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Relational structures and FOL

Relational structures A = (A, R, RS, ... R;})
A Is the —assume countable
Each R is a relation on A, with arity n;
Example: A = (N, 0, succ, <)

First order logic over A

Variables x, y that range over A

Relation symbol R; for each underlying relation R
Propositional connectives —, VV, A, =, ...
Quantifiers V, -

Example: Ve dyx < y, Ve dyy < x
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Monadic Second Order Logic

Add set quantifiers V.X, 94X
Add atomic formulas € Y (or Y (x))

Subsets are predicates

Example:

less(x,y) =

VX [ X ()N
Vu Vv (X (u) A succ(u,v)) = X(v)] = X(y)

< is expressible using succ in MSO

VX [X(0) A (Ve V y(X(x) A succ(x,y) = X(y))
= Vz X (2)]

Principle of mathematical induction



When is MSO decidable?

Given a structure A = (A, R, ..., R{) and an MSO
sentence o, IS i true in A?

MSc Update Meeting, 1 March 2004 — p.4



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

MSc Update Meeting, 1 March 2004 — p.4



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable

Exhaustively enumerate all possibilities for
guantifiers

MSc Update Meeting, 1 March 2004 — p.4



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable

Exhaustively enumerate all possibilities for
guantifiers

Theorem [Buchi 1960]
MSO over (N, 0, succ) is decidable



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable

Exhaustively enumerate all possibilities for
guantifiers

Theorem [Buchi 1960]
MSO over (N, 0, succ) is decidable

S1S — Second order theory of 1 Successor



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable

Exhaustively enumerate all possibilities for
guantifiers

Theorem [Buchi 1960]
MSO over (N, 0, succ) is decidable

S1S — Second order theory of 1 Successor
S1S formula ¢ — (BUchi) automaton M.,



When i1s MSO decidable?

Given a structure A = (A, R, ..., R{*) and an MSO
sentence ¢, IS i true in A?

In verification parlance, Is the
for MSO formulas over A decidable?

If A Is finite, MSO Is decidable

Exhaustively enumerate all possibilities for
guantifiers

Theorem [Buchi 1960]
MSO over (N, 0, succ) is decidable

S1S — Second order theory of 1 Successor
S1S formula ¢ — (BUchi) automaton M.,

p is satisfiable iff (M) is nonempty I
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When i1s MSO decidable ...

Theorem [Rabin 1969]
MSO over the infinite binary tree is decidable

T, = {0,1}* — nodes of infinite binary tree
Relations Sy, S; — left and right child

S2S — Second order theory of 2 Successors
Satisfiability reduces to emptiness for tree automata

Corollary [Rabin 1969]

SnS iIs decidable for all n
SwS Is decidable
MSO over dense linear orders Is decidable

All follow by In S2S
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MSO Interpretations: An example

S3S, MSO over complete ternary tree T is decidable

Consider vertices 7' = (10 + 110 + 1110)* in T5
Nodes in 7: 140...10, with ;,...,%,, € {1,2,3}
Represents the node (¢; — 1)... (2, — 1)in T3
In S2S T'(x) = VY |Y ()N

Vy((Y (y10) vV Y (y110)V

Y (y1110)) = Y (y))
= Y (€)]

Translate S3S formulas over 75 Iinto S2S formulas over
T C T,



MSO Interpretations: An example ...

W Successor relations Sg,S,,55 of 15

IMSc Update Meeting, 1 March 2004 — p.7



MSO Interpretations: An example ...

W Successor relations Sg,S,,55 of 15
¢O(ZB9 y) — EIz(Sl(aja z) A SO(Za y))
Y1(x,y) = Judv(Si(x,u) A Si(u,v) A So(v,y))
oz, y) = ...



MSO Interpretations: An example ...

W Successor relations Sg,S,,55 of 15
¢0($, y) — 32(51(213, Z) A SO(Za y))
¢1($9 y) — EIru’EIIU(Sl(ma u) A Sl(ua U) A SO(va y))
Ya(T,y) = ...

% Relativize quantifiers



MSO Interpretations: An example ...

W Successor relations Sg,S,,55 of 15
¢0($, y) — 32(51(213, Z) A SO(Za y))
¢1($9 y) — EIru’EIIU(Sl(ma u) A Sl(ua U) A SO(va y))
Ya(T,y) = ...

% Relativize quantifiers
Vxp(x) in S3S — V(T (x) = ¢(x)) in S2S



MSO Interpretations: An example ...

W Successor relations Sg,S,,55 of 15
¢O(ZB9 y) — 32(51(:13, Z) A SO(Za y))
¢1(5L’a y) — EIUEI’U(Sl(aja u) A Sl(uv U) A SO(va y))
Yo(x,y) = ...
% Relativize quantifiers
Vxp(x) in S3S — V(T (x) = ¢(x)) in S2S
X p(X)INS3S — X (X CT A ¢(X)) in S2S
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MSO Iinterpretations

In general, an MSO interpretation of structure A in
structure B consists of

Mapping the domain of A into a subset of the
domain of B by a

In the example, T3 was mapped to 7" C T5
Mapping each relation R; of A into an “isomorphic”
relation over the subset defined by the domain
formula

In the example, each successor relation S; over T3
was mapped to a relation v»; over I' C T,

Proposition If A is MSO-interpretable in 5 and MSO is
decidable over 1B then MSO is decidable over A
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MSO Interpretations: results

Theorem [Muller-Schupp 1985]
MSO is decidable over pushdown graphs.

Theorem [Caucal 1996/2003]
MSO Is decidable over prefix-recognizable graphs.

Both results can be got from MSO interpretations Into
MSO over the tree T,,,, for appropriate m

For pushdown graphs, choose m to be number of
states plus size of stack alphabet.

For prefix-recognizable graphs, choose m to be the
size of the alphabet.
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Unfolding graph structures

Graphs with edge labels I and vertex labels .J
G = (V, (Ei)icr, (Pj)jeJ)
Unfold &G from vy € V Into
G’ = (V,a (Eé)ieu (P;)jEJ)
V7 all paths vgz1vq ... 10,
(p,q) € E!Iiff g extends p by edge from E;
p € P iff last vertexin p is in P;
Example: Gog = ({’U()}, Eo=FE; = {(’U(), ’U())})
Unfolding of & Is the binary tree 75
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Unfolding graphs

Theorem [Courcelle and Walukiewicz, 1998]

If MSO is decidable for a graph, then MSO Is also
decidable for its unfolding from any MSO-definable
vertex.

Decidability of S2S follows from trivial decidability of
MSO over ¢!

Theorem also holds for a different type of unfolding
called

Due to [Muchnik (reported by Semenov 1985)] and
[Walukiewicz 2002]
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The Caucal hierarchy [Caucal, 2002]

7T, = the class of finite trees

G,, = the class of graphs which are MSO-interpretable
In a tree of 7,

7,1 = the class of unfoldings of graphs in G,,

MSO Is decidable for each structure in the Caucal
hierarchy

Trivially for finite trees in 7

For higher levels, follows from what we have seen
so far

Gy Is the class of finite graphs
7, Is the class of trees
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A finite graph in G . .. bl
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The Caucal hierarchy, by example

A finite graph in G, ... bl

o a,b-. >0 a,b-. a,b-. a,b-. L
...its unfolding in 75 ... bi lc lc lc lc lc
...and a pushdown a a a a o a
graph in gl by MSO- ° >0 >0 >0 >0— >0
interpretation in the bl l;d izd izd Ed ijd
unfolding ... c ¢ € e €
wd(way):

Ye(,y) = 3232'(Ea(z, 2") A Ec(2,y) N Ec(2', 7))
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The Caucal hierarchy, by example ...

By an MSO-interpretation, we can identify a graph in

G- at the leaves of this tree
~ a a a a a

>0 >0 >0 >0 o o o

bi | cl ci ci
IN VN N

SENTATL
C,Z/\(ij

This is isomorphic to the structure (N, succ, Ps), where
P; Is the predicate

Original proof of decidability of MSO for (N, succ, Ps)
by [Elgot and Rabin, 1966] was “non unifof:dvens s zm-p:s



Reference

Constructing Infinite Graphs with a Decidable
MSO-Theory

Wolfgang Thomas
Invited talk, MFCS 2003

The paper is available from Wolfgang Thomas’s webpage.
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