F}\$ irst order logic over \$\mathcal{A}\$
\$\mathcal{V}\$ Variables \$\mathcal{x}\$, \$\mathcal{y}\$ that range over \$\mathcal{A}\$

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$ A is the domain—assume countable • Each \mathbf{R}_{i}^{A} is a relation on A, with arity n_{i} • Example: $\mathcal{A} = (\mathbb{N}, 0, \text{succ}, <)$ First order logic over *A* • Variables x, y that range over A• Relation symbol R_i for each underlying relation R_i^A

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$ ▲ is the domain—assume countable • Each \mathbf{R}_{i}^{A} is a relation on A, with arity n_{i} • Example: $\mathcal{A} = (\mathbb{N}, 0, \text{succ}, <)$ First order logic over *A* • Variables x, y that range over A+ Relation symbol R_i for each underlying relation R_i^A • Propositional connectives \neg , \lor , \land , \Rightarrow , ...

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$ ▲ is the domain—assume countable • Each \mathbf{R}_{i}^{A} is a relation on A, with arity n_{i} • Example: $\mathcal{A} = (\mathbb{N}, 0, \text{succ}, <)$ First order logic over *A* • Variables x, y that range over A• Relation symbol R_i for each underlying relation R_i^A • Propositional connectives \neg , \lor , \land , \Rightarrow , ... • Quantifiers \forall , \exists

Relational structures $\mathcal{A} = (A, R_1^A, R_2^A, \dots, R_k^A)$ ▲ is the domain—assume countable • Each \mathbf{R}_{i}^{A} is a relation on A, with arity n_{i} • Example: $\mathcal{A} = (\mathbb{N}, 0, \text{succ}, <)$ First order logic over *A* • Variables x, y that range over A• Relation symbol R_i for each underlying relation R_i^A • Propositional connectives \neg , \lor , \land , \Rightarrow , ... • Quantifiers \forall , \exists • Example: $\forall x \exists y \ x < y, \forall x \exists y \ y < x$

Add set quantifiers $\forall X, \exists X$

Add set quantifiers $\forall X, \exists X$ Add atomic formulas $x \in Y$ (or Y(x))

- Add set quantifiers $\forall X$, $\exists X$
- Add atomic formulas $x \in Y$ (or Y(x))
 - Subsets are monadic predicates

Add set quantifiers ∀X, ∃X
Add atomic formulas x ∈ Y (or Y(x))
Subsets are monadic predicates
Example:

Add set quantifiers ∀X, ∃X
Add atomic formulas x ∈ Y (or Y(x))
Subsets are monadic predicates
Example:

 $\begin{array}{l} \mathsf{less}(x,y) = \\ \forall X \left[X(x) \land \\ \forall u \ \forall v \ (X(u) \land \mathsf{succ}(u,v)) \Rightarrow X(v) \right] \Rightarrow X(y) \end{array}$

Add set quantifiers ∀X, ∃X
Add atomic formulas x ∈ Y (or Y(x))
Subsets are monadic predicates
Example:

Iess(x, y) = $\forall X [X(x) \land$ $\forall u \forall v (X(u) \land \operatorname{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$ < is expressible using succ in MSO</p>

Add set quantifiers ∀X, ∃X
Add atomic formulas x ∈ Y (or Y(x))
Subsets are monadic predicates
Example:

less(x, y) = $\forall X [X(x) \land$ $\forall u \forall v (X(u) \land \operatorname{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$ < is expressible using succ in MSO $\forall X [X(0) \land (\forall x \forall y(X(x) \land \operatorname{succ}(x, y) \Rightarrow X(y)))$ $\Rightarrow \forall z X(z)]$

Add set quantifiers ∀X, ∃X
Add atomic formulas x ∈ Y (or Y(x))
Subsets are monadic predicates
Example:

less(x, y) = $\forall X [X(x) \land$ $\forall u \forall v (X(u) \land \text{succ}(u, v)) \Rightarrow X(v)] \Rightarrow X(y)$ < is expressible using succ in MSO $\forall X [X(0) \land (\forall x \forall y(X(x) \land \text{succ}(x, y) \Rightarrow X(y)))$ $\Rightarrow \forall z X(z)]$ Principle of mathematical induction

- Given a structure $\mathcal{A} = (A, R_1^A, \dots, R_k^A)$ and an MSO sentence φ , is φ true in A?
 - In verification parlance, is the model checking problem for MSO formulas over *A* decidable?

Given a structure A = (A, R^A₁, ..., R^A_k) and an MSO sentence φ, is φ true in A?
In verification parlance, is the model checking problem for MSO formulas over A decidable?

If A is finite, MSO is decidable

Given a structure A = (A, R^A₁, ..., R^A_k) and an MSO sentence φ, is φ true in A?
In verification parlance, is the model checking problem for MSO formulas over A decidable?
If A is finite, MSO is decidable
Exhaustively enumerate all possibilities for quantifiers

- In verification parlance, is the model checking problem for MSO formulas over *A* decidable?
- If A is finite, MSO is decidable
 - Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over (N, 0, succ) is decidable

- In verification parlance, is the model checking problem for MSO formulas over *A* decidable?
- If A is finite, MSO is decidable
 - Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over $(\mathbb{N}, 0, \text{succ})$ is decidable
 - S1S Second order theory of 1 Successor

- In verification parlance, is the model checking problem for MSO formulas over *A* decidable?
- If A is finite, MSO is decidable
 - Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over (N, 0, succ) is decidable
 - S1S Second order theory of 1 Successor • S1S formula $\varphi \mapsto$ (Büchi) automaton M_{φ}

Given a structure $\mathcal{A} = (A, R_1^A, \dots, R_k^A)$ and an MSO sentence φ , is φ true in A?

In verification parlance, is the model checking problem for MSO formulas over *A* decidable?

- If A is finite, MSO is decidable
 - Exhaustively enumerate all possibilities for quantifiers
- Theorem [Büchi 1960] MSO over (N, 0, succ) is decidable

S1S — Second order theory of 1 Successor
 S1S formula φ → (Büchi) automaton M_φ
 φ is satisfiable iff L(M_φ) is nonempty

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable T₂ = {0, 1}* — nodes of infinite binary tree

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
T₂ = {0, 1}* — nodes of infinite binary tree
Relations S₀, S₁ — left and right child

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
T₂ = {0,1}* — nodes of infinite binary tree
Relations S₀, S₁ — left and right child
S2S — Second order theory of 2 Successors

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable
T₂ = {0, 1}* — nodes of infinite binary tree
Relations S₀, S₁ — left and right child
S2S — Second order theory of 2 Successors
Satisfiability reduces to emptiness for tree automata

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0, S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969]

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0, S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969] • SnS is decidable for all n

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0, S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969] • SnS is decidable for all n • S ω S is decidable

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0 , S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969] • SnS is decidable for all n • S ω S is decidable MSO over dense linear orders is decidable
When is MSO decidable ...

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0, S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969] • SnS is decidable for all n • S ω S is decidable MSO over dense linear orders is decidable . . .

When is MSO decidable ...

Theorem [Rabin 1969] MSO over the infinite binary tree is decidable • $T_2 = \{0, 1\}^*$ — nodes of infinite binary tree • Relations S_0, S_1 — left and right child S2S — Second order theory of 2 Successors Satisfiability reduces to emptiness for tree automata Corollary [Rabin 1969] • SnS is decidable for all n • S ω S is decidable MSO over dense linear orders is decidable . . . All follow by MSO interpretations in S2S

S3S, MSO over complete ternary tree T_3 is decidable

S3S, MSO over complete ternary tree T₃ is decidable
Consider vertices T = (10 + 110 + 1110)* in T₂

S3S, MSO over complete ternary tree T₃ is decidable
Consider vertices T = $(10 + 110 + 1110)^*$ in T₂
Nodes in T: $1^{i_1}0 \dots 1^{i_m}0$, with $i_1, \dots, i_m \in \{1, 2, 3\}$

S3S, MSO over complete ternary tree T₃ is decidable
Consider vertices T = (10 + 110 + 1110)* in T₂
Nodes in T: 1^{i₁}0...1^{im}0, with i₁,..., im ∈ {1, 2, 3}
Represents the node (i₁ - 1)...(im - 1) in T₃

 \sim S3S, MSO over complete ternary tree T_3 is decidable Consider vertices $T = (10 + 110 + 1110)^*$ in T_2 Nodes in T: $1^{i_1}0\ldots 1^{i_m}0$, with $i_1,\ldots,i_m\in\{1,2,3\}$ Represents the node $(i_1 - 1) \dots (i_m - 1)$ in T_3 In S2S $T(x) = \forall Y[Y(x) \land$ orall y((Y(y10) ee Y(y10) ee $Y(y1110)) \Rightarrow Y(y)$ $\Rightarrow Y(\epsilon)$]

 \sim S3S, MSO over complete ternary tree T_3 is decidable Consider vertices $T = (10 + 110 + 1110)^*$ in T_2 Nodes in T: $1^{i_1}0\ldots 1^{i_m}0$, with $i_1,\ldots,i_m\in\{1,2,3\}$ Represents the node $(i_1 - 1) \dots (i_m - 1)$ in T_3 In S2S $T(x) = \forall Y[Y(x) \land$ $\forall y((Y(y10) \lor Y(y10)) \lor$ $Y(y1110)) \Rightarrow Y(y)$ $\Rightarrow Y(\epsilon)$]

Translate S3S formulas over T_3 into S2S formulas over $T \subseteq T_2$

Successor relations S_0, S_1, S_2 of T_3

Successor relations S_0, S_1, S_2 of T_3 $\psi_0(x, y) = \exists z (S_1(x, z) \land S_0(z, y))$ $\psi_1(x, y) = \exists u \exists v (S_1(x, u) \land S_1(u, v) \land S_0(v, y))$ $\psi_2(x, y) = \dots$

Successor relations S_0, S_1, S_2 of T_3 $\psi_0(x, y) = \exists z (S_1(x, z) \land S_0(z, y))$ $\psi_1(x, y) = \exists u \exists v (S_1(x, u) \land S_1(u, v) \land S_0(v, y))$ $\psi_2(x, y) = \dots$

Relativize quantifiers

Successor relations S_0, S_1, S_2 of T_3 $\psi_0(x, y) = \exists z (S_1(x, z) \land S_0(z, y))$ $\psi_1(x, y) = \exists u \exists v (S_1(x, u) \land S_1(u, v) \land S_0(v, y))$ $\psi_2(x, y) = \dots$

Relativize quantifiers

 $\forall x \varphi(x) \text{ in S3S} \mapsto \forall x(T(x) \Rightarrow \tilde{\varphi}(x)) \text{ in S2S}$

Successor relations S_0, S_1, S_2 of T_3 $\psi_0(x, y) = \exists z (S_1(x, z) \land S_0(z, y))$ $\psi_1(x, y) = \exists u \exists v (S_1(x, u) \land S_1(u, v) \land S_0(v, y))$ $\psi_2(x, y) = \dots$

Relativize quantifiers

 $\forall x \varphi(x) \text{ in } S3S \mapsto \forall x(T(x) \Rightarrow \tilde{\varphi}(x)) \text{ in } S2S$ $\exists X \varphi(X) \text{ in } S3S \mapsto \exists X(X \subseteq T \land \tilde{\varphi}(X)) \text{ in } S2S$

In general, an MSO interpretation of structure A in structure B consists of •

In general, an MSO interpretation of structure A in structure B consists of •

Mapping the domain of *A* into a subset of the domain of *B* by a domain formula

In general, an MSO interpretation of structure A in structure B consists of •

• Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula In the example, T_3 was mapped to $T \subseteq T_2$

- In general, an MSO interpretation of structure A in structure B consists of
 - Mapping the domain of A into a subset of the domain of B by a domain formula
 In the example, T₃ was mapped to T
 T₂
 - Mapping each relation R_i of A into an "isomorphic" relation over the subset defined by the domain formula

- In general, an MSO interpretation of structure A in structure B consists of
 - Mapping the domain of \mathcal{A} into a subset of the domain of \mathcal{B} by a domain formula In the example, T_3 was mapped to $T \subset T_2$
 - Mapping each relation R_i of A into an "isomorphic" relation over the subset defined by the domain formula
 - In the example, each successor relation S_i over T_3 was mapped to a relation ψ_i over $T \subseteq T_2$

- In general, an MSO interpretation of structure A in structure B consists of
 - Mapping the domain of A into a subset of the domain of B by a domain formula
 - In the example, T_3 was mapped to $T \subseteq T_2$
 - Mapping each relation R_i of A into an "isomorphic" relation over the subset defined by the domain formula
 - In the example, each successor relation S_i over T_3 was mapped to a relation ψ_i over $T \subseteq T_2$
 - Proposition If \mathcal{A} is MSO-interpretable in \mathcal{B} and MSO is decidable over \mathcal{B} then MSO is decidable over \mathcal{A}

Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.

 Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
 Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs.

 Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
 Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs.
 Both results can be got from MSO interpretations into MSO over the tree T_m, for appropriate m

Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs. Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs. Both results can be got from MSO interpretations into MSO over the tree T_m , for appropriate mFor pushdown graphs, choose m to be number of states plus size of stack alphabet.

- Theorem [Muller-Schupp 1985] MSO is decidable over pushdown graphs.
 Theorem [Caucal 1996/2003] MSO is decidable over prefix-recognizable graphs.
- Both results can be got from MSO interpretations into MSO over the tree T_m , for appropriate m
- For pushdown graphs, choose *m* to be number of states plus size of stack alphabet.
- For prefix-recognizable graphs, choose *m* to be the size of the alphabet.

Graphs with edge labels I and vertex labels J

Graphs with edge labels I and vertex labels J $G = (V, (E_i)_{i \in I}, (P_j)_{j \in J})$

Graphs with edge labels I and vertex labels J $G = (V, (E_i)_{i \in I}, (P_j)_{j \in J})$ Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_j)_{j \in J})$

Graphs with edge labels I and vertex labels J $G = (V, (E_i)_{i \in I}, (P_j)_{j \in J})$ Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_j)_{j \in J})$ V': all paths $v_0 i_1 v_1 \dots i_k v_k$

Graphs with edge labels *I* and vertex labels *J G* = (*V*, (*E_i*)_{*i*∈*I*}, (*P_j*)_{*j*∈*J*})
Unfold *G* from *v*₀ ∈ *V* into *G'* = (*V'*, (*E'_i*)_{*i*∈*I*}, (*P'_j*)_{*j*∈*J*}) *V'* : all paths *v*₀*i*₁*v*₁ ... *i_kv_k*(*p*, *q*) ∈ *E'_i* iff *q* extends *p* by edge from *E_i*

Graphs with edge labels I and vertex labels J $\blacksquare G = (V, (E_i)_{i \in I}, (P_i)_{i \in J})$ Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_i)_{j \in J})$ • V': all paths $v_0 i_1 v_1 \dots i_k v_k$ $(p,q) \in E'_i$ iff q extends p by edge from E_i • $p \in P'_i$ iff last vertex in p is in P_j

Graphs with edge labels I and vertex labels J $\blacksquare G = (V, (E_i)_{i \in I}, (P_i)_{i \in J})$ Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_i)_{j \in J})$ V': all paths $v_0 i_1 v_1 \dots i_k v_k$ $(p,q) \in E'_i$ iff q extends p by edge from E_i • $p \in P'_i$ iff last vertex in p is in P_j • Example: $G_0 = (\{v_0\}, E_0 = E_1 = \{(v_0, v_0)\})$

Graphs with edge labels I and vertex labels J $\blacksquare G = (V, (E_i)_{i \in I}, (P_i)_{i \in J})$ Unfold G from $v_0 \in V$ into $G' = (V', (E'_i)_{i \in I}, (P'_i)_{j \in J})$ V': all paths $v_0 i_1 v_1 \dots i_k v_k$ $(p,q) \in E'_i$ iff q extends p by edge from E_i • $p \in P'_i$ iff last vertex in p is in P_j • Example: $G_0 = (\{v_0\}, E_0 = E_1 = \{(v_0, v_0)\})$ Unfolding of G_0 is the binary tree T_2

Unfolding graphs

Theorem [Courcelle and Walukiewicz, 1998] If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.

Unfolding graphs

Theorem [Courcelle and Walukiewicz, 1998] If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.

Decidability of S2S follows from trivial decidability of MSO over G₀!

Unfolding graphs

Theorem [Courcelle and Walukiewicz, 1998]

If MSO is decidable for a graph, then MSO is also decidable for its unfolding from any MSO-definable vertex.

- Decidability of S2S follows from trivial decidability of MSO over G₀!
- Theorem also holds for a different type of unfolding called tree iteration

Due to [Muchnik (reported by Semenov 1985)] and [Walukiewicz 2002]

The Caucal hierarchy [Caucal, 2002]

• T_0 = the class of finite trees
- **T_0** = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy
 - Trivially for finite trees in \mathcal{T}_0

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy
 - Trivially for finite trees in \mathcal{T}_0
 - For higher levels, follows from what we have seen so far

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy
 - Trivially for finite trees in \mathcal{T}_0
 - For higher levels, follows from what we have seen so far
- $\square G_0$ is the class of finite graphs

- T_0 = the class of finite trees
- G_n = the class of graphs which are MSO-interpretable in a tree of T_n
- T_{n+1} = the class of unfoldings of graphs in G_n
- MSO is decidable for each structure in the Caucal hierarchy
 - Trivially for finite trees in \mathcal{T}_0
 - For higher levels, follows from what we have seen so far
- $\square G_0$ is the class of finite graphs
- $\square T_1$ is the class of regular trees

A finite graph in \mathcal{G}_0 ...

 $egin{aligned} \psi_d(x,y) = \ \psi_e(x,y) = \exists z \exists z' (E_a(z,z') \wedge E_c(z,y) \wedge E_c(z',x)) \end{aligned}$

If we unfold

If we unfold

we get a tree in T_2

By an MSO-interpretation, we can identify a graph in G₂ at the leaves of this tree

This is isomorphic to the structure $(\mathbb{N}, \text{succ}, P_2)$, where P_2 is the predicate powers of two

By an MSO-interpretation, we can identify a graph in \mathcal{G}_2 at the leaves of this tree

This is isomorphic to the structure $(\mathbb{N}, \text{succ}, P_2)$, where P_2 is the predicate powers of two

Original proof of decidability of MSO for $(\mathbb{N}, \text{succ}, P_2)$ by [Elgot and Rabin, 1966] was "non uniformated meeting, 1 March 2004 - p.15

Reference

Constructing Infinite Graphs with a Decidable MSO-Theory Wolfgang Thomas Invited talk, MFCS 2003

The paper is available from Wolfgang Thomas's webpage.